diff --git a/CHANGELOG.md b/CHANGELOG.md index 2f9f8392..c8e1429f 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,5 +1,20 @@ # Release History +## 1.2.2 + +### Bug Fixes + +### Behavior Changes + +### New Features + +- Model Registry: Support providing external access integrations when deploying a model to SPCS. This will help and be + required to make sure the deploying process work as long as SPCS will by default deny all network connections. The + following endpoints must be allowed to make deployment work: docker.com:80, docker.com:443, anaconda.com:80, + anaconda.com:443, anaconda.org:80, anaconda.org:443, pypi.org:80, pypi.org:443. If you are using + `snowflake.ml.model.models.huggingface_pipeline.HuggingFacePipelineModel` object, the following endpoints are required + to be allowed: huggingface.com:80, huggingface.com:443, huggingface.co:80, huggingface.co:443. + ## 1.2.1 ### New Features diff --git a/bazel/py_rules.bzl b/bazel/py_rules.bzl index c01e6d60..72283696 100644 --- a/bazel/py_rules.bzl +++ b/bazel/py_rules.bzl @@ -259,6 +259,7 @@ def _py_wheel_impl(ctx): "--outdir", wheel_output_dir.path, ], + use_default_shell_env = True, progress_message = "Building Wheel", mnemonic = "WheelBuild", ) diff --git a/ci/RunBazelAction.sh b/ci/RunBazelAction.sh index 743dbffe..2ab960d9 100755 --- a/ci/RunBazelAction.sh +++ b/ci/RunBazelAction.sh @@ -1,7 +1,7 @@ #!/bin/bash # DESCRIPTION: Utility Shell script to run bazel action for snowml repository # -# RunBazelAction.sh [-b ] [-m merge_gate|continuous_run|local_unittest|local_all] [-t ] [-c ] +# RunBazelAction.sh [-b ] [-m merge_gate|continuous_run|quarantined|local_unittest|local_all] [-t ] [-c ] # # Args: # action: bazel action, choose from test and coverage @@ -10,11 +10,13 @@ # -b: specify path to bazel. # -m: specify the mode from the following options # merge_gate: run affected tests only. -# continuous_run (default): run all tests except auto-generated tests. (For nightly run.) +# continuous_run (default): run all tests. (For nightly run. Alias: release) +# quarantined: Run quarantined tests. # local_unit: run all unit tests affected by target defined by -t # local_all: run all tests including integration tests affected by target defined by -t # -t: specify the target for local_unit and local_all mode # -c: specify the path to the coverage report dat file. +# -e: specify the environment, used to determine. # set -o pipefail @@ -24,13 +26,14 @@ set -e bazel="bazel" mode="continuous_run" target="" +SF_ENV="prod3" PROG=$0 action=$1 && shift help() { local exit_code=$1 - echo "Usage: ${PROG} [-b ] [-m merge_gate|continuous_run|local_unittest|local_all]" + echo "Usage: ${PROG} [-b ] [-m merge_gate|continuous_run|quarantined|local_unittest|local_all] [-e ]" exit "${exit_code}" } @@ -38,11 +41,14 @@ if [[ "${action}" != "test" && "${action}" != "coverage" ]]; then help 1 fi -while getopts "b:m:t:c:h" opt; do +while getopts "b:m:t:c:e:h" opt; do case "${opt}" in m) - if [[ "${OPTARG}" = "merge_gate" || "${OPTARG}" = "continuous_run" || "${OPTARG}" = "local_unittest" || "${OPTARG}" = "local_all" ]]; then + if [[ "${OPTARG}" = "merge_gate" || "${OPTARG}" = "continuous_run" || "${OPTARG}" = "quarantined" || "${OPTARG}" = "release" || "${OPTARG}" = "local_unittest" || "${OPTARG}" = "local_all" ]]; then mode="${OPTARG}" + if [[ $mode = "release" ]]; then + mode="continuous_run" + fi else help 1 fi @@ -60,6 +66,9 @@ while getopts "b:m:t:c:h" opt; do c) coverage_report_file="${OPTARG}" ;; + e) + SF_ENV="${OPTARG}" + ;; h) help 0 ;; @@ -91,12 +100,13 @@ merge_gate) affected_targets_file="${working_dir}/affected_targets" ./bazel/get_affected_targets.sh -b "${bazel}" -f "${affected_targets_file}" - tag_filter="--test_tag_filters=-autogen" - - query_expr='kind(".*_test rule", rdeps(//... - set('"$( [-b ] [--env pip|conda] [--mode merge_gate|continuous_run|release] [--with-snowpark] [--report ] +# build_and_run_tests.sh [-b ] [--env pip|conda] [--mode merge_gate|continuous_run] [--with-snowpark] [--report ] # # Args # workspace: path to the workspace, SnowML code should be in snowml directory. @@ -11,9 +11,10 @@ # env: Set the environment, choose from pip and conda # mode: Set the tests set to be run. # merge_gate: run affected tests only. -# continuous_run (default): run all tests except auto-generated tests. (For nightly run.) -# release: run all tests including auto-generated tests. (For releasing) +# continuous_run (default): run all tests. (For nightly run. Alias: release) +# quarantined: run all quarantined tests. # with-snowpark: Build and test with snowpark in snowpark-python directory in the workspace. +# snowflake-env: The environment of the snowflake, use to determine the test quarantine list # report: Path to xml test report # # Action @@ -28,7 +29,7 @@ PROG=$0 help() { local exit_code=$1 - echo "Usage: ${PROG} [-b ] [--env pip|conda] [--mode merge_gate|continuous_run|release] [--with-snowpark] [--report ]" + echo "Usage: ${PROG} [-b ] [--env pip|conda] [--mode merge_gate|continuous_run|quarantined] [--with-snowpark] [--snowflake-env ] [--report ]" exit "${exit_code}" } @@ -43,6 +44,7 @@ SNOWML_DIR="snowml" SNOWPARK_DIR="snowpark-python" IS_NT=false JUNIT_REPORT_PATH="" +SF_ENV="prod3" while (($#)); do case $1 in @@ -63,12 +65,19 @@ while (($#)); do ;; --mode) shift - if [[ $1 = "merge_gate" || $1 = "continuous_run" || $1 = "release" ]]; then + if [[ $1 = "merge_gate" || $1 = "continuous_run" || $1 = "quarantined" || $1 = "release" ]]; then MODE=$1 + if [[ $MODE = "release" ]]; then + MODE="continuous_run" + fi else help 1 fi ;; + --snowflake-env) + shift + SF_ENV=$1 + ;; --report) shift JUNIT_REPORT_PATH=$1 @@ -186,20 +195,10 @@ while IFS='' read -r line; do OPTIONAL_REQUIREMENTS+=("$line"); done < <("${_YQ_ # Compare test required dependencies with wheel pkg dependencies and exclude tests if necessary EXCLUDE_TESTS=$(mktemp "${TEMP_TEST_DIR}/exclude_tests_XXXXX") -if [[ ${MODE} = "continuous_run" || ${MODE} = "release" ]]; then - ./ci/get_excluded_tests.sh -f "${EXCLUDE_TESTS}" -m unused -b "${BAZEL}" -elif [[ ${MODE} = "merge_gate" ]]; then - ./ci/get_excluded_tests.sh -f "${EXCLUDE_TESTS}" -m all -b "${BAZEL}" -fi +./ci/get_excluded_tests.sh -f "${EXCLUDE_TESTS}" -m "${MODE}" -b "${BAZEL}" -e "${SF_ENV}" # Generate and copy auto-gen tests. -if [[ ${MODE} = "release" ]]; then -# When release, we build all autogen tests - "${BAZEL}" "${BAZEL_ADDITIONAL_STARTUP_FLAGS[@]+"${BAZEL_ADDITIONAL_STARTUP_FLAGS[@]}"}" build "${BAZEL_ADDITIONAL_BUILD_FLAGS[@]+"${BAZEL_ADDITIONAL_BUILD_FLAGS[@]}"}" //tests/integ/... -else -# In other cases, we build required utility only. - "${BAZEL}" "${BAZEL_ADDITIONAL_STARTUP_FLAGS[@]+"${BAZEL_ADDITIONAL_STARTUP_FLAGS[@]}"}" build --build_tag_filters=-autogen_build,-autogen "${BAZEL_ADDITIONAL_BUILD_FLAGS[@]+"${BAZEL_ADDITIONAL_BUILD_FLAGS[@]}"}" //tests/integ/... -fi +"${BAZEL}" "${BAZEL_ADDITIONAL_STARTUP_FLAGS[@]+"${BAZEL_ADDITIONAL_STARTUP_FLAGS[@]}"}" build "${BAZEL_ADDITIONAL_BUILD_FLAGS[@]+"${BAZEL_ADDITIONAL_BUILD_FLAGS[@]}"}" //tests/integ/... # Rsync cannot work well with path that has drive letter in Windows, # Thus, these two rsync has to use relative path instead of absolute ones. @@ -330,7 +329,7 @@ echo "Done running ${PROG}" # 0: Success; # 5: no tests found # See https://docs.pytest.org/en/7.1.x/reference/exit-codes.html -if [[ ${MODE} = "merge_gate" && ${TEST_RETCODE} -eq 5 ]]; then +if [[ (${MODE} = "merge_gate" || ${MODE} = "quarantined") && ${TEST_RETCODE} -eq 5 ]]; then exit 0 fi exit ${TEST_RETCODE} diff --git a/ci/conda_recipe/meta.yaml b/ci/conda_recipe/meta.yaml index c2fbc9cb..20347c94 100644 --- a/ci/conda_recipe/meta.yaml +++ b/ci/conda_recipe/meta.yaml @@ -17,7 +17,7 @@ build: noarch: python package: name: snowflake-ml-python - version: 1.2.1 + version: 1.2.2 requirements: build: - python diff --git a/ci/get_excluded_tests.sh b/ci/get_excluded_tests.sh index 1da9df0c..79703670 100755 --- a/ci/get_excluded_tests.sh +++ b/ci/get_excluded_tests.sh @@ -1,18 +1,18 @@ #!/bin/bash # Usage -# exclude_tests.sh [-b ] [-f ] [-m unused|unaffected|all] +# exclude_tests.sh [-b ] [-f ] [- merge_gate|continuous_run|release] # # Flags # -b: specify path to bazel # -f: specify output file path # -m: specify the mode from the following options -# unused: exclude integration tests whose dependency is not part of the wheel package. -# The missing dependency could happen when a new operator is being developed, -# but not yet released. -# unaffected: exclude integration tests whose dependency is not part of the affected targets +# merge_gate: exclude local_only + integration tests whose dependency is not part of the affected targets # compare to the the merge base to main of current revision. -# all (default): exclude the union of above rules. +# continuous_run (default): exclude integration tests whose dependency is not part of the wheel package. +# The missing dependency could happen when a new operator is being developed, +# but not yet released. (Alias: release) +# quarantined: exclude all tests that are not quarantined # set -o pipefail @@ -22,7 +22,7 @@ PROG=$0 help() { local exit_code=$1 - echo "Usage: ${PROG} [-b ] [-f ] [-m unused|unaffected|all]" + echo "Usage: ${PROG} [-b ] [-f ] [-m merge_gate|continuous_run|release|quarantined]" exit "${exit_code}" } @@ -30,9 +30,10 @@ echo "Running ${PROG}" bazel="bazel" output_path="/tmp/files_to_exclude" -mode="all" +mode="continuous_run" +SF_ENV="prod3" -while getopts "b:f:m:h" opt; do +while getopts "b:f:m:e:h" opt; do case "${opt}" in b) bazel=${OPTARG} @@ -42,9 +43,15 @@ while getopts "b:f:m:h" opt; do ;; m) mode=${OPTARG} - if ! [[ $mode = "unused" || $mode = "unaffected" || $mode = "all" ]]; then + if ! [[ $mode = "merge_gate" || $mode = "continuous_run" || $mode = "release" || $mode = "quarantined" ]]; then help 1 fi + if [[ $mode = "release" ]]; then + mode="continuous_run" + fi + ;; + e) + SF_ENV=${OPTARG} ;; h) help 0 @@ -61,24 +68,24 @@ done working_dir=$(mktemp -d "/tmp/tmp_XXXXX") trap 'rm -rf "${working_dir}"' EXIT -if [[ $mode = "unused" || $mode = "all" ]]; then - # Compute missing dependencies by subtracting deps included in wheel from deps required by tests. - # We only care about dependencies in //snowflake since that's our dev directory. - # Reverse search on testing files depending on missing deps and exclude those. - unused_test_rule_file=${working_dir}/unused_test_rule +# Compute missing dependencies by subtracting deps included in wheel from deps required by tests. +# We only care about dependencies in //snowflake since that's our dev directory. +# Reverse search on testing files depending on missing deps and exclude those. - # -- Begin of Query Rules Heredoc -- - cat >"${unused_test_rule_file}" <"${unused_test_rule_file}" <"${unaffected_test_rule_file}" <"${targets_to_exclude_file}" ;; -unaffected) - echo "${unaffected_test_targets}" >"${targets_to_exclude_file}" - ;; -all) +merge_gate) # Concat and deduplicate. targets_to_exclude=$(printf "%s\n%s\n" "${unused_test_targets}" "${unaffected_test_targets}" | awk '!a[$0]++') echo "${targets_to_exclude}" >"${targets_to_exclude_file}" ;; +quarantined) + quarantined_test_rule_file=${working_dir}/quarantined_test_rule + +# -- Begin of Query Rules Heredoc -- + cat >"${quarantined_test_rule_file}" <"${targets_to_exclude_file}" + ;; *) help 1 ;; @@ -118,11 +134,11 @@ excluded_test_source_rule_file=${working_dir}/excluded_test_source_rule # -- Begin of Query Rules Heredoc -- cat >"${excluded_test_source_rule_file}" <"${working_dir}/type_checked_targets_query" + "$(<"${SCRIPTPATH}/../targets/untyped.txt")" "$(<"${SCRIPTPATH}/../targets/local_only.txt")" "${affected_targets}" >"${working_dir}/type_checked_targets_query" type_check_targets=$("${bazel}" query --query_file="${working_dir}/type_checked_targets_query" | awk 'NF { print "\""$0"\","}') echo "${type_check_targets}" diff --git a/codegen/sklearn_wrapper_template.py_template b/codegen/sklearn_wrapper_template.py_template index bda05a0e..dfed46b6 100644 --- a/codegen/sklearn_wrapper_template.py_template +++ b/codegen/sklearn_wrapper_template.py_template @@ -20,7 +20,7 @@ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV from snowflake.ml._internal.utils import pkg_version_utils, identifier from snowflake.snowpark import DataFrame, Session from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type -from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl +from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import SnowparkHandlers as HandlersImpl from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder from snowflake.ml.modeling._internal.model_trainer import ModelTrainer from snowflake.ml.modeling._internal.estimator_utils import ( @@ -29,7 +29,7 @@ from snowflake.ml.modeling._internal.estimator_utils import ( transform_snowml_obj_to_sklearn_obj, validate_sklearn_args, ) -from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers +from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers from snowflake.ml.model.model_signature import ( DataType, @@ -85,7 +85,7 @@ class {transform.original_class_name}(BaseTransformer): self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols self._snowpark_cols: Optional[List[str]] = self.input_cols - self._handlers: FitPredictHandlers = HandlersImpl(class_name={transform.original_class_name}.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True) + self._handlers: TransformerHandlers = HandlersImpl(class_name={transform.original_class_name}.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True) self._autogenerated = True def _get_rand_id(self) -> str: diff --git a/packages.bzl b/packages.bzl index 8441381a..fefa8d60 100644 --- a/packages.bzl +++ b/packages.bzl @@ -2,6 +2,7 @@ PACKAGES = [ "//snowflake/cortex:cortex_pkg", + "//snowflake/ml/feature_store:fs_pkg", "//snowflake/ml/modeling/impute:impute_pkg", "//snowflake/ml/modeling/metrics:metrics_pkg", "//snowflake/ml/modeling/model_selection:model_selection_pkg", diff --git a/snowflake/ml/_internal/env_utils.py b/snowflake/ml/_internal/env_utils.py index 1fd225c3..8b14094a 100644 --- a/snowflake/ml/_internal/env_utils.py +++ b/snowflake/ml/_internal/env_utils.py @@ -294,19 +294,22 @@ def get_matched_package_versions_in_snowflake_conda_channel( url = f"{_SNOWFLAKE_CONDA_CHANNEL_URL}/{conda_os.value}/repodata.json" if req.name not in _SNOWFLAKE_CONDA_PACKAGE_CACHE: - http_client = retryable_http.get_http_client() - parsed_python_version = version.Version(python_version) - python_version_build_str = f"py{parsed_python_version.major}{parsed_python_version.minor}" - repodata = http_client.get(url).json() - assert isinstance(repodata, dict) - packages_info = repodata["packages"] - assert isinstance(packages_info, dict) - version_list = [ - version.parse(package_info["version"]) - for package_info in packages_info.values() - if package_info["name"] == req.name and python_version_build_str in package_info["build"] - ] - _SNOWFLAKE_CONDA_PACKAGE_CACHE[req.name] = version_list + try: + http_client = retryable_http.get_http_client() + parsed_python_version = version.Version(python_version) + python_version_build_str = f"py{parsed_python_version.major}{parsed_python_version.minor}" + repodata = http_client.get(url).json() + assert isinstance(repodata, dict) + packages_info = repodata["packages"] + assert isinstance(packages_info, dict) + version_list = [ + version.parse(package_info["version"]) + for package_info in packages_info.values() + if package_info["name"] == req.name and python_version_build_str in package_info["build"] + ] + _SNOWFLAKE_CONDA_PACKAGE_CACHE[req.name] = version_list + except Exception: + pass matched_versions = list(req.specifier.filter(set(_SNOWFLAKE_CONDA_PACKAGE_CACHE.get(req.name, [])))) return matched_versions diff --git a/snowflake/ml/_internal/exceptions/modeling_error_messages.py b/snowflake/ml/_internal/exceptions/modeling_error_messages.py index d407162a..affdc6d5 100644 --- a/snowflake/ml/_internal/exceptions/modeling_error_messages.py +++ b/snowflake/ml/_internal/exceptions/modeling_error_messages.py @@ -1,4 +1,8 @@ -ATTRIBUTE_NOT_SET = "{} is not set." +ATTRIBUTE_NOT_SET = ( + "{} is not set. To read more about Snowpark ML general API differences, please refer to: " + "https://docs.snowflake.com/en/developer-guide/snowpark-ml/snowpark-ml-modeling#general-api" + "-differences." +) SIZE_MISMATCH = "Size mismatch: {}={}, {}={}." INVALID_MODEL_PARAM = "Invalid parameter {} for model {}. Valid parameters: {}." UNSUPPORTED_MODEL_CONVERSION = "Object doesn't support {}. Please use {}." diff --git a/snowflake/ml/feature_store/BUILD.bazel b/snowflake/ml/feature_store/BUILD.bazel index bbd441d6..0366ead5 100644 --- a/snowflake/ml/feature_store/BUILD.bazel +++ b/snowflake/ml/feature_store/BUILD.bazel @@ -1,4 +1,4 @@ -load("//bazel:py_rules.bzl", "py_library") +load("//bazel:py_rules.bzl", "py_library", "py_package") package_group( name = "feature_store", @@ -7,10 +7,7 @@ package_group( ], ) -package(default_visibility = [ - ":feature_store", - "//bazel:snowml_public_common", -]) +package(default_visibility = ["//visibility:public"]) py_library( name = "init", @@ -38,3 +35,11 @@ py_library( "//snowflake/ml/dataset", ], ) + +py_package( + name = "fs_pkg", + packages = ["snowflake.ml"], + deps = [ + ":feature_store_lib", + ], +) diff --git a/snowflake/ml/feature_store/_internal/BUILD.bazel b/snowflake/ml/feature_store/_internal/BUILD.bazel index cfd68961..09c1b801 100644 --- a/snowflake/ml/feature_store/_internal/BUILD.bazel +++ b/snowflake/ml/feature_store/_internal/BUILD.bazel @@ -1,9 +1,6 @@ load("//bazel:py_rules.bzl", "py_library") -package(default_visibility = [ - "//bazel:snowml_public_common", - "//snowflake/ml/feature_store", -]) +package(default_visibility = ["//visibility:public"]) py_library( name = "synthetic_data_generator", diff --git a/snowflake/ml/feature_store/_internal/scripts/upload_test_datasets.py b/snowflake/ml/feature_store/_internal/scripts/upload_test_datasets.py index cf4d4ddb..f60dedc9 100644 --- a/snowflake/ml/feature_store/_internal/scripts/upload_test_datasets.py +++ b/snowflake/ml/feature_store/_internal/scripts/upload_test_datasets.py @@ -74,6 +74,7 @@ def create_winedata(sess: Session, overwrite_mode: str) -> None: if __name__ == "__main__": sess = Session.builder.configs(SnowflakeLoginOptions()).create() + sess.sql(f"USE DATABASE {FS_INTEG_TEST_DB}").collect() create_tripdata(sess, "overwrite") create_winedata(sess, "overwrite") diff --git a/snowflake/ml/feature_store/feature_store.py b/snowflake/ml/feature_store/feature_store.py index 3d4525d9..e130b650 100644 --- a/snowflake/ml/feature_store/feature_store.py +++ b/snowflake/ml/feature_store/feature_store.py @@ -54,7 +54,7 @@ _FEATURE_STORE_OBJECT_TAG = "SNOWML_FEATURE_STORE_OBJECT" _PROJECT = "FeatureStore" _DT_OR_VIEW_QUERY_PATTERN = re.compile( - r"""CREATE\ (?P(DYNAMIC\ TABLE|VIEW))\ .* + r"""CREATE\ (OR\ REPLACE\ )?(?P(DYNAMIC\ TABLE|VIEW))\ .* COMMENT\ =\ '(?P.*)'\s* TAG.*?{entity_tag}\ =\ '(?P.*?)',\n .*?{ts_col_tag}\ =\ '(?P.*?)',?.*? @@ -252,12 +252,18 @@ def register_entity(self, entity: Entity) -> None: join_keys = [f"'{key.resolved()}'" for key in entity.join_keys] join_keys_str = ",".join(join_keys) full_tag_name = self._get_fully_qualified_name(tag_name) - self._session.sql( - f"""CREATE TAG IF NOT EXISTS {full_tag_name} - ALLOWED_VALUES {join_keys_str} - COMMENT = '{entity.desc}' - """ - ).collect(statement_params=self._telemetry_stmp) + try: + self._session.sql( + f"""CREATE TAG IF NOT EXISTS {full_tag_name} + ALLOWED_VALUES {join_keys_str} + COMMENT = '{entity.desc}' + """ + ).collect(statement_params=self._telemetry_stmp) + except Exception as e: + raise snowml_exceptions.SnowflakeMLException( + error_code=error_codes.INTERNAL_SNOWPARK_ERROR, + original_exception=RuntimeError(f"Failed to register entity `{entity.name}`: {e}."), + ) from e logger.info(f"Registered Entity {entity}.") # TODO: add support to update column desc once SNOW-894249 is fixed @@ -267,6 +273,7 @@ def register_feature_view( feature_view: FeatureView, version: str, block: bool = False, + override: bool = False, ) -> FeatureView: """ Materialize a FeatureView to Snowflake backend. @@ -281,6 +288,9 @@ def register_feature_view( NOTE: Version only accepts letters, numbers and underscore. Also version will be capitalized. block: Specify whether the FeatureView backend materialization should be blocking or not. If blocking then the API will wait until the initial FeatureView data is generated. + override: Override the existing FeatureView with same version. This is the same as dropping the FeatureView + first then recreate. NOTE: there will be backfill cost associated if the FeatureView is being + continuously maintained. Returns: A materialized FeatureView object. @@ -312,14 +322,15 @@ def register_feature_view( ) feature_view_name = FeatureView._get_physical_name(feature_view.name, version) - dynamic_table_results = self._find_object("DYNAMIC TABLES", feature_view_name) - view_results = self._find_object("VIEWS", feature_view_name) - if len(dynamic_table_results) > 0 or len(view_results) > 0: - raise snowml_exceptions.SnowflakeMLException( - error_code=error_codes.OBJECT_ALREADY_EXISTS, - original_exception=ValueError(f"FeatureView {feature_view.name}/{version} already exists."), - suppress_source_trace=True, - ) + if not override: + dynamic_table_results = self._find_object("DYNAMIC TABLES", feature_view_name) + view_results = self._find_object("VIEWS", feature_view_name) + if len(dynamic_table_results) > 0 or len(view_results) > 0: + raise snowml_exceptions.SnowflakeMLException( + error_code=error_codes.OBJECT_ALREADY_EXISTS, + original_exception=ValueError(f"FeatureView {feature_view.name}/{version} already exists."), + suppress_source_trace=True, + ) fully_qualified_name = self._get_fully_qualified_name(feature_view_name) entities = _FEATURE_VIEW_ENTITY_TAG_DELIMITER.join([e.name for e in feature_view.entities]) @@ -349,10 +360,12 @@ def create_col_desc(col: StructField) -> str: self._default_warehouse, timestamp_col, block, + override, ) else: try: - query = f"""CREATE VIEW {fully_qualified_name} ({column_descs}) + override_clause = " OR REPLACE" if override else "" + query = f"""CREATE{override_clause} VIEW {fully_qualified_name} ({column_descs}) COMMENT = '{feature_view.desc}' TAG ( {_FEATURE_VIEW_ENTITY_TAG} = '{entities}', @@ -459,7 +472,7 @@ def list_feature_views( fvs = self._find_feature_views(entity_name, feature_view_name) else: fvs = [] - for row in self._get_backend_representations(feature_view_name, prefix_match=True): + for row in self._get_fv_backend_representations(feature_view_name, prefix_match=True): fvs.append(self._compose_feature_view(row)) if as_dataframe: @@ -491,7 +504,7 @@ def get_feature_view(self, name: str, version: str) -> FeatureView: version = FeatureViewVersion(version) fv_name = FeatureView._get_physical_name(name, version) - results = self._get_backend_representations(fv_name) + results = self._get_fv_backend_representations(fv_name) if len(results) != 1: raise snowml_exceptions.SnowflakeMLException( error_code=error_codes.NOT_FOUND, @@ -787,6 +800,7 @@ def retrieve_feature_values( features: Union[List[Union[FeatureView, FeatureViewSlice]], List[str]], spine_timestamp_col: Optional[str] = None, exclude_columns: Optional[List[str]] = None, + include_feature_view_timestamp_col: bool = False, ) -> DataFrame: """ Enrich spine dataframe with feature values. Mainly used to generate inference data input. @@ -798,6 +812,8 @@ def retrieve_feature_values( or a list of serialized feature objects from Dataset. spine_timestamp_col: Timestamp column in spine_df for point-in-time feature value lookup. exclude_columns: Column names to exclude from the result dataframe. + include_feature_view_timestamp_col: Generated dataset will include timestamp column of feature view + (if feature view has timestamp column) if set true. Default to false. Returns: Snowpark DataFrame containing the joined results. @@ -817,6 +833,7 @@ def retrieve_feature_values( spine_df, cast(List[Union[FeatureView, FeatureViewSlice]], features), spine_timestamp_col, + include_feature_view_timestamp_col, ) if exclude_columns is not None: @@ -834,6 +851,7 @@ def generate_dataset( spine_label_cols: Optional[List[str]] = None, exclude_columns: Optional[List[str]] = None, save_mode: str = "errorifexists", + include_feature_view_timestamp_col: bool = False, desc: str = "", ) -> Dataset: """ @@ -856,6 +874,8 @@ def generate_dataset( save_mode: How new data is saved. currently support: errorifexists: Raise error if registered table already exists. merge: Merge new data if registered table already exists. + include_feature_view_timestamp_col: Generated dataset will include timestamp column of feature view + (if feature view has timestamp column) if set true. Default to false. desc: A description about this dataset. Returns: @@ -892,7 +912,9 @@ def generate_dataset( ), ) - result_df, join_keys = self._join_features(spine_df, features, spine_timestamp_col) + result_df, join_keys = self._join_features( + spine_df, features, spine_timestamp_col, include_feature_view_timestamp_col + ) snapshot_table = None if materialized_table is not None: @@ -1028,10 +1050,12 @@ def _create_dynamic_table( warehouse: SqlIdentifier, timestamp_col: SqlIdentifier, block: bool, + override: bool, ) -> None: # TODO: cluster by join keys once DT supports that try: - query = f"""CREATE DYNAMIC TABLE {fully_qualified_name} ({column_descs}) + override_clause = " OR REPLACE" if override else "" + query = f"""CREATE{override_clause} DYNAMIC TABLE {fully_qualified_name} ({column_descs}) TARGET_LAG = '{'DOWNSTREAM' if schedule_task else feature_view.refresh_freq}' COMMENT = '{feature_view.desc}' TAG ( @@ -1048,26 +1072,29 @@ def _create_dynamic_table( ) if schedule_task: - self._session.sql( - f"""CREATE TASK {fully_qualified_name} - WAREHOUSE = {warehouse} - SCHEDULE = 'USING CRON {feature_view.refresh_freq}' - AS ALTER DYNAMIC TABLE {fully_qualified_name} REFRESH + try: + self._session.sql( + f"""CREATE{override_clause} TASK {fully_qualified_name} + WAREHOUSE = {warehouse} + SCHEDULE = 'USING CRON {feature_view.refresh_freq}' + AS ALTER DYNAMIC TABLE {fully_qualified_name} REFRESH + """ + ).collect(statement_params=self._telemetry_stmp) + self._session.sql( + f""" + ALTER TASK {fully_qualified_name} + SET TAG {self._get_fully_qualified_name(_FEATURE_STORE_OBJECT_TAG)} = '' """ - ).collect(statement_params=self._telemetry_stmp) - self._session.sql( - f""" - ALTER TASK {fully_qualified_name} - SET TAG {self._get_fully_qualified_name(_FEATURE_STORE_OBJECT_TAG)} = '' - """ - ).collect(statement_params=self._telemetry_stmp) - self._session.sql(f"ALTER TASK {fully_qualified_name} RESUME").collect( - statement_params=self._telemetry_stmp - ) + ).collect(statement_params=self._telemetry_stmp) + self._session.sql(f"ALTER TASK {fully_qualified_name} RESUME").collect( + statement_params=self._telemetry_stmp + ) + except Exception: + self._session.sql(f"DROP DYNAMIC TABLE IF EXISTS {fully_qualified_name}").collect( + statement_params=self._telemetry_stmp + ) + raise except Exception as e: - self._session.sql(f"DROP DYNAMIC TABLE IF EXISTS {fully_qualified_name}").collect( - statement_params=self._telemetry_stmp - ) raise snowml_exceptions.SnowflakeMLException( error_code=error_codes.INTERNAL_SNOWPARK_ERROR, original_exception=RuntimeError( @@ -1102,7 +1129,6 @@ def _dump_dataset( error_code=error_codes.INVALID_ARGUMENT, original_exception=ValueError(f"Dataset df must contain only one query. Got: {df.queries['queries']}"), ) - schema = ", ".join([f"{c.name} {type_utils.convert_sp_to_sf_type(c.datatype)}" for c in df.schema.fields]) fully_qualified_name = self._get_fully_qualified_name(table_name) @@ -1152,6 +1178,7 @@ def _join_features( spine_df: DataFrame, features: List[Union[FeatureView, FeatureViewSlice]], spine_timestamp_col: Optional[SqlIdentifier], + include_feature_view_timestamp_col: bool, ) -> Tuple[DataFrame, List[SqlIdentifier]]: if len(spine_df.queries["queries"]) != 1: raise snowml_exceptions.SnowflakeMLException( @@ -1198,9 +1225,15 @@ def _join_features( if spine_timestamp_col is not None and f.timestamp_col is not None: if self._asof_join_enabled: + if include_feature_view_timestamp_col: + f_ts_col_alias = identifier.concat_names([f.name, "_", f.version, "_", f.timestamp_col]) + f_ts_col_str = f"r_{layer}.{f.timestamp_col} AS {f_ts_col_alias}," + else: + f_ts_col_str = "" query = f""" SELECT l_{layer}.*, + {f_ts_col_str} r_{layer}.* EXCLUDE ({join_keys_str}, {f.timestamp_col}) FROM ({query}) l_{layer} ASOF JOIN ( @@ -1360,7 +1393,7 @@ def _get_fully_qualified_name(self, name: Union[SqlIdentifier, str]) -> str: return f"{self._config.full_schema_path}.{name}" # TODO: SHOW DYNAMIC TABLES is very slow while other show objects are fast, investigate with DT in SNOW-902804. - def _get_backend_representations( + def _get_fv_backend_representations( self, object_name: Optional[SqlIdentifier], prefix_match: bool = False ) -> List[Row]: dynamic_table_results = self._find_object("DYNAMIC TABLES", object_name, prefix_match) @@ -1399,8 +1432,10 @@ def _find_feature_views( if not self._validate_entity_exists(entity_name): return [] - all_fv_names = [SqlIdentifier(r["name"], case_sensitive=True) for r in self._get_backend_representations(None)] - if len(all_fv_names) == 0: + all_fvs = self._get_fv_backend_representations(object_name=None) + fv_maps = {SqlIdentifier(r["name"], case_sensitive=True): r for r in all_fvs} + + if len(fv_maps.keys()) == 0: return [] # NOTE: querying INFORMATION_SCHEMA for Entity lineage can be expensive depending on how many active @@ -1420,7 +1455,7 @@ def _find_feature_views( WHERE LEVEL = 'TABLE' AND TAG_NAME = '{_FEATURE_VIEW_ENTITY_TAG}' """ - for fv_name in all_fv_names + for fv_name in fv_maps.keys() ] results = self._session.sql("\nUNION\n".join(queries)).collect(statement_params=self._telemetry_stmp) @@ -1432,15 +1467,16 @@ def _find_feature_views( outputs = [] for r in results: if entity_name == SqlIdentifier(r["TAG_VALUE"], case_sensitive=True): - fv_name, version = r["OBJECT_NAME"].split(_FEATURE_VIEW_NAME_DELIMITER) + fv_name, _ = r["OBJECT_NAME"].split(_FEATURE_VIEW_NAME_DELIMITER) fv_name = SqlIdentifier(fv_name, case_sensitive=True) + obj_name = SqlIdentifier(r["OBJECT_NAME"], case_sensitive=True) if feature_view_name is not None: if fv_name == feature_view_name: - outputs.append(self.get_feature_view(fv_name, version)) + outputs.append(self._compose_feature_view(fv_maps[obj_name])) else: continue else: - outputs.append(self.get_feature_view(fv_name.identifier(), version)) + outputs.append(self._compose_feature_view(fv_maps[obj_name])) return outputs def _compose_feature_view(self, row: Row) -> FeatureView: diff --git a/snowflake/ml/feature_store/notebooks/customer_demo/DBT_External_Feature_Pipeline_Demo.ipynb b/snowflake/ml/feature_store/notebooks/customer_demo/DBT_External_Feature_Pipeline_Demo.ipynb new file mode 100644 index 00000000..91d4c115 --- /dev/null +++ b/snowflake/ml/feature_store/notebooks/customer_demo/DBT_External_Feature_Pipeline_Demo.ipynb @@ -0,0 +1,533 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "5f46aef7-1fc7-408e-acf1-0dc030981c58", + "metadata": {}, + "source": [ + "- snowflake-ml-python version: 1.2.1\n", + "- Last updated on: 1/30/2024" + ] + }, + { + "cell_type": "markdown", + "id": "70cdcdfb-a40f-4b5a-9ae8-6768b097f65a", + "metadata": {}, + "source": [ + "# DBT External Feature Pipeline Demo\n", + "\n", + "This notebook showcases the interoperation between DBT and Snowflake Feature Store. The source data is managed in Snowflake database, while the feature pipelines are managed and executed from DBT. The output is stored as feature tables in Snowflake. Then We read from the feature tables and register as Feature View.\n", + "\n", + "This demo requires DBT account." + ] + }, + { + "cell_type": "markdown", + "id": "76628c92-5f51-4562-86a1-dadc2aeb85c0", + "metadata": {}, + "source": [ + "## Setup Snowflake connection" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "22427859-5cc8-43de-bdef-ebaa7ec33670", + "metadata": {}, + "outputs": [], + "source": [ + "from snowflake.snowpark import Session\n", + "from snowflake.ml.utils.connection_params import SnowflakeLoginOptions\n", + "\n", + "session = Session.builder.configs(SnowflakeLoginOptions()).create()" + ] + }, + { + "cell_type": "markdown", + "id": "fdfb517c-c5fd-4119-b27f-5b3d778574de", + "metadata": {}, + "source": [ + "Create test database, schema and warehouse." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "510d1d12-e5c1-4078-884a-771cc7ea257d", + "metadata": {}, + "outputs": [], + "source": [ + "# database name where test data and feature store lives.\n", + "FS_DEMO_DB = f\"SNOWML_FEATURE_STORE_DBT_DEMO\"\n", + "# schema where test data lives.\n", + "TEST_DATASET_SCHEMA = 'DBT_DATA'\n", + "# feature store name.\n", + "FS_DEMO_SCHEMA = \"FS_DBT_DEMO\"\n", + "\n", + "session.sql(f\"DROP DATABASE IF EXISTS {FS_DEMO_DB}\").collect()\n", + "session.sql(f\"CREATE DATABASE IF NOT EXISTS {FS_DEMO_DB}\").collect()\n", + "session.sql(f\"\"\"\n", + " CREATE SCHEMA IF NOT EXISTS \n", + " {FS_DEMO_DB}.{TEST_DATASET_SCHEMA}\n", + "\"\"\").collect()" + ] + }, + { + "cell_type": "markdown", + "id": "320c79c9-d6aa-4d66-b270-8463a33f0d03", + "metadata": {}, + "source": [ + "## Prepare source data\n", + "\n", + "This notebook will use public `fraud_transactions` data as source. It contains transaction data range between [2019-04-01 00:00:00.000, 2019-09-01 00:00:00.000). We will split this dataset into two parts based on its timestamp. The first part includes rows before 2019-07-01, the second part includes rows after 2019-07-01. We copy the first part into `CUSTOMER_TRANSACTIONS_FRAUD` table now. And will copy second part into same table later." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2af11339-5f7d-4f76-b352-d495353b6136", + "metadata": {}, + "outputs": [], + "source": [ + "# Replace with your local path\n", + "LOCAL_PATH_CUSTOMER_TRANSACTIONS_FRAUD = \"./fraud_transactions.csv.gz\"\n", + "\n", + "raw_data_path = f\"{FS_DEMO_DB}.{TEST_DATASET_SCHEMA}.RAW_FRAUD_TRANSACTIONS\"\n", + "session.sql(\n", + " f\"\"\"create or replace TABLE {raw_data_path} ( \n", + " TRANSACTION_ID NUMBER, \n", + " TX_DATETIME TIMESTAMP_NTZ, \n", + " CUSTOMER_ID NUMBER, \n", + " TERMINAL_ID NUMBER, \n", + " TX_AMOUNT FLOAT, \n", + " TX_TIME_SECONDS NUMBER, \n", + " TX_TIME_DAYS NUMBER, \n", + " TX_FRAUD NUMBER, \n", + " TX_FRAUD_SCENARIO NUMBER)\n", + " \"\"\").collect()\n", + "\n", + "session.file.put(\n", + " LOCAL_PATH_CUSTOMER_TRANSACTIONS_FRAUD, \n", + " f\"@{FS_DEMO_DB}.{TEST_DATASET_SCHEMA}.%RAW_FRAUD_TRANSACTIONS\", \n", + " auto_compress=False)\n", + "session.sql(f\"\"\"\n", + " copy into {raw_data_path} file_format = (type = csv)\"\"\").collect()\n", + "session.sql(f\"SELECT COUNT(*) FROM {raw_data_path}\").show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d26d7215-3845-4436-a4f7-486d48f7815b", + "metadata": {}, + "outputs": [], + "source": [ + "fraud_data_path = f\"{FS_DEMO_DB}.{TEST_DATASET_SCHEMA}.CUSTOMER_TRANSACTIONS_FRAUD\"\n", + "session.sql(f\"\"\"\n", + " CREATE OR REPLACE TABLE {fraud_data_path} AS\n", + " SELECT *\n", + " FROM {FS_DEMO_DB}.{TEST_DATASET_SCHEMA}.RAW_FRAUD_TRANSACTIONS\n", + " WHERE TX_DATETIME < '2019-07-01'\n", + "\"\"\").collect()\n", + "session.sql(f\"SELECT COUNT(*) FROM {fraud_data_path}\").show()" + ] + }, + { + "cell_type": "markdown", + "id": "4bb4b5a4-72c5-42b6-87ba-e63483ae4c08", + "metadata": {}, + "source": [ + "## Define models in DBT\n", + "Now lets switch to [DBT IDE](https://cloud.getdbt.com/develop/15898/projects/334785)(this link will not work for you, you will need to create your own project) for a while. You will need a DBT account beforehand. Once you have DBT account, then you can clone the demo code from [here](https://github.com/sfc-gh-wezhou/FS_DBT_DEMO/tree/dev/models/example) (Snowflake repo). Below screenshot shows how DBT IDE looks like. In the file explorer section, you can see the code structure. Our [DBT models](https://docs.getdbt.com/docs/build/python-models) defined under models/example folder. We have 3 models: customers, terminals and transactions. These 3 models will later output 3 Snowflake DataFrame object. Lastly, Feature Store will register these DataFrames and make them FeatureViews." + ] + }, + { + "attachments": { + "b635b471-d26d-4374-abe0-41c284eaae6a.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABnMAAAOJCAYAAADGF9dHAAAAAXNSR0IArs4c6QAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAAGc6ADAAQAAAABAAADiQAAAABjHNQIAABAAElEQVR4AeydCYBV8xfHzyzte2mT9j0lLVoopVQiIRIlKi2EiJLQnoQQIkuIULKk/NuTtO/aS7v2fd+maWb+5/t7c583d+57897Mm5rle2ju9ls/9767/M7vnBMyatSomGeeeUYoJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACKY9AaLly5VJeq9giEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABQyD0m2++IQoSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEUSiD83LlzcuDgAbkSdSWFNpHNIgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIH0SyBk9uzZMb1fe1P+3bM//VJgz0mABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEgghRIIPXnyZAptGptFAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQUq1atZiYDHlomcNrgQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARSIIHQ/v37a7NiUmDT2CQSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIHQLFmyKIUQkiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEkiBBELDwsJSYLPYJBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARAIJQYSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIGUS4DKnJR7btgyEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEqBlDq8BEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEkjJBEJjYmJScvvYNhIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARJI1wTCqcxJ1+efnScBEiABEiABEiABEiABEiABEiABEiABEiCBNEsgpko5iSxaRC7myqHRwxlxIkWf6OhoyXL6rGTYu19C1m9N0U1l40jgWhAID+VN7FpwZ50kