-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathAudioAnalysis.h
1032 lines (928 loc) · 26.6 KB
/
AudioAnalysis.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef AudioAnalysis_H
#define AudioAnalysis_H
#include "Arduino.h"
/*
AudioAnalysis.h
By Shea Ivey
https://github.com/sheaivey/ESP32-AudioInI2S
*/
// arduinoFFT V2
// See the develop branch on GitHub for the latest info and speedups.
// https://github.com/kosme/arduinoFFT/tree/develop
// if you are going for speed over precision uncomment the lines below.
// #define FFT_SPEED_OVER_PRECISION
// #define FFT_SQRT_APPROXIMATION
#include <arduinoFFT.h>
#ifndef SAMPLE_RATE
#define SAMPLE_RATE 44100
#endif
#ifndef SAMPLE_SIZE
#define SAMPLE_SIZE 1024
#endif
#ifndef BAND_SIZE
#define BAND_SIZE 64
#endif
class AudioAnalysis
{
public:
enum falloff_type
{
NO_FALLOFF = 0,
LINEAR_FALLOFF = 1,
ACCELERATE_FALLOFF = 2,
EXPONENTIAL_FALLOFF = 3,
};
AudioAnalysis();
AudioAnalysis(int32_t *samples, int sampleSize, int sampleRate, int bandSize);
/* FFT Functions */
void computeFFT(int32_t *samples, int sampleSize, int sampleRate); // calculates FFT on sample data
float *getReal(); // gets the Real values after FFT calculation
float *getImaginary(); // gets the imaginary values after FFT calculation
/* Band Frequency Functions */
void setNoiseFloor(float noiseFloor); // threshold before sounds are registered
void computeFrequencies(uint8_t bandSize = -1); // converts FFT data into frequency bands
void normalize(bool normalize = true, float min = 0, float max = 1); // normalize all values and constrain to min/max.
void autoLevel(falloff_type falloffType = EXPONENTIAL_FALLOFF, float falloffRate = 0.01, float min = 10, float max = -1); // auto ballance normalized values to ambient noise levels.
// min and max are based on pre-normalized values.
void setEqualizerLevels(float low = 1, float mid = 1, float high = 1 ); // adjust the frequency levels for a given range - low, medium and high.
// 0.5 = 50%, 1.0 = 100%, 1.5 = 150% the raw value etc.
void setEqualizerLevels(float *bandEq); // full control over each bands eq value.
float *getEqualizerLevels(); // gets the last bandEq levels
bool
isNormalize(); // is normalize enabled
bool isAutoLevel(); // is auto level enabled
bool isClipping(); // is values exceeding max
void bandPeakFalloff(falloff_type falloffType = EXPONENTIAL_FALLOFF, float falloffRate = 0.5); // set the falloff type and rate for band peaks.
void vuPeakFalloff(falloff_type falloffType = EXPONENTIAL_FALLOFF, float falloffRate = 0.5); // set the falloff type and rate for volume unit peak.
void samplesFalloff(falloff_type falloffType = EXPONENTIAL_FALLOFF, float falloffRate = 0.5); // set the falloff type and rate for sample values.
