-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinverse_stable_diffusion.py
201 lines (171 loc) · 7.06 KB
/
inverse_stable_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from functools import partial
from typing import Callable, List, Optional, Union, Tuple
import torch
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNet2DConditionModel
# from diffusers import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import \
StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler,PNDMScheduler, LMSDiscreteScheduler
from modified_stable_diffusion import ModifiedStableDiffusionPipeline
### credit to: https://github.com/cccntu/efficient-prompt-to-prompt
def backward_ddim(x_t, alpha_t, alpha_tm1, eps_xt):
""" from noise to image"""
return (
alpha_tm1**0.5
* (
(alpha_t**-0.5 - alpha_tm1**-0.5) * x_t
+ ((1 / alpha_tm1 - 1) ** 0.5 - (1 / alpha_t - 1) ** 0.5) * eps_xt
)
+ x_t
)
def forward_ddim(x_t, alpha_t, alpha_tp1, eps_xt):
""" from image to noise, it's the same as backward_ddim"""
return backward_ddim(x_t, alpha_t, alpha_tp1, eps_xt)
class InversableStableDiffusionPipeline(ModifiedStableDiffusionPipeline):
def __init__(self,
vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
requires_safety_checker: bool = True,
):
super(InversableStableDiffusionPipeline, self).__init__(vae,
text_encoder,
tokenizer,
unet,
scheduler,
safety_checker,
feature_extractor,
requires_safety_checker)
self.forward_diffusion = partial(self.backward_diffusion, reverse_process=True)
def get_random_latents(self, latents=None, height=512, width=512, generator=None):
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
batch_size = 1
device = self._execution_device
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size,
num_channels_latents,
height,
width,
self.text_encoder.dtype,
device,
generator,
latents,
)
return latents
@torch.inference_mode()
def get_text_embedding(self, prompt):
text_input_ids = self.tokenizer(
prompt,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
return text_embeddings
@torch.inference_mode()
def get_image_latents(self, image, sample=True, rng_generator=None):
encoding_dist = self.vae.encode(image).latent_dist
if sample:
encoding = encoding_dist.sample(generator=rng_generator)
else:
encoding = encoding_dist.mode()
latents = encoding * 0.18215
return latents
@torch.inference_mode()
def backward_diffusion(
self,
use_old_emb_i=25,
text_embeddings=None,
old_text_embeddings=None,
new_text_embeddings=None,
latents: Optional[torch.FloatTensor] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
reverse_process: True = False,
**kwargs,
):
""" Generate image from text prompt and latents
"""
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
if old_text_embeddings is not None and new_text_embeddings is not None:
prompt_to_prompt = True
else:
prompt_to_prompt = False
for i, t in enumerate(self.progress_bar(timesteps_tensor if not reverse_process else reversed(timesteps_tensor))):
if prompt_to_prompt:
if i < use_old_emb_i:
text_embeddings = old_text_embeddings
else:
text_embeddings = new_text_embeddings
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
prev_timestep = (
t
- self.scheduler.config.num_train_timesteps
// self.scheduler.num_inference_steps
)
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# ddim
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
if reverse_process:
alpha_prod_t, alpha_prod_t_prev = alpha_prod_t_prev, alpha_prod_t
latents = backward_ddim(
x_t=latents,
alpha_t=alpha_prod_t,
alpha_tm1=alpha_prod_t_prev,
eps_xt=noise_pred,
)
return latents
@torch.inference_mode()
def decode_image(self, latents: torch.FloatTensor, **kwargs):
scaled_latents = 1 / 0.18215 * latents
image = [
self.vae.decode(scaled_latents[i : i + 1]).sample for i in range(len(latents))
]
image = torch.cat(image, dim=0)
return image
@torch.inference_mode()
def torch_to_numpy(self, image):
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
return image