-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgradio_app.py
330 lines (268 loc) · 11.6 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import spaces
import gradio as gr
import torch
import numpy as np
from PIL import Image
from accelerate import Accelerator
import os
import time
from torchvision import transforms
from safetensors.torch import load_file
from networks import lora_flux
from library import flux_utils, flux_train_utils_recraft as flux_train_utils, strategy_flux
import logging
from huggingface_hub import login
from huggingface_hub import hf_hub_download
device = "cuda" if torch.cuda.is_available() else "cpu"
# Set up logger
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG)
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token)
# Model paths dynamically retrieved using selected model
model_paths = {
'Wood Sculpture': {
'BASE_FLUX_CHECKPOINT': "showlab/makeanything",
'BASE_FILE': "flux_merge_lora/flux_merge_4f_wood-fp8_e4m3fn.safetensors",
'LORA_REPO': "showlab/makeanything",
'LORA_FILE': "recraft/recraft_4f_wood_sculpture.safetensors",
"Frame": 4
},
'LEGO': {
'BASE_FLUX_CHECKPOINT': "showlab/makeanything",
'BASE_FILE': "flux_merge_lora/flux_merge_9f_lego-fp8_e4m3fn.safetensors",
'LORA_REPO': "showlab/makeanything",
'LORA_FILE': "recraft/recraft_9f_lego.safetensors",
"Frame": 9
},
'Sketch': {
'BASE_FLUX_CHECKPOINT': "showlab/makeanything",
'BASE_FILE': "flux_merge_lora/flux_merge_9f_portrait-fp8_e4m3fn.safetensors",
'LORA_REPO': "showlab/makeanything",
'LORA_FILE': "recraft/recraft_9f_sketch.safetensors",
"Frame": 9
},
'Portrait': {
'BASE_FLUX_CHECKPOINT': "showlab/makeanything",
'BASE_FILE': "flux_merge_lora/flux_merge_9f_sketch-fp8_e4m3fn.safetensors",
'LORA_REPO': "showlab/makeanything",
'LORA_FILE': "recraft/recraft_9f_portrait.safetensors",
"Frame": 9
}
}
# Common paths
clip_repo_id = "comfyanonymous/flux_text_encoders"
t5xxl_file = "t5xxl_fp8_e4m3fn.safetensors"
clip_l_file = "clip_l.safetensors"
ae_repo_id = "black-forest-labs/FLUX.1-dev"
ae_file = "ae.safetensors"
# Model placeholders
model = None
clip_l = None
t5xxl = None
ae = None
lora_model = None
# Function to load a file from Hugging Face Hub
def download_file(repo_id, file_name):
return hf_hub_download(repo_id=repo_id, filename=file_name)
# Load model function
def load_target_model(selected_model):
global model, clip_l, t5xxl, ae, lora_model
# Fetch paths based on the selected model
model_path = model_paths[selected_model]
base_checkpoint_repo = model_path['BASE_FLUX_CHECKPOINT']
base_checkpoint_file = model_path['BASE_FILE']
lora_repo = model_path['LORA_REPO']
lora_file = model_path['LORA_FILE']
# Download necessary files
BASE_FLUX_CHECKPOINT = download_file(base_checkpoint_repo, base_checkpoint_file)
CLIP_L_PATH = download_file(clip_repo_id, clip_l_file)
T5XXL_PATH = download_file(clip_repo_id, t5xxl_file)
AE_PATH = download_file(ae_repo_id, ae_file)
LORA_WEIGHTS_PATH = download_file(lora_repo, lora_file)
logger.info("Loading models...")
try:
if model is None is None or clip_l is None or t5xxl is None or ae is None:
_, model = flux_utils.load_flow_model(
BASE_FLUX_CHECKPOINT, torch.float8_e4m3fn, "cpu", disable_mmap=False
)
clip_l = flux_utils.load_clip_l(CLIP_L_PATH, torch.bfloat16, "cpu", disable_mmap=False)
clip_l.eval()
t5xxl = flux_utils.load_t5xxl(T5XXL_PATH, torch.bfloat16, "cpu", disable_mmap=False)
t5xxl.eval()
ae = flux_utils.load_ae(AE_PATH, torch.bfloat16, "cpu", disable_mmap=False)
# Load LoRA weights
multiplier = 1.0
weights_sd = load_file(LORA_WEIGHTS_PATH)
lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd, True)
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
lora_model.eval()
logger.info("Models loaded successfully.")
return "Models loaded successfully."
except Exception as e:
logger.error(f"Error loading models: {e}")
return f"Error loading models: {e}"
# Image pre-processing (resize and padding)
class ResizeWithPadding:
def __init__(self, size, fill=255):
self.size = size
self.fill = fill
def __call__(self, img):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
elif not isinstance(img, Image.Image):
raise TypeError("Input must be a PIL Image or a NumPy array")
width, height = img.size
# # Convert to RGB to remove transparency, fill with white background if necessary
# if img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info):
# background = Image.new("RGB", img.size, (fill, fill, fill))
# background.paste(img, mask=img.split()[-1]) # Use alpha channel as mask
# img = background
# if width == height:
# img = img.resize((self.size, self.size), Image.LANCZOS)
# else:
max_dim = max(width, height)
new_img = Image.new("RGB", (max_dim, max_dim), (self.fill, self.fill, self.fill))
new_img.paste(img, ((max_dim - width) // 2, (max_dim - height) // 2))
img = new_img.resize((self.size, self.size), Image.LANCZOS)
return img
# The function to generate image from a prompt and conditional image
@spaces.GPU(duration=180)
def infer(prompt, sample_image, recraft_model, seed=0):
global model, clip_l, t5xxl, ae, lora_model
if model is None or lora_model is None or clip_l is None or t5xxl is None or ae is None:
logger.error("Models not loaded. Please load the models first.")