float getBass(); // gets the current bass range value
float getMid(); // gets the current mid range value
float getTreble(); // gets the current tweet range value
float getBassPeak(); // gets the peak bass range value
float getMidPeak(); // gets the peak mid range value
float getTreblePeak(); // gets the peak tweet range value
float *getBands(); // gets the last bands calculated from computeFrequencies()
float *getPeaks(); // gets the last peaks calculated from computeFrequencies()
uint16_t *getBandNames(); // gets the band names calculated from calculateFrequencyOffsets()
uint16_t getBandName(uint8_t index); // gets the band name at index calculated from calculateFrequencyOffsets()
void setBandSize(uint8_t bandSize = BAND_SIZE); // gets the current calculated _bandSize;
int getBandSize(); // gets the current _bandSize;
float getBand(uint8_t index); // gets the value at bands index
float getBandAvg(); // average value across all bands
float getBandMax(); // max value across all bands
int getBandMaxIndex(); // index of the highest value band
int getBandMinIndex(); // index of the lowest value band
float getPeak(uint8_t index); // gets the value at peaks index
float getPeakAvg(); // average value across all peaks
float getPeakMax(); // max value across all peaks
int getPeakMaxIndex(); // index of the highest value peak
int getPeakMinIndex(); // index of the lowest value peak
/* Volume Unit Functions */
float getVolumeUnit(); // gets the last volume unit calculated from computeFrequencies()
float getVolumeUnitPeak(); // gets the last volume unit peak calculated from computeFrequencies()
float getVolumeUnitMax(); // value of the highest value volume unit
float getVolumeUnitPeakMax(); // value of the highest value volume unit
float getSample(uint16_t index); // calculates the normalized sample value at index
uint16_t getSampleTriggerIndex(); // finds the index of the first cross point at zero
float getSampleMin(); // gets the lowest value in the samples
float getSampleMax(); // gets the highest value in the samples
int sampleSize() {
return _sampleSize;
}
int bandSize()
{
return _bandSize;
}
protected:
/* Library Settings */
bool _isAutoLevel = false;
bool _isClipping = false;
float _autoMin = 10; // lowest raw value the autoLevel will fall to before stopping. -1 = will auto level down to 0.
float _autoMax = -1; // highest raw value the autoLevel will rise to before clipping. -1 = will not have any clipping.
bool _isNormalize = false;
float _normalMin = 0;
float _normalMax = 1;
falloff_type _bandPeakFalloffType = EXPONENTIAL_FALLOFF;
float _bandPeakFalloffRate = 0.5;
falloff_type _vuPeakFalloffType = EXPONENTIAL_FALLOFF;
float _vuPeakFalloffRate = 0.5;
falloff_type _autoLevelFalloffType = EXPONENTIAL_FALLOFF;
float _autoLevelFalloffRate = 0.001;
falloff_type _sampleLevelFalloffType = EXPONENTIAL_FALLOFF;
float _sampleLevelFalloffRate = 0.001;
float calculateFalloff(falloff_type falloffType, float falloffRate, float currentRate);
float mapAndClip(float x, float in_min, float in_max, float out_min, float out_max);
