forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
satisfiability.py
126 lines (87 loc) · 3.28 KB
/
satisfiability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
'''
Given a formula in conjunctive normal form (2-CNF), finds a way to assign
True/False values to all variables to satisfy all clauses, or reports there
is no solution.
https://en.wikipedia.org/wiki/2-satisfiability
'''
''' Format:
- each clause is a pair of literals
- each literal in the form (name, is_neg)
where name is an arbitrary identifier,
and is_neg is true if the literal is negated
'''
formula = [(('x', False), ('y', False)),
(('y', True), ('y', True)),
(('a', False), ('b', False)),
(('a', True), ('c', True)),
(('c', False), ('b', True))]
def dfs_transposed(v, graph, order, vis):
vis[v] = True
for u in graph[v]:
if not vis[u]:
dfs_transposed(u, graph, order, vis)
order.append(v)
def dfs(v, current_comp, vertex_scc, graph, vis):
vis[v] = True
vertex_scc[v] = current_comp
for u in graph[v]:
if not vis[u]:
dfs(u, current_comp, vertex_scc, graph, vis)
def add_edge(graph, vertex_from, vertex_to):
if vertex_from not in graph:
graph[vertex_from] = []
graph[vertex_from].append(vertex_to)
def scc(graph):
''' Computes the strongly connected components of a graph '''
order = []
vis = {vertex: False for vertex in graph}
graph_transposed = {vertex: [] for vertex in graph}
for (v, neighbours) in graph.iteritems():
for u in neighbours:
add_edge(graph_transposed, u, v)
for v in graph:
if not vis[v]:
dfs_transposed(v, graph_transposed, order, vis)
vis = {vertex: False for vertex in graph}
vertex_scc = {}
current_comp = 0
for v in reversed(order):
if not vis[v]:
# Each dfs will visit exactly one component
dfs(v, current_comp, vertex_scc, graph, vis)
current_comp += 1
return vertex_scc
def build_graph(formula):
''' Builds the implication graph from the formula '''
graph = {}
for clause in formula:
for (lit, _) in clause:
for neg in [False, True]:
graph[(lit, neg)] = []
for ((a_lit, a_neg), (b_lit, b_neg)) in formula:
add_edge(graph, (a_lit, a_neg), (b_lit, not b_neg))
add_edge(graph, (b_lit, b_neg), (a_lit, not a_neg))
return graph
def solve_sat(formula):
graph = build_graph(formula)
vertex_scc = scc(graph)
for (var, _) in graph:
if vertex_scc[(var, False)] == vertex_scc[(var, True)]:
return None # The formula is contradictory
comp_repr = {} # An arbitrary representant from each component
for vertex in graph:
if not vertex_scc[vertex] in comp_repr:
comp_repr[vertex_scc[vertex]] = vertex
comp_value = {} # True/False value for each strongly connected component
components = sorted(vertex_scc.values())
for comp in components:
if comp not in comp_value:
comp_value[comp] = False
(lit, neg) = comp_repr[comp]
comp_value[vertex_scc[(lit, not neg)]] = True
value = {var: comp_value[vertex_scc[(var, False)]] for (var, _) in graph}
return value
if __name__ == '__main__':
result = solve_sat(formula)
for (variable, assign) in result.iteritems():
print("{}:{}".format(variable, assign))