return None
model_path = model_paths[recraft_model]
frame_num = model_path['Frame']
logger.info(f"Started generating image with prompt: {prompt}")
lora_model.to("cuda")
model.eval()
clip_l.eval()
t5xxl.eval()
ae.eval()
# # Load models
# model, [clip_l, t5xxl], ae = load_target_model()
# # LoRA
# multiplier = 1.0
# weights_sd = load_file(LORA_WEIGHTS_PATH)
# lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd,
# True)
# lora_model.apply_to([clip_l, t5xxl], model)
# info = lora_model.load_state_dict(weights_sd, strict=True)
# logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
# lora_model.eval()
# lora_model.to(device)
logger.debug(f"Using seed: {seed}")
# Preprocess the conditional image
resize_transform = ResizeWithPadding(size=512) if frame_num == 4 else ResizeWithPadding(size=352)
img_transforms = transforms.Compose([
resize_transform,
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
image = img_transforms(np.array(sample_image, dtype=np.uint8)).unsqueeze(0).to(
device=device,
dtype=torch.bfloat16
)
logger.debug("Conditional image preprocessed.")
# Encode the image to latents
ae.to(device)
latents = ae.encode(image)
logger.debug("Image encoded to latents.")
conditions = {}
# conditions[prompt] = latents.to("cpu")
conditions[prompt] = latents
# ae.to("cpu")
clip_l.to(device)
t5xxl.to(device)
# Encode the prompt
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(True)
tokens_and_masks = tokenize_strategy.tokenize(prompt)
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, True)
logger.debug("Prompt encoded.")
# Prepare the noise and other parameters
width = 1024 if frame_num == 4 else 1056
height = 1024 if frame_num == 4 else 1056
height = max(64, height - height % 16)
width = max(64, width - width % 16)
packed_latent_height = height // 16
packed_latent_width = width // 16
noise = torch.randn(1, packed_latent_height * packed_latent_width, 16 * 2 * 2, device=device, dtype=torch.float16)
logger.debug("Noise prepared.")
# Generate the image
timesteps = flux_train_utils.get_schedule(20, noise.shape[1], shift=True) # Sample steps = 20
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(device)
t5_attn_mask = t5_attn_mask.to(device)
ae_outputs = conditions[prompt]
logger.debug("Image generation parameters set.")
args = lambda: None
args.frame_num = frame_num
# clip_l.to("cpu")
# t5xxl.to("cpu")
model.to(device)
print(f"Model device: {model.device}")
print(f"Noise device: {noise.device}")
print(f"Image IDs device: {img_ids.device}")
print(f"T5 output device: {t5_out.device}")
print(f"Text IDs device: {txt_ids.device}")
print(f"L pooled device: {l_pooled.device}")
# Run the denoising process
with accelerator.autocast(), torch.no_grad():
x = flux_train_utils.denoise(
args, model, noise, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps, guidance=1.0, t5_attn_mask=t5_attn_mask, ae_outputs=ae_outputs
)
logger.debug("Denoising process completed.")
# Decode the final image
x = x.float()
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
# model.to("cpu")
ae.to(device)
with accelerator.autocast(), torch.no_grad():
x = ae.decode(x)
logger.debug("Latents decoded into image.")
# ae.to("cpu")
# Convert the tensor to an image
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
generated_image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
logger.info("Image generation completed.")
return generated_image
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## FLUX Image Generation")
with gr.Row():
with gr.Column(scale=1):
# Dropdown for selecting the recraft model
recraft_model = gr.Dropdown(
label="Select Recraft Model",
choices=["Wood Sculpture", "LEGO", "Sketch", "Portrait"],
value="Wood Sculpture"
)
# Load Model Button
load_button = gr.Button("Load Model")
with gr.Column(scale=1):
# Status message box
status_box = gr.Textbox(label="Status", placeholder="Model loading status", interactive=False, value="Model not loaded", lines=3)
with gr.Row():
with gr.Column(scale=0.5):
# Input for the prompt
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=8)
seed = gr.Slider(0, np.iinfo(np.int32).max, step=1, label="Seed", value=42)
with gr.Column(scale=0.5):
# File upload for image
sample_image = gr.Image(label="Upload a Conditional Image", type="pil")
run_button = gr.Button("Generate Image")
with gr.Column(scale=1):
# Output result
result_image = gr.Image(label="Generated Image", interactive=False)
# Load model button action
load_button.click(fn=load_target_model, inputs=[recraft_model], outputs=[status_box])
# Run Button
run_button.click(fn=infer, inputs=[prompt, sample_image, recraft_model, seed], outputs=[result_image])
# Launch the Gradio app
demo.launch()