/* FFT Variables */
int32_t *_samples = nullptr;
int _sampleSize = SAMPLE_SIZE;
int _sampleRate = SAMPLE_RATE;
float _real[SAMPLE_SIZE];
float _imag[SAMPLE_SIZE];
float _weighingFactors[SAMPLE_SIZE];
/* Band Frequency Variables */
float _noiseFloor = 0;
int _bandSize = BAND_SIZE;
float _bands[BAND_SIZE];
float _peaks[BAND_SIZE];
float _peakFallRate[BAND_SIZE];
float _peaksNorms[BAND_SIZE];
float _bandsNorms[BAND_SIZE];
float _bandEq[BAND_SIZE];
float _low = 1;
float _mid = 1;
float _high = 1;
bool _lowMidHighEq = false;
float _frequencyOffsets[BAND_SIZE];
uint16_t _frequencyNames[BAND_SIZE];
void calculateFrequencyOffsets();
uint16_t _bassMidTrebleWidths[3];
uint16_t * getBassMidTrebleWidths();
float _bandAvg = 0;
float _peakAvg = 0;
int8_t _bandMinIndex = 0;
int8_t _bandMaxIndex = 0;
int8_t _peakMinIndex = 0;
int8_t _peakMaxIndex = 0;
float _bandMin = 0;
float _bandMax = 1; // used for normalization calculation
float _peakMin = 0;
float _autoLevelPeakMax = 1; // used for normalization calculation
float _autoLevelPeakMaxFalloffRate; // used for auto level calculation
/* Volume Unit Variables */
float _vu = 0;
float _vuPeak = 0;
float _vuPeakFallRate;
float _vuMin = 0;
float _vuMax = 1; // used for normalization calculation
float _vuPeakMin = 0;
float _autoLevelVuPeakMax = 1; // used for normalization calculation
float _autoLevelMaxFalloffRate; // used for auto level calculation
/* Samples Variables */
float _samplesMin = 0;
float _samplesMax = 1;
float _autoLevelSamplesMaxFalloffRate; // used for auto level calculation
ArduinoFFT<float> *_FFT = nullptr;
};
AudioAnalysis::AudioAnalysis(int32_t *samples, int sampleSize, int sampleRate, int bandSize)
{
AudioAnalysis();
_samples = samples;
_sampleSize = sampleSize;
_sampleRate = sampleRate;
for (int i = 0; i < SAMPLE_SIZE; i++)
{
_real[i] = 0;
_imag[i] = 0;
//_weighingFactors[i] = 0;
}
for (int i = 0; i < BAND_SIZE; i++)
{
_bands[i] = 0;
_peaks[i] = 0;
_peakFallRate[i] = 0;
_peaksNorms[i] = 0;
_bandsNorms[i] = 0;
_bandEq[i] = 1;
// _frequencyOffsets[i] = 0; // gets set in setBandSize()
}
setBandSize(bandSize);
}
AudioAnalysis::AudioAnalysis()
{
_samples = nullptr;
// set default eq levels;
for (int i = 0; i < _bandSize; i++)
{
_bandEq[i] = 1.0;
}
calculateFrequencyOffsets();
}
void AudioAnalysis::computeFFT(int32_t *samples, int sampleSize, int sampleRate)
{
_samples = samples;
if (_FFT == nullptr || _sampleSize != sampleSize || _sampleRate != sampleRate)
{
_sampleSize = sampleSize;
_sampleRate = sampleRate;
_FFT = new ArduinoFFT<float>(_real, _imag, _sampleSize, _sampleRate, _weighingFactors);
}
if (_isAutoLevel)
{
// if (_samplesMax > _autoMin * 0x1FFFF)
// {
_autoLevelSamplesMaxFalloffRate = calculateFalloff(_sampleLevelFalloffType, _sampleLevelFalloffRate, _autoLevelSamplesMaxFalloffRate);
_samplesMax -= _autoLevelSamplesMaxFalloffRate;
// }
// if (_samplesMax < _autoMin * 0x1FFFF)
// {
// _samplesMax = _autoMin * 0x1FFFF;
// }
}
// prep samples for analysis
for (int i = 0; i < _sampleSize; i++)
