-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·228 lines (181 loc) · 7.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import numpy as np
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from dataset import TrumpSpeechesDataset
from utils import init_weights, argmax, cuda, variable, get_sequence_from_indices
def repackage_hidden(h):
"""Wraps hidden states in new Variables, to detach them from their history."""
if type(h) == Variable:
return Variable(h.data)
else:
return tuple(repackage_hidden(v) for v in h)
class NeuralLanguageModel(torch.nn.Module):
def __init__(self, embedding_size, hidden_size, vocab_size, init_token, eos_token, teacher_forcing=0.7):
super().__init__()
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.teacher_forcing = teacher_forcing
self.init_token = init_token
self.eos_token = eos_token
#initialize the layers to be used
self.word_embedding = nn.Embedding(vocab_size, self.embedding_size)
self.GRU = nn.GRU(self.embedding_size, self.hidden_size, num_layers=1, dropout=0.2)
self.decoder = nn.Linear(self.hidden_size, vocab_size)
self.decoder.weight = self.word_embedding.weight
self.sm = nn.Softmax()
self.drop = nn.Dropout(0.2)
def cell_zero_state(self, batch_size):
"""
Create an initial hidden state of zeros
:param batch_size: the batch size
:return: A tensor of zeros of the shape of (batch_size x hidden_size)
"""
weight = next(self.parameters()).data
hidden = Variable(weight.new(1, batch_size, self.hidden_size).zero_())
return hidden
def forward(self, inputs):
"""
Perform the forward pass of the network and return non-normalized probabilities of the output tokens at each timestep
:param inputs: A tensor of size (batch_size x max_len) of indices of tweets' tokens
:return: A tensor of size (batch_size x max_len x vocab_size)
"""
batch_size, max_len = inputs.shape
#inputs = inputs.unsqueeze(1)
hidden = self.cell_zero_state(batch_size)
#hidden = repackage_hidden(hidden_0)
x_i = variable(np.full((1,), self.init_token)).expand((batch_size,))
#print("inputs shape : ", hidden_0.size())
outputs = []
for i in range(max_len):
if i == 0:
emb = self.drop(self.word_embedding(x_i))
emb = emb.unsqueeze(0)
cell_state, hidden = self.GRU(emb, hidden)
output = self.decoder(self.drop(cell_state))
else:
#use teacher forcing if rand prob < teach_force prob
if np.random.random() < self.teacher_forcing:
emb = self.drop(self.word_embedding(inputs[:, i]))
else:
_, max_ids = output.squeeze().max(-1)
emb = self.drop(self.word_embedding(max_ids))
emb = emb.unsqueeze(0)
cell_state, hidden = self.GRU(emb, hidden)
output = self.decoder(self.drop(cell_state))
outputs.append(output)
outputs = torch.stack(outputs, dim=1)
return outputs
def produce(self, start_tokens=None, max_len=20):
"""
Generate a tweet using the provided start tokens at the inputs on the initial timesteps
:param start_tokens: A tensor of the shape (n,) where n is the number of start tokens
:param max_len: Maximum length of the tweet
:return: Indices of the tokens of the generated tweet
"""
hidden = self.cell_zero_state(1)
x_i = variable(np.full((1,), self.init_token))
#if start_tokens is not None:
start_tokens = variable(start_tokens)
outputs = []
for i in range(max_len):
'''
if i == 0:
emb = self.word_embedding(x_i)
emb = emb.unsqueeze(0)
cell_state, hidden = self.GRU(emb, hidden)
prob_dist = F.softmax(self.decoder(cell_state)).squeeze().data.cpu()
output = torch.multinomial(prob_dist, 1)[0]
output = int(start_tokens[0].data.cpu())
start_tokens.data.fill_(int(start_tokens[0].data.cpu()))
else:
emb = self.word_embedding(start_tokens)
emb = emb.unsqueeze(0)
cell_state, hidden = self.GRU(emb, hidden)
output = self.decoder(cell_state)
output = output.squeeze().data.div(0.9).exp().cpu()
#print(output, output.shape)
#prob_dist = F.softmax(self.decoder(cell_state)).squeeze().data.cpu()
output = torch.multinomial(output, 1)[0]
#start_tokens.data.fill_(int(output.data.cpu().numpy()[0]))
start_tokens.data.fill_(output)
if self.eos_token == output:
break
#print(word_idx.data, word_idx.size())
#print(output.data)
'''
emb = self.word_embedding(start_tokens)
emb = emb.unsqueeze(0)
cell_state, hidden = self.GRU(emb, hidden)
output = self.decoder(cell_state).squeeze()
output = self.sm(output)
output = output.data.cpu()
#output = output.squeeze().data.div(0.9).exp().cpu()
output = torch.multinomial(output, 1)[0]
start_tokens.data.fill_(output)
if self.eos_token == output:
break
outputs.append(output)
#outputs = torch.cat(outputs)
#outputs = variable(outputs)
return outputs
def main():
max_len = 20
embedding_size = 200
hidden_size = 200
batch_size = 128
nb_epochs = 500
max_grad_norm = 5
teacher_forcing = 0.9
filename = 'data/trump_tweets.txt'
dataset = TrumpSpeechesDataset(filename, max_len=max_len)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
print('Data: {}, vocab: {}'.format(len(dataset), len(dataset.token2id)))
vocab_size = len(dataset.token2id)
model = NeuralLanguageModel(
embedding_size, hidden_size, vocab_size,
dataset.token2id[dataset.INIT_TOKEN], dataset.token2id[dataset.EOS_TOKEN],
teacher_forcing
)
model = cuda(model)
init_weights(model)
parameters = list(model.parameters())
#print(parameters)
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("No of paramters : ", n_params)
optimizer = torch.optim.Adam(parameters, lr=0.01)
criterion = torch.nn.CrossEntropyLoss(ignore_index=dataset.token2id[dataset.PAD_TOKEN])
for epoch in range(nb_epochs):
epoch_loss = []
model.train()
for i, inputs in enumerate(data_loader):
optimizer.zero_grad()
inputs = variable(inputs)
outputs = model(inputs)
targets = inputs.view(-1)
outputs = outputs.view(targets.size(0), -1)
loss = criterion(outputs, targets)
loss.backward()
torch.nn.utils.clip_grad_norm(parameters, max_grad_norm)
optimizer.step()
epoch_loss.append(float(loss))
epoch_loss = np.mean(epoch_loss)
print('Epoch {} loss {}'.format(epoch, epoch_loss))
# decode something
model.eval()
possible_start_tokens = [
['make', ],
['fake', ],
]
start_tokens = possible_start_tokens[np.random.randint(len(possible_start_tokens))]
start_tokens = np.array([dataset.token2id[t] for t in start_tokens])
outputs = model.produce(start_tokens, max_len=20)
#outputs = outputs.cpu().numpy()
produced_sequence = get_sequence_from_indices(outputs, dataset.id2token)
print('{}'.format(produced_sequence))
model.train()
if __name__ == '__main__':
main()