Skip to content

Commit 3d6b629

Browse files
Merge pull request #119 from MaxFBurg/master
Bugfix: property not callable
2 parents 567507a + b29c7d9 commit 3d6b629

File tree

1 file changed

+20
-20
lines changed

1 file changed

+20
-20
lines changed

nnfabrik/utility/hypersearch.py

+20-20
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,7 @@ def _split_config(params):
159159

160160
def train_evaluate(self, auto_params):
161161
"""
162-
For a given set of parameters, add an entry to the corresponding tables, and populated the trained model
162+
For a given set of parameters, add an entry to the corresponding tables, and populate the trained model
163163
table for that specific entry.
164164
165165
Args:
@@ -174,23 +174,23 @@ def train_evaluate(self, auto_params):
174174
dataset_hash = make_hash(config["dataset"])
175175
entry_exists = {
176176
"dataset_fn": "{}".format(self.fns["dataset"])
177-
} in self.trained_model_table.dataset_table() and {
177+
} in self.trained_model_table().dataset_table() and {
178178
"dataset_hash": "{}".format(dataset_hash)
179-
} in self.trained_model_table.dataset_table()
179+
} in self.trained_model_table().dataset_table()
180180
if not entry_exists:
181-
self.trained_model_table.dataset_table().add_entry(
181+
self.trained_model_table().dataset_table().add_entry(
182182
self.fns["dataset"],
183183
config["dataset"],
184184
dataset_fabrikant=self.architect,
185185
dataset_comment=self.comment,
186186
)
187187

188188
model_hash = make_hash(config["model"])
189-
entry_exists = {"model_fn": "{}".format(self.fns["model"])} in self.trained_model_table.model_table() and {
189+
entry_exists = {"model_fn": "{}".format(self.fns["model"])} in self.trained_model_table().model_table() and {
190190
"model_hash": "{}".format(model_hash)
191-
} in self.trained_model_table.model_table()
191+
} in self.trained_model_table().model_table()
192192
if not entry_exists:
193-
self.trained_model_table.model_table().add_entry(
193+
self.trained_model_table().model_table().add_entry(
194194
self.fns["model"],
195195
config["model"],
196196
model_fabrikant=self.architect,
@@ -200,11 +200,11 @@ def train_evaluate(self, auto_params):
200200
trainer_hash = make_hash(config["trainer"])
201201
entry_exists = {
202202
"trainer_fn": "{}".format(self.fns["trainer"])
203-
} in self.trained_model_table.trainer_table() and {
203+
} in self.trained_model_table().trainer_table() and {
204204
"trainer_hash": "{}".format(trainer_hash)
205-
} in self.trained_model_table.trainer_table()
205+
} in self.trained_model_table().trainer_table()
206206
if not entry_exists:
207-
self.trained_model_table.trainer_table().add_entry(
207+
self.trained_model_table().trainer_table().add_entry(
208208
self.fns["trainer"],
209209
config["trainer"],
210210
trainer_fabrikant=self.architect,
@@ -406,23 +406,23 @@ def train_evaluate(self, auto_params):
406406
dataset_hash = make_hash(config["dataset"])
407407
entry_exists = {
408408
"dataset_fn": "{}".format(self.fns["dataset"])
409-
} in self.trained_model_table.dataset_table() and {
409+
} in self.trained_model_table().dataset_table() and {
410410
"dataset_hash": "{}".format(dataset_hash)
411-
} in self.trained_model_table.dataset_table()
411+
} in self.trained_model_table().dataset_table()
412412
if not entry_exists:
413-
self.trained_model_table.dataset_table().add_entry(
413+
self.trained_model_table().dataset_table().add_entry(
414414
self.fns["dataset"],
415415
config["dataset"],
416416
dataset_fabrikant=self.architect,
417417
dataset_comment=self.comment,
418418
)
419419

420420
model_hash = make_hash(config["model"])
421-
entry_exists = {"model_fn": "{}".format(self.fns["model"])} in self.trained_model_table.model_table() and {
421+
entry_exists = {"model_fn": "{}".format(self.fns["model"])} in self.trained_model_table().model_table() and {
422422
"model_hash": "{}".format(model_hash)
423-
} in self.trained_model_table.model_table()
423+
} in self.trained_model_table().model_table()
424424
if not entry_exists:
425-
self.trained_model_table.model_table().add_entry(
425+
self.trained_model_table().model_table().add_entry(
426426
self.fns["model"],
427427
config["model"],
428428
model_fabrikant=self.architect,
@@ -432,11 +432,11 @@ def train_evaluate(self, auto_params):
432432
trainer_hash = make_hash(config["trainer"])
433433
entry_exists = {
434434
"trainer_fn": "{}".format(self.fns["trainer"])
435-
} in self.trained_model_table.trainer_table() and {
435+
} in self.trained_model_table().trainer_table() and {
436436
"trainer_hash": "{}".format(trainer_hash)
437-
} in self.trained_model_table.trainer_table()
437+
} in self.trained_model_table().trainer_table()
438438
if not entry_exists:
439-
self.trained_model_table.trainer_table().add_entry(
439+
self.trained_model_table().trainer_table().add_entry(
440440
self.fns["trainer"],
441441
config["trainer"],
442442
trainer_fabrikant=self.architect,
@@ -479,7 +479,7 @@ def run(self):
479479
"""
480480
Runs the random hyperparameter search, for as many trials as specified.
481481
"""
482-
n_trials = len(self.trained_model_table.seed_table()) * self.total_trials
482+
n_trials = len(self.trained_model_table().seed_table()) * self.total_trials
483483
init_len = len(self.trained_model_table())
484484
while len(self.trained_model_table()) - init_len < n_trials:
485485
self.train_evaluate(self.gen_params_value())

0 commit comments

Comments
 (0)