{
_real[i] = samples[i];
_imag[i] = 0;
if (abs(samples[i]) > _samplesMax)
{
_samplesMax = abs(samples[i]);
_autoLevelSamplesMaxFalloffRate = 0;
}
if (abs(samples[i]) < _samplesMin)
{
_samplesMin = abs(samples[i]);
}
}
_FFT->dcRemoval();
_FFT->windowing(FFTWindow::Hamming, FFTDirection::Forward, false); /* Weigh data (compensated) */
_FFT->compute(FFTDirection::Forward); /* Compute FFT */
_FFT->complexToMagnitude(); /* Compute magnitudes */
}
float *AudioAnalysis::getReal()
{
return _real;
}
float *AudioAnalysis::getImaginary()
{
return _imag;
}
void AudioAnalysis::setNoiseFloor(float noiseFloor)
{
_noiseFloor = noiseFloor;
}
float getPoint(float n1, float n2, float percent)
{
float diff = n2 - n1;
return n1 + (diff * percent);
}
uint16_t * AudioAnalysis::getBassMidTrebleWidths() {
_bassMidTrebleWidths[0] = max(1, (_bandSize / 10)); // 40Hz < bass < 400Hz
_bassMidTrebleWidths[1] = max(1, (int)((float)(_bandSize - _bassMidTrebleWidths[0]) / 3.5)); // 400Hz < mid < 1800Hz
_bassMidTrebleWidths[2] = max(1, (_bandSize - _bassMidTrebleWidths[0] - _bassMidTrebleWidths[1])); // 1800Hz < treble < 17000Hz
return _bassMidTrebleWidths;
};
void AudioAnalysis::setEqualizerLevels(float low, float mid, float high)
{
_low = low;
_mid = mid;
_high = high;
_lowMidHighEq = true;
uint16_t * widths = getBassMidTrebleWidths();
float xa, ya, xb, yb, x, y;
// low curve
float x1 = 0;
float lowSize = widths[0];
float y1 = low;
float x2 = lowSize / 2;
float y2 = low;
float x3 = lowSize;
float y3 = (low + mid) / 2.0;
for (int i = x1; i < lowSize; i++)
{
// TODO: fix the curve to use x position
float p = (float)i / (float)lowSize;
//xa = getPoint(x1, x2, p);
ya = getPoint(y1, y2, p);
//xb = getPoint(x2, x3, p);
yb = getPoint(y2, y3, p);
//x = getPoint(xa, xb, p);
y = getPoint(ya, yb, p);
_bandEq[i] = y;
}
// mid curve
x1 = lowSize;
float midSize = widths[1];
y1 = y3;
x2 = x1 + widths[0];
y2 = mid;
x3 = x1 + midSize;
y3 = (mid + high) / 2.0;
for (int i = x1; i < x1+midSize; i++)
{
float p = (float)(i - x1) / (float)midSize;
// xa = getPoint(x1, x2, p);
ya = getPoint(y1, y2, p);
// xb = getPoint(x2, x3, p);
yb = getPoint(y2, y3, p);
// x = getPoint(xa, xb, p);
y = getPoint(ya, yb, p);
_bandEq[i] = y;
}
// high curve
x1 = lowSize + midSize;
float highSize = widths[2];
y1 = y3;
x2 = x1 + highSize / 2;
y2 = high;
x3 = x1 + highSize;
y3 = high;
for (int i = x1; i < x1+highSize; i++)
{
float p = (float)(i - x1) / (float)highSize;
// xa = getPoint(x1, x2, p);
ya = getPoint(y1, y2, p);
// xb = getPoint(x2, x3, p);
yb = getPoint(y2, y3, p);
// x = getPoint(xa, xb, p);
y = getPoint(ya, yb, p);
_bandEq[i] = y;
}
}
void AudioAnalysis::setEqualizerLevels(float *bandEq)
{
_lowMidHighEq = false;
// blind copy of eq percentages
for(int i = 0; i < _bandSize; i++) {
_bandEq[i] = bandEq[i];
}
}
float *AudioAnalysis::getEqualizerLevels()
{
return _bandEq;
}
// this look Up Table is used to normalize the buckets against each other. Visually makes the higher frequencies appear to be more equal to the lower frequencies.
