4
4
# Project: Fast Azimuthal integration
5
5
# https://github.com/silx-kit/pyFAI
6
6
#
7
- # Copyright (C) 2022-2024 European Synchrotron Radiation Facility, Grenoble, France
7
+ # Copyright (C) 2022-2025 European Synchrotron Radiation Facility, Grenoble, France
8
8
#
9
9
# Principal author: Jérôme Kieffer ([email protected] )
10
10
#
34
34
35
35
__license__ = "MIT"
36
36
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
37
- __date__ = "25/06/2024 "
37
+ __date__ = "20/02/2025 "
38
38
__status__ = "production"
39
39
40
40
import numpy
@@ -51,6 +51,7 @@ class _Lambda(Detector):
51
51
# This detector does not exist but those are place-holder
52
52
MODULE_SIZE = (256 , 256 )
53
53
MODULE_GAP = (4 , 4 )
54
+ DUMMY = 0
54
55
force_pixel = True
55
56
56
57
def __init__ (self , pixel1 = 55e-6 , pixel2 = 55e-6 , max_shape = None , module_size = None , orientation = 0 ):
@@ -128,3 +129,21 @@ class Lambda10M(_Lambda):
128
129
"""
129
130
MAX_SHAPE = (2596 , 4676 )
130
131
aliases = ["Lambda 10M" ]
132
+
133
+ class Lambda9M (_Lambda ):
134
+ """
135
+ LAMBDA 9M detector
136
+ """
137
+ MAX_SHAPE = (3868 , 3227 )
138
+ aliases = ["Lambda 9M" ]
139
+
140
+ def calc_mask (self ):
141
+ """
142
+ Returns a generic mask for module based detectors...
143
+ """
144
+ if self .max_shape is None :
145
+ raise NotImplementedError ("Generic Lambda detector does not know"
146
+ "its max size ..." )
147
+ mask = numpy .zeros (self .max_shape , dtype = numpy .int8 )
148
+ logger .warning ("Lambda9M mask is detector specific, no pixel are actually masked" )
149
+ return mask
0 commit comments