@@ -159,7 +159,7 @@ def _split_config(params):
159
159
160
160
def train_evaluate (self , auto_params ):
161
161
"""
162
- For a given set of parameters, add an entry to the corresponding tables, and populated the trained model
162
+ For a given set of parameters, add an entry to the corresponding tables, and populate the trained model
163
163
table for that specific entry.
164
164
165
165
Args:
@@ -174,23 +174,23 @@ def train_evaluate(self, auto_params):
174
174
dataset_hash = make_hash (config ["dataset" ])
175
175
entry_exists = {
176
176
"dataset_fn" : "{}" .format (self .fns ["dataset" ])
177
- } in self .trained_model_table .dataset_table () and {
177
+ } in self .trained_model_table () .dataset_table () and {
178
178
"dataset_hash" : "{}" .format (dataset_hash )
179
- } in self .trained_model_table .dataset_table ()
179
+ } in self .trained_model_table () .dataset_table ()
180
180
if not entry_exists :
181
- self .trained_model_table .dataset_table ().add_entry (
181
+ self .trained_model_table () .dataset_table ().add_entry (
182
182
self .fns ["dataset" ],
183
183
config ["dataset" ],
184
184
dataset_fabrikant = self .architect ,
185
185
dataset_comment = self .comment ,
186
186
)
187
187
188
188
model_hash = make_hash (config ["model" ])
189
- entry_exists = {"model_fn" : "{}" .format (self .fns ["model" ])} in self .trained_model_table .model_table () and {
189
+ entry_exists = {"model_fn" : "{}" .format (self .fns ["model" ])} in self .trained_model_table () .model_table () and {
190
190
"model_hash" : "{}" .format (model_hash )
191
- } in self .trained_model_table .model_table ()
191
+ } in self .trained_model_table () .model_table ()
192
192
if not entry_exists :
193
- self .trained_model_table .model_table ().add_entry (
193
+ self .trained_model_table () .model_table ().add_entry (
194
194
self .fns ["model" ],
195
195
config ["model" ],
196
196
model_fabrikant = self .architect ,
@@ -200,11 +200,11 @@ def train_evaluate(self, auto_params):
200
200
trainer_hash = make_hash (config ["trainer" ])
201
201
entry_exists = {
202
202
"trainer_fn" : "{}" .format (self .fns ["trainer" ])
203
- } in self .trained_model_table .trainer_table () and {
203
+ } in self .trained_model_table () .trainer_table () and {
204
204
"trainer_hash" : "{}" .format (trainer_hash )
205
- } in self .trained_model_table .trainer_table ()
205
+ } in self .trained_model_table () .trainer_table ()
206
206
if not entry_exists :
207
- self .trained_model_table .trainer_table ().add_entry (
207
+ self .trained_model_table () .trainer_table ().add_entry (
208
208
self .fns ["trainer" ],
209
209
config ["trainer" ],
210
210
trainer_fabrikant = self .architect ,
@@ -406,23 +406,23 @@ def train_evaluate(self, auto_params):
406
406
dataset_hash = make_hash (config ["dataset" ])
407
407
entry_exists = {
408
408
"dataset_fn" : "{}" .format (self .fns ["dataset" ])
409
- } in self .trained_model_table .dataset_table () and {
409
+ } in self .trained_model_table () .dataset_table () and {
410
410
"dataset_hash" : "{}" .format (dataset_hash )
411
- } in self .trained_model_table .dataset_table ()
411
+ } in self .trained_model_table () .dataset_table ()
412
412
if not entry_exists :
413
- self .trained_model_table .dataset_table ().add_entry (
413
+ self .trained_model_table () .dataset_table ().add_entry (
414
414
self .fns ["dataset" ],
415
415
config ["dataset" ],
416
416
dataset_fabrikant = self .architect ,
417
417
dataset_comment = self .comment ,
418
418
)
419
419
420
420
model_hash = make_hash (config ["model" ])
421
- entry_exists = {"model_fn" : "{}" .format (self .fns ["model" ])} in self .trained_model_table .model_table () and {
421
+ entry_exists = {"model_fn" : "{}" .format (self .fns ["model" ])} in self .trained_model_table () .model_table () and {
422
422
"model_hash" : "{}" .format (model_hash )
423
- } in self .trained_model_table .model_table ()
423
+ } in self .trained_model_table () .model_table ()
424
424
if not entry_exists :
425
- self .trained_model_table .model_table ().add_entry (
425
+ self .trained_model_table () .model_table ().add_entry (
426
426
self .fns ["model" ],
427
427
config ["model" ],
428
428
model_fabrikant = self .architect ,
@@ -432,11 +432,11 @@ def train_evaluate(self, auto_params):
432
432
trainer_hash = make_hash (config ["trainer" ])
433
433
entry_exists = {
434
434
"trainer_fn" : "{}" .format (self .fns ["trainer" ])
435
- } in self .trained_model_table .trainer_table () and {
435
+ } in self .trained_model_table () .trainer_table () and {
436
436
"trainer_hash" : "{}" .format (trainer_hash )
437
- } in self .trained_model_table .trainer_table ()
437
+ } in self .trained_model_table () .trainer_table ()
438
438
if not entry_exists :
439
- self .trained_model_table .trainer_table ().add_entry (
439
+ self .trained_model_table () .trainer_table ().add_entry (
440
440
self .fns ["trainer" ],
441
441
config ["trainer" ],
442
442
trainer_fabrikant = self .architect ,
@@ -479,7 +479,7 @@ def run(self):
479
479
"""
480
480
Runs the random hyperparameter search, for as many trials as specified.
481
481
"""
482
- n_trials = len (self .trained_model_table .seed_table ()) * self .total_trials
482
+ n_trials = len (self .trained_model_table () .seed_table ()) * self .total_trials
483
483
init_len = len (self .trained_model_table ())
484
484
while len (self .trained_model_table ()) - init_len < n_trials :
485
485
self .train_evaluate (self .gen_params_value ())
0 commit comments