float lut[] PROGMEM = {0.0006637301302, 0.0006793553648, 0.0006966758032, 0.0007158753602, 0.0007371579043, 0.0007607494216, 0.0007869004159, 0.0008158885684, 0.0008480216863, 0.0008836409716, 0.0009231246432, 0.0009668919541, 0.001015407642, 0.001069186866, 0.001128800673, 0.001194882066, 0.001268132722, 0.001349330446, 0.001439337425, 0.001539109388, 0.001649705751, 0.00177230087, 0.001908196507, 0.002058835652, 0.002225817851, 0.002410916183, 0.002616096095, 0.002843536264, 0.003095651737, 0.003375119574, 0.00368490727, 0.004028304269, 0.004408956893, 0.004830907057, 0.005298635188, 0.005817107803, 0.006391830243, 0.00702890513, 0.007735097169, 0.008517904978, 0.009385640709, 0.01034751831, 0.01141375137, 0.01259566156, 0.01390579885, 0.01535807478, 0.01696791017, 0.01875239887, 0.02073048926, 0.02292318547, 0.02535377038, 0.02804805287, 0.03103464187, 0.03434525011, 0.03801503091, 0.04208295139, 0.04659220631, 0.05159067664, 0.05713143806, 0.06327332449, 0.07008155284, 0.07762841548, 0.08599404787, 0.09526727952};
void AudioAnalysis::calculateFrequencyOffsets()
{
// lookup table 64 buckets
float maxValue = ((float)_sampleSize / 2.0) * 0.7516249323;
uint16_t total = 0;
// Serial.print("frequencyOffsets Size: ");
// Serial.println(_bandSize);
// Serial.print("sample goal: ");
// Serial.println(maxValue);
int stepSize = 64.0 / (float)_bandSize;
int offset = 0;
float v = 0;
// Serial.print("Step Size: ");
// Serial.println(stepSize);
for (int i = 0; i < BAND_SIZE; i++)
{
_frequencyOffsets[i] = 0;
}
for (int i = 0; i * stepSize < 64; i++)
{
offset = i * stepSize;
v = 0;
for (int j = 0; offset + j < offset + stepSize && offset + j < 64; j++)
{
v += lut[(offset + j)];
}
v = v * maxValue;
// if(v < 1) {
// v = 1;
// }
_frequencyOffsets[i] = v;
total += v;
// Serial.printf("index: %2d = ", (int)i);
// Serial.println((int)v);
}
offset = 0;
_frequencyNames[0] = 20;
for (int i = 1; i < _bandSize; i++)
{
offset += ceil(_frequencyOffsets[i-1]);
_frequencyNames[i] = offset * _sampleRate / _sampleSize;
}
// Serial.print("SUM: ");
// Serial.println(total);
}
void AudioAnalysis::computeFrequencies(uint8_t bandSize)
{
setBandSize(bandSize);
if (!_samples)
{
return;
}
_isClipping = false;
// for normalize falloff rates
if (_isAutoLevel)
{
if (_autoLevelPeakMax > _autoMin)
{
_autoLevelPeakMaxFalloffRate = calculateFalloff(_autoLevelFalloffType, _autoLevelFalloffRate, _autoLevelPeakMaxFalloffRate);
_autoLevelPeakMax -= _autoLevelPeakMaxFalloffRate;
}
if (_autoLevelVuPeakMax > _autoMin)
{
_autoLevelMaxFalloffRate = calculateFalloff(_autoLevelFalloffType, _autoLevelFalloffRate, _autoLevelMaxFalloffRate);
_autoLevelVuPeakMax -= _autoLevelMaxFalloffRate;
}
if (_autoLevelPeakMax < _autoMin)
{
_autoLevelPeakMax = _autoMin;
}
if (_autoLevelVuPeakMax < _autoMin)
{
_autoLevelVuPeakMax = _autoMin;
}
}
_vu = 0;
_bandMax = 0;
_bandAvg = 0;
_peakAvg = 0;
_bandMaxIndex = -1;
_bandMinIndex = -1;
_peakMaxIndex = -1;
_peakMinIndex = -1;
int offset = 2; // first two values are noise
for (int i = 0; i < _bandSize; i++)
{
_bands[i] = 0;
// handle band peaks fall off
_peakFallRate[i] = calculateFalloff(_bandPeakFalloffType, _bandPeakFalloffRate, _peakFallRate[i]);
if (_peaks[i] - _peakFallRate[i] <= _bands[i])
{
_peaks[i] = _bands[i];
}
else
{
_peaks[i] -= _peakFallRate[i]; // fall off rate
}
for (int j = 0; j < ceil(_frequencyOffsets[i]); j++)
{
// scale down factor to prevent overflow
float rv = (_real[offset + j] / (float)(0xFFFF * 0xFF));
float iv = (_imag[offset + j] / (float)(0xFFFF * 0xFF));
// some smoothing with imaginary numbers.
