-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest.py
136 lines (111 loc) · 5.51 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
import json
import os
import os.path as osp
import random
import torch
import torch.utils.checkpoint
import torch.utils.data
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import DDIMScheduler
from omegaconf import OmegaConf
from videoswap.data import build_dataset
from videoswap.models import build_model
from videoswap.pipelines import build_pipeline
from videoswap.utils.edlora_util import revise_edlora_unet_attention_forward
from videoswap.utils.logger import dict2str, set_path_logger
from videoswap.utils.vis_util import save_video_to_dir
def test(root_path, opt, opt_path):
# load config
# set accelerator, mix-precision set in the environment by "accelerate config"
accelerator = Accelerator(mixed_precision=opt['mixed_precision'])
# set experiment dir
with accelerator.main_process_first():
set_path_logger(accelerator, root_path, opt_path, opt, is_train=False)
# get logger
logger = get_logger('videoswap', log_level='INFO')
logger.info(accelerator.state, main_process_only=True)
logger.info(dict2str(opt))
# If passed along, set the seed now.
if opt.get('manual_seed') is None:
opt['manual_seed'] = random.randint(1, 10000)
set_seed(opt['manual_seed'])
weight_dtype = torch.float32
if accelerator.mixed_precision == 'fp16':
weight_dtype = torch.float16
print('enable float16 in the training and testing')
elif accelerator.mixed_precision == 'bf16':
weight_dtype = torch.bfloat16
unet_type = opt['models']['unet'].pop('type')
if unet_type == 'AnimateDiffUNet3DModel':
inference_config_path = opt['models']['unet'].pop('inference_config_path')
unet = build_model(unet_type).from_pretrained_2d(
opt['path']['pretrained_model_path'],
subfolder='unet',
unet_additional_kwargs=OmegaConf.to_container(OmegaConf.load(inference_config_path).unet_additional_kwargs),
)
if opt['models']['unet'].get('motion_module_path'):
motion_module_path = opt['models']['unet'].pop('motion_module_path')
motion_module_state_dict = torch.load(motion_module_path, map_location='cpu')
motion_module_state_dict = {k.replace('.pos_encoder','.processor.pos_encoder'):v for k, v in motion_module_state_dict.items()}
missing, unexpected = unet.load_state_dict(motion_module_state_dict, strict=False)
else:
raise NotImplementedError
adapter_type = opt['models']['adapter'].pop('type')
t2i_adapter = build_model(adapter_type)(**OmegaConf.to_container(OmegaConf.load(opt['models']['adapter']['model_config_path'])))
t2i_adapter.load_state_dict(torch.load(opt['path']['pretrained_adapter_path']))
t2i_adapter = t2i_adapter.to(dtype=weight_dtype)
val_pipeline = build_pipeline(opt['val']['val_pipeline']).from_pretrained(
opt['path']['pretrained_model_path'],
unet=unet.to(dtype=weight_dtype),
adapter=t2i_adapter,
scheduler=DDIMScheduler.from_pretrained(opt['path']['pretrained_model_path'], subfolder='scheduler',),
torch_dtype=weight_dtype
).to('cuda')
val_pipeline.enable_vae_slicing()
if os.path.exists(os.path.join(opt['path']['pretrained_model_path'], 'new_concept_cfg.json')):
with open(os.path.join(opt['path']['pretrained_model_path'], 'new_concept_cfg.json'), 'r') as json_file:
new_concept_cfg = json.load(json_file)
revise_edlora_unet_attention_forward(val_pipeline.unet)
val_pipeline.set_new_concept_cfg(new_concept_cfg)
val_pipeline.scheduler.set_timesteps(opt['val']['editing_config']['num_inference_steps'])
val_pipeline.enable_vae_slicing()
# 2. load data
dataset_opt = opt['datasets']
dataset_type = dataset_opt.pop('type')
test_dataset = build_dataset(dataset_type)(dataset_opt)
source_frames = test_dataset.get_frames()
if t2i_adapter is not None:
t2i_adapter.eval()
source_conditions = test_dataset.get_conditions()
else:
source_conditions = None
edited_results = val_pipeline.validation(
source_video=source_frames,
source_conditions=source_conditions,
source_prompt=opt['datasets']['prompt'],
editing_config=opt['val']['editing_config'],
train_dataset=test_dataset,
save_dir=opt['path']['visualization']
)
save_video_to_dir(source_frames, save_dir=os.path.join(opt['path']['visualization'], 'source'), save_suffix='source', save_type=opt['val'].get('save_type', 'frame_gif'), fps=opt['val'].get('fps', 8))
for key, edit_video in edited_results.items():
if 'frame' not in opt['val'].get('save_type', 'frame_gif'):
save_dir = os.path.join(opt['path']['visualization'])
else:
save_dir = os.path.join(opt['path']['visualization'], key)
if opt['val'].get('use_suffix', False):
save_suffix = f"{key}_{opt['name']}"
else:
save_suffix = f'{key}'
save_video_to_dir(edit_video, save_dir=save_dir, save_suffix=save_suffix, save_type=opt['val'].get('save_type', 'frame_gif'), fps=opt['val'].get('fps', 8))
return save_dir
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, default='options/test/test_jeep_posche.yaml')
args = parser.parse_args()
root_path = osp.abspath(osp.join(__file__, osp.pardir))
opt = OmegaConf.to_container(OmegaConf.load(args.opt), resolve=True)
test(root_path, opt, args.opt)