-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval_openqa.py
192 lines (160 loc) · 6.65 KB
/
eval_openqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import json
import torch
from tqdm import tqdm
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
from glob import glob
from gpt4o_evalutor import generate_score
RANDOM_TEST = True
if not RANDOM_TEST:
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
else:
print("Running in random test mode...")
def get_video_path(video_name, data_path):
return os.path.join(data_path, "impossible_videos", video_name)
def inference_one(video_file, question):
if RANDOM_TEST:
return "The video is plausible without any impossible events."
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "file://{}".format(video_file),
},
{"type": "text",
"text": question},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
output_text = output_text[0].strip()
print(output_text)
return output_text
def main_proc(question_file, pred_file, data_path):
with open(question_file, 'r') as f:
input_data = json.load(f)
pred_dict = {}
for video_name, question in tqdm(input_data.items()):
video_file = get_video_path(video_name, data_path)
result = inference_one(video_file, question)
pred_dict[video_name] = {'video_name': video_name, 'pred': result}
with open(pred_file, 'w') as f:
json.dump(pred_dict, f)
def compute_overall_score(output_dir, gt_file, data_path):
with open(f"{data_path}/video2taxonomy_label.json", 'r') as f:
vid_to_tax = json.load(f)
with open(gt_file, 'r') as f:
gt_data = json.load(f)
data_input = {}
list_files = glob(os.path.join(output_dir, "*.txt"))
for file in list_files:
vid_name = os.path.basename(file).replace('.txt', '')
data = open(file, 'r').read()
data_input[vid_name] = data
assert len(data_input) == len(gt_data)
accumu_score = 0.0
accumu_phy, accumu_bio, accumu_social, accumu_geo = 0.0, 0.0, 0.0, 0.0
accumu_spa, accumu_tmp = 0.0, 0.0
cnt_phy, cnt_bio, cnt_social, cnt_geo = 0, 0, 0, 0
cnt_spa, cnt_tmp = 0, 0
for k, v in data_input.items():
if 'physical laws' in vid_to_tax[k]['taxonomy_label_list']:
cnt_phy += 1
if 'biological laws' in vid_to_tax[k]['taxonomy_label_list']:
cnt_bio += 1
if 'social laws' in vid_to_tax[k]['taxonomy_label_list']:
cnt_social += 1
if 'geographical laws' in vid_to_tax[k]['taxonomy_label_list']:
cnt_geo += 1
if vid_to_tax[k]['spatial_temporal_label'] == "spatial":
cnt_spa += 1
elif vid_to_tax[k]['spatial_temporal_label'] == "temporal":
cnt_tmp += 1
else:
raise ValueError
json_str = str(v).replace("json", "").replace("```", '')
try:
data = json.loads(json_str)
except Exception as e:
print(k)
print(json_str)
continue
data['semantic_alignment_score'] = str(data['semantic_alignment_score'])
if len(data['semantic_alignment_score']) > 4:
assert '-' in data['semantic_alignment_score'], data['semantic_alignment_score']
lower = float(data['semantic_alignment_score'].split('-')[0])
upper = float(data['semantic_alignment_score'].split('-')[1])
cur_score = (lower + upper) / 2.0
print("Averaging {} and {} into {}".format(lower, upper, (lower + upper) / 2.0))
else:
cur_score = float(data['semantic_alignment_score'])
accumu_score += cur_score
if 'physical laws' in vid_to_tax[k]['taxonomy_label_list']:
accumu_phy += cur_score
if 'biological laws' in vid_to_tax[k]['taxonomy_label_list']:
accumu_bio += cur_score
if 'social laws' in vid_to_tax[k]['taxonomy_label_list']:
accumu_social += cur_score
if 'geographical laws' in vid_to_tax[k]['taxonomy_label_list']:
accumu_geo += cur_score
if vid_to_tax[k]['spatial_temporal_label'] == "spatial":
accumu_spa += cur_score
elif vid_to_tax[k]['spatial_temporal_label'] == "temporal":
accumu_tmp += cur_score
else:
raise ValueError
# assert cnt_spa + cnt_tmp == len(data_input)
print("Overall score: {:.1f}".format(accumu_score / len(data_input)*100))
print("Physical score: {:.1f}".format(accumu_phy / cnt_phy*100))
print("Biological score: {:.1f}".format(accumu_bio / cnt_bio*100))
print("Social score: {:.1f}".format(accumu_social / cnt_social*100))
print("Geographical score: {:.1f}".format(accumu_geo / cnt_geo*100))
print("Spatial score: {:.1f}".format(accumu_spa / cnt_spa*100))
print("Temporal score: {:.1f}".format(accumu_tmp / cnt_tmp*100))
print("=" * 50)
if __name__ == '__main__':
# Step 0: config the path
data_path = "/users/zechen/ImpV/arxiv/release"
question_file = f"{data_path}/openqa_question.json"
answer_file = f"{data_path}/openqa_answer.json"
# Step 1: config the model name
model_name = "qwen2_vl"
pred_file = f"{model_name}_pred_ipv_openqa.json"
output_score_folder = f"{model_name}_openqa_score"
# Step 2: run inference
main_proc(question_file, pred_file, data_path)
# Step 3: run GPT-4o score evaluation
generate_score(answer_file, pred_file, output_score_folder)
# Step 4: compute final score
compute_overall_score(output_score_folder, answer_file, data_path)