rv = sqrt(rv * rv + iv * iv);
// apply eq scaling
rv = rv * _bandEq[i];
if (_frequencyOffsets[i] < 1)
{
rv *= _frequencyOffsets[i]; // band scale down factor
}
rv = rv < _noiseFloor ? 0 : rv;
// combine band amplitudes for current band segment
_bands[i] += rv;
_vu += rv;
}
offset += ceil(_frequencyOffsets[i]);
// remove noise
if (_bands[i] < _noiseFloor)
{
_bands[i] = 0;
}
if (_bands[i] > _peaks[i])
{
_peakFallRate[i] = 0;
_peaks[i] = _bands[i];
}
// handle min/max band
if (_bands[i] > _bandMax && _bands[i] > _noiseFloor)
{
_bandMax = _bands[i];
_bandMaxIndex = i;
}
if (_bands[i] < _bandMin)
{
_bandMin = _bands[i];
_bandMinIndex = i;
}
// handle min/max peak
if (_peaks[i] > _autoLevelPeakMax)
{
// TODO: make _autoLevelPeakMax value build up new high over time
_autoLevelPeakMax = _peaks[i];
if (_isAutoLevel && _autoMax != -1 && _peaks[i] > _autoMax)
{
_isClipping = true;
_autoLevelPeakMax = _autoMax;
}
_peakMaxIndex = i;
_autoLevelPeakMaxFalloffRate = 0;
}
if (_peaks[i] < _peakMin && _peaks[i] > _noiseFloor)
{
_peakMin = _peaks[i];
_peakMinIndex = i;
}
// handle band average
_bandAvg += _bands[i];
_peakAvg += _peaks[i];
} // end bands
// handle band average
_bandAvg = _bandAvg / _bandSize;
_peakAvg = _peakAvg / _bandSize;
// handle vu peak fall off
_vu = _vu / 8.0; // get it closer to the band peak values
_vuPeakFallRate = calculateFalloff(_vuPeakFalloffType, _vuPeakFalloffRate, _vuPeakFallRate);
_vuPeak -= _vuPeakFallRate;
if (_vu > _vuPeak)
{
_vuPeakFallRate = 0;
_vuPeak = _vu;
}
if (_vu > _vuMax)
{
_vuMax = _vu;
}
if (_vu < _vuMin)
{
_vuMin = _vu;
}
if (_vuPeak > _autoLevelVuPeakMax)
{
_autoLevelVuPeakMax = _vuPeak;
if (_isAutoLevel && _autoMax != -1 && _vuPeak > _autoMax)
{
_isClipping = true;
_autoLevelVuPeakMax = _autoMax;
}
_autoLevelMaxFalloffRate = 0;
}
if (_vuPeak < _vuPeakMin)
{
_vuPeakMin = _vuPeak;
}
}
float AudioAnalysis::mapAndClip(float x, float in_min, float in_max, float out_min, float out_max)
{
if (_isAutoLevel && _autoMax != -1 && x > _autoMax)
{
// clip the value to max
x = _autoMax;
}
else if (x > in_max)
{
// value is clipping
x = in_max;
}
else if (x < in_min)
{
// value is clipping
x = in_min;
}
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
void AudioAnalysis::normalize(bool normalize, float min, float max)
{
_isNormalize = normalize;
_normalMin = min;
_normalMax = max;
}
void AudioAnalysis::bandPeakFalloff(falloff_type falloffType, float falloffRate)
{
_bandPeakFalloffType = falloffType;
_bandPeakFalloffRate = falloffRate;
}
void AudioAnalysis::vuPeakFalloff(falloff_type falloffType, float falloffRate)
{
_vuPeakFalloffType = falloffType;
_vuPeakFalloffRate = falloffRate;
}
void AudioAnalysis::samplesFalloff(falloff_type falloffType, float falloffRate)
{
_sampleLevelFalloffType = falloffType;
_sampleLevelFalloffRate = falloffRate;
}
float AudioAnalysis::calculateFalloff(falloff_type falloffType, float falloffRate, float currentRate)
{
switch (falloffType)
{
case LINEAR_FALLOFF:
return falloffRate;
case ACCELERATE_FALLOFF:
return currentRate + falloffRate;
case EXPONENTIAL_FALLOFF:
if (currentRate == 0)
{
currentRate = falloffRate;
}
return currentRate + currentRate;
case NO_FALLOFF:
default:
return 0;
}
}
void AudioAnalysis::autoLevel(falloff_type falloffType, float falloffRate, float min, float max)
{
_isAutoLevel = falloffType != NO_FALLOFF;
_autoLevelFalloffType = falloffType;
_autoLevelFalloffRate = falloffRate;
_autoMin = min;
_autoMax = max;
}
bool AudioAnalysis::isNormalize()
{
return _isNormalize;
}
bool AudioAnalysis::isAutoLevel()
{
return _isAutoLevel;
}
bool AudioAnalysis::isClipping()
{
return _isClipping;
}
int AudioAnalysis::getBandSize() {
return _bandSize;
}
void AudioAnalysis::setBandSize(uint8_t bandSize)
{
static uint8_t lastBandSize = -1;
if (bandSize > 0 && bandSize <= BAND_SIZE)
{
if (lastBandSize != bandSize)
{ // changed size
_bandSize = bandSize;
calculateFrequencyOffsets();
if (_lowMidHighEq)
{
setEqualizerLevels(_low, _mid, _high); // set the equlizer offsets
}
}
}
else {
_bandSize = BAND_SIZE;
}
lastBandSize = _bandSize;
}
float *AudioAnalysis::getBands()
{
if (_isNormalize)
{
for (int i = 0; i < _bandSize; i++)
{
_bandsNorms[i] = mapAndClip(_bands[i], 0.0f, _autoLevelPeakMax, _normalMin, _normalMax);
}
return _bandsNorms;
}
return _bands;
}
uint16_t *AudioAnalysis::getBandNames()
{
return _frequencyNames;
}
uint16_t AudioAnalysis::getBandName(uint8_t index)
{
if (index >= _bandSize || index < 0)
{
return 0;
}
return _frequencyNames[index];
}
float AudioAnalysis::getBand(uint8_t index)
{
if (index >= _bandSize || index < 0)
{
return 0;
}
if (_isNormalize)
{
return mapAndClip(_bands[index], 0.0f, _autoLevelPeakMax, _normalMin, _normalMax);
}
return _bands[index];
}
float AudioAnalysis::getBandAvg()
{
if (_isNormalize)
{
return mapAndClip(_bandAvg, 0.0f, _autoLevelPeakMax, _normalMin, _normalMax);
}
return _bandAvg;
}
float AudioAnalysis::getBandMax()
{
return getBand(getBandMaxIndex());
}
int AudioAnalysis::getBandMaxIndex()
{
return _bandMaxIndex;
}
int AudioAnalysis::getBandMinIndex()
{
return _bandMinIndex;
}
float *AudioAnalysis::getPeaks()
{
if (_isNormalize)
{
for (int i = 0; i < _bandSize; i++)
{
_peaksNorms[i] = mapAndClip(_peaks[i], 0.0f, _autoLevelPeakMax, _normalMin, _normalMax);
}
return _peaksNorms;
}
return _peaks;
}
float AudioAnalysis::getPeak(uint8_t index)
{
if (index >= _bandSize || index < 0)
{
return 0;
}
if (_isNormalize)
{
return mapAndClip(_peaks[index], 0.0f, _autoLevelPeakMax, _normalMin, _normalMax);
}
return _peaks[index];
}
float AudioAnalysis::getPeakAvg()
{
if (_isNormalize)
{
return mapAndClip(_peakAvg, 0.0f, _autoLevelPeakMax, _normalMin, _normalMax);
}
return _peakAvg;
}
float AudioAnalysis::getPeakMax()
{
return getPeak(getPeakMaxIndex());
}
int AudioAnalysis::getPeakMaxIndex()
{
return _peakMaxIndex;
}
int AudioAnalysis::getPeakMinIndex()
{
return _peakMinIndex;
}
float AudioAnalysis::getBass()
{
uint16_t *widths = getBassMidTrebleWidths();
int start = 0;
int range = widths[0];
float *bands = getBands();
float out = bands[start];
for (int i = start; i < start + range; i++)
{
if (out < bands[i])
{
out = bands[i];
}
}
return out;
}
float AudioAnalysis::getMid()
{
uint16_t *widths = getBassMidTrebleWidths();
int start = widths[0];
int range = widths[1];
float *bands = getBands();
float out = bands[start];
for (int i = start; i < start + range; i++)
{
if (out < bands[i])
{
out = bands[i];
}
}
return out;
}
float AudioAnalysis::getTreble()
{
uint16_t *widths = getBassMidTrebleWidths();
int start = widths[0] + widths[1];
if (start >= _bandSize)
{
return getMid();
}
int range = widths[2];
float *bands = getBands();
float out = bands[start];
for (int i = start; i < start + range; i++)
{
if (out < bands[i])
{
out = bands[i];
}
}
return out;
}
float AudioAnalysis::getBassPeak()
{
uint16_t *widths = getBassMidTrebleWidths();
int start = 0;
int range = widths[0];
float *bands = getPeaks();
float out = bands[start];
for (int i = start; i < start + range; i++)
{
if (out < bands[i])
{
out = bands[i];
}
}
return out;
}
float AudioAnalysis::getMidPeak()
{
uint16_t *widths = getBassMidTrebleWidths();
int start = widths[0];
int range = widths[1];
float *bands = getPeaks();
float out = bands[start];
for (int i = start; i < start + range; i++)
{
if (out < bands[i])
{
out = bands[i];
}
}
return out;
}
float AudioAnalysis::getTreblePeak()
{
uint16_t *widths = getBassMidTrebleWidths();
int start = widths[0] + widths[1];
if(start >= _bandSize) {
return getMidPeak();
}
int range = widths[2];
float *bands = getPeaks();
float out = bands[start];
for (int i = start; i < start + range; i++)
{
if (out < bands[i])
{
out = bands[i];
}
}
return out;
}
float AudioAnalysis::getVolumeUnit()
{
if (_isNormalize)
{
return mapAndClip(_vu, 0.0f, _autoLevelVuPeakMax, _normalMin, _normalMax);
}
return _vu;
}
float AudioAnalysis::getVolumeUnitPeak()
{
if (_isNormalize)
{
return mapAndClip(_vuPeak, 0.0f, _autoLevelVuPeakMax, _normalMin, _normalMax);
}
return _vuPeak;
}
float AudioAnalysis::getVolumeUnitMax()
{
if (_isNormalize)
{
return mapAndClip(_vuMax, 0.0f, _autoLevelVuPeakMax, _normalMin, _normalMax);
}
return _vuMax;
}
float AudioAnalysis::getVolumeUnitPeakMax()
{
if (_isNormalize)
{
return _normalMax;
}
return _autoLevelVuPeakMax;
}
float AudioAnalysis::getSample(uint16_t index)
{
float value = 0;
if (_samples)
{
value = (float)_samples[index];
if (index < 0 || index >= _sampleSize)
{
value = 0; // make zero
}
}
if (_isNormalize)
{
float _tempSamplesMax = _samplesMax <= _autoMin * (float)0xFFFF ? _autoMin * 0xFFFF : _samplesMax;
return mapAndClip(value, -_tempSamplesMax, _tempSamplesMax, _normalMin, _normalMax);
}
return value;
}
uint16_t AudioAnalysis::getSampleTriggerIndex()
{
if (!_samples)
{
return 0;
}