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALJRCAkZ3aJqHeLXMyTK5lqYLFBJ6Dj1Dhf+JdFFXCZFq6QmDPngl4NCySB1EogNCQkRNtOV2up9QSy3SRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAnEJUJETl0dq24JCB+eQQgIk8B+B0KioKN2CQid55a6CWWVWgyJy4oHSMrRyvkRXhrwoB8uklJPoBjAjCZAACZAACZAACZAACZAACZAACZAACZAACZBAiiUA12q0yEmxp8fvhuEc4lxSSIAEXATCHxm5S4onMw0oXbqXze2uBev498m2U/L6huPu/b5WoAx6sUIeqZk3s0lmLRcevSgzDl/wlZXHSIAESIAESIAESIAESIAESIAESIAESIAESIAE0gkBxMihpA0COJcZGT8nbZxM9iLJBMJjrqGLNUvB40uhY1fi2HsMBQ+VOXYq3CYBEiABEiABEiABEiABEiABEiABEiABEiCB9EngYq4c6bPjabDXOJcZ02C/2CUSSAyB0Ik9S2u+5I2ZUyufy5rGqYFQ6HhzvQaLnh9uLey2xnHKb1noOB1Lyr6mjesnJTvzkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJXAsCoaHXolbWmRwEeC6TgyrLTKUEQmNioMhJ3pg5y49fShCPL6WOr8xw1ZYYGdy/t8z63wQ5cXBLnOzYj329ej4TZz83SIAESIAESIAESIAESIAESIAESIAESIAESIAEUjaBGIlO2Q1k6wImwHMaMDJmSKMEwsPCwpK9a3CjBuscf6xoLNdriIXjTz5fLtq8dQxWN88+/WS8w1DkOO2Pl9BhB/LWqVVDmrZ4xOFo+tmVM0d2Cc8QJidOnE4/nfbS08yZM0nWrJnl9KmzEhXNFwkvmLzuJj+vaHiABEiABEiABEiABEiABEiABEiABEiABEggkQTq1K4h7R97RCpVqhinhE2bNsu47ybI0mWr4uznBgmkFALhxjInOnndrKGz7205aVym+dNxKHTwD1Y3sOrxpgRKrFWOP23wNw0UQxO++8Lf5FctXbWbK0vNmtVNfefOnpP16zfKhk3/JHv9P074RjAIf0fjFsleV1IruC5fXnngAVc7IyMvyz//bJe/16yXS5ciklq0yT/yvTelfPlyMmLESJk6fU5QykyJhXhy9GzfWmW5fOXfnrsCWk8v/AKCwsQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJJIuCkyEGBUO68OWyQ9H11QKpX6NStU1OOHT0mh48c83vifbAmVoepa7wOHR6VceMmyuXIyCSdq2uROW/eXHJP82Yy7vuJiao+b97cohY0cuTo8UTl95XJpcy5Cm4kZxy+ICtPeFfMODXSstJxOgZFTmKscpzKSsq+erfVSUr2ZMt7b4vmcscdDeKUf+H8eXnjzXdk8ZKVcfYHcyMkJPkVg8Fqb6WKZaXtow/HKS7qyhX57vsfZey34+PsT8xGaGjyui9MTJuSI48TR9Rzoz4Ak6LMSS/8kuOcsEwSIAESIAESIAESIAESIAESIAESIIFrQ6BhwQKyRAfRI2K9tEx46AG5FHlFOkz+PSgN2vziC/LWtGkydstWx/Ls9Tsm8rGzWKZMsvKVXlJg0BsS7LZb1e5+pbd0/WaczDp4yNp1VZd2ixx75VDoOElClju5cuaQlvc2lwoVysmOHbvktylT1XtR4kKEONXvz76Gt98qffu+JBkzZpIrVyL1X7TfE++tidWDB78pf/61yJ/qHNN06tROx1zbyN9/r5c9e/a5J9Mj8eFDR3Qy/TrZu++AY96UsLOdtr1Vq5ba/rWJMo4Y9eE7snnzPzLkjRE+u1OxQlm5s3HDeGm+Hz/Rq9er8FATROrqDDoHYp0Trxe2HYEocuACbeGipaaEWX8ssJWU8CasbyxJKH8gaa0yk3O5Zs1a2bhpi9zdvKnkyZNHBg18TVq0bCMREZeTs9p4ZYeGhEi0ic8U75B7hz9p3ImDuHLy5En56adJqvyqL2XLlpUnnmgna9et1xvLhji1JNS+hI7HKSyJGzAHTcjk0580SWxGnOynT5+SH3/81b3vn63b3ev+rASTn70s+7Y/7WEaEiABEiABEiABEiABEiABEiABEiCBtEtg7pMdpEHFCvE6+OvyFdJ64i/x9ie0Y8y9d8tj9W6TDDojH56Qpq5eI/eN/1FuKlZUzgdxHK50oQJyg47x2cVb/X916SRF1TtNqeFxB5aPD+4vs3X865GfJ8Up6m3tx4lz582+xLR91hOPyad/LZBfd/8bp1zPjW2HD8uQB1rKrE8+99yd4tehBIJVj9OYXIniN8ino0dKpkyZTT9uvbWOKjRay9A33pZ58xdftb61afOgUeQsW7ZC8K9bt05+1x2sidUtW9wjMCpY/fc6ub1e7XiT6dGgVStXS68+/f1um2fC/02eIOf0Gn2kXfwwKp7pErv+7bjx0uqBe+XppzvLM8/1DqiYTJkySuFChWTI0LcTzHe7Kt5atbpPvURdipN26rRZ3pU50UZLfHWsKWCdA4saXxY3cVruZcNf92qeMXCsWDijRn/pVux4Kd692zO/tXPlqjUy4v2PxZtSx3K5hnTe0lhlXY3l3r0HZMyX4+Srr76TX3/5TnLlyiWdOz0uH48eozeXjPLRB29J6VKlBEq9HTt2Svdne+nF2kI6dWovS5cul/4Dh5tmDuj3stymVkhvv/O+LFi4zDGfk9lcqZLFZfiwgZI//3USFRVlFEs9X+xrFDttWt8vTz75uGxSZVPFiuXNjebMmTPS++XXZOu2XVcDj6kDP/7xqoTAv3feGqTu6WpIj+eelo5PPmOO9+3zgip6bpcM4Rnk5KlT0qv367Jz17/arwFSrdpNsn7dRl1WNQx3/7tHnnn2JblwMe6PEAWB9wfvD5cypUsJYlUdOnxIXur1umrIr8i4bz+Xk6qpt25C9zS/U55/vrvMm7dAhg1/37TD+gMlDWYI/PTjL/LJ519bu+Msu3ftKK315n01zULPnDlnGHo25Kcfx0pOnZXQ99VB5gb+88RvJVu2bNKx01PygvYvGPwOHDwsMF+c8MNXsmTJcqmkL2LX6fU2atSnsm7dBhmm1991+fJJpM5GcOLp2V6ukwAJkAAJkAAJkAAJkAAJkAAJkAAJpA8Cjb4cazra7PrrZdqLPaRi/8Gy9cKFRHW+j8bR7tjgdvnsjz+l76w58rC63a9fvmyiykpMpoTqDxXnifxwh2WXljWqy8tqGZBYqVehvMzYsFHEhzJn6NTpMqf3i1I4Y0Y5ePnqTjhPbL+sfN6sejp1fMwoco4eOSrffPu91K5dU26tW0fHOHdYWd1LX5OOfR1zF+BjpVjRG8zRgYOHm1ASgShzfBQb55CvNt5er45k15jq06fPjJMHk+k/+/wrqV2rptzR8HapoeFBbqpSUdat3+xO56tcJLKOY2zxStQVdz77ipXOvh/bvo5Zx0+fOauX7x4zxpg1S2bHcV6nsrGvZYu75JIqbzdv2eYtSbz9ze95KN4+bztCTcwcLz9ob5mSsn/h0Ys+s8MVW0LKmoTKQAVOihjsh1KnV0/XID22vUnNGjebtPbj2G8pbOzHUvI2rGKmz5hlmlhBTbggX37xkbFE2bf/gLlAS5cpLW8NHygzZv5hFBe19MdlSZ06tcw+KHK85bPSWkuYFn726UjJXyC/HNEbGX5kN91UWT4b7VJO5NDjGTJklKpVbxIoAi5evKgD/znllZdftIq46ssPPvzU1Fkgf36z7P3Ss9K06Z0SoXF0NmzcLHly51aFzFvmGBQIMFnEzWf/gYNGWVWiRHHp8ERbx3aDG2LowCrq+ImTUqhQYflyzCdy6tQZ7f9ZKViooNxc9UaT916dBQE2CxcuiVcWtP9Q5EBZA6WNXSxFDtI4zRSwpw/WNhR2w4b2M//6vdbLFDthws+GUb/Xe0unDu0kn84E2bJliyqyjhoFTDD4ZcyQQfAPvG6/vZ5aoOWW3frCAIu0jz9+zyhyNmoAuwsXLkqTJo3l4YfuC1aXWQ4JkAAJkAAJkAAJkAAJkAAJkAAJkEAaI1Anbx45PWSgLHmqi1x55035rtX9cmroAMmiXmcgXStXkrNvDHJvm313NJTN+/dLdx3APq2Tmb/QcYjHJ00x6T3/lMqSRXapCzOUe+HNITLyzsbm8EMlSsjF4UPdSSe3e0SWde9mtivpwPW+114xeVAvBqPt0tXP+u357NvlsmbV8b9wGaUWO5aU0fEqtDVqxHDT9oI6BgN57847TJsj3npDZnd83OyD+7RMenx4m9ay//VX5AlVaB3u/6q77W/c7vJ+9JeOE17QsbbmOuE5rUjRokVNV+bOm29iZ2OC/D0tHxZrEvKsGb/Ku28PkQnffyl/zJ4ikyf9IM2a3uHuPpQAv/82Xv6Y87tMn/qzPPdMF3PslhpVBXk//ugds131pkpm+ysdZ4QgljWOf/TB2zrm+p5k1esFMkXLat8ubngJ7O/Sub2p50+tB/+++Xq0GVfDMU/Bdfbt2NGm7Afuu9scwoR31IX2//rzOMEkfrvUqXOL2TV+QlzrNkymnznrTxk89B31iOTyhtRIQ4Q0blTPxWTWZNN3MChXtqQpA4YAqO+pbh2VyS/m+IxpP4to23Llym2OYewWY7RI54sv+gCLHvCdOmWiWH1yqiN79ixmQjjqqan8A5EmTe6QzZs2BZIlXtoC+fOZawB9g1SuVF5mTv9F+vTugd9//BtAvBKCuAPWOd4ESpymf+03sXCg1PEmvspAHrg6syxxsA1rnEce62L+YR0KGX8E1jVWXiw9BcoiJ7HqgfVOSpODBw6bJsE6B4qWIkWKGDMuWDB8omaNiBcDZcOp02dUOXHAaJNxg8AFkzlzZtm5c5dkVr+Z3vLZ+9v8rjslXK1Z9u7dK23adpJ7WugNRJVKZVRp5Kn5h//B1m2ekBb3uo4XU/PTayX79h80VcOKBtKwgesh8+57H8m3qlU/pGag0C4jEJYl4Pd4h6fkzbdGmF233lrbOuReWrzBGDfyhx5+XI4dO2Z8VjZsWE8mTXL5TW2vD2sIrHciIi7J/IUu94DugmJXYJHjpNDxVOR4s9qxlxWsbVwjdevWNv9wM4b8Mul/RrGSO3ceY4aK/g8Y+GacKoPBz12gXl9Pd3/BWFVVu/kmo+DZvn2HfPPN9/LpZ1+ZZLfffps7OVdIgARIgARIgARIgARIgARIgARIgARIwJMAvKlk19n4BXPnktt1rKePWpFkU9dZL+lEZ0in+vVk3/GTclHHICy5Pm9eWeSHu/lZzz4tuXWw/eGPP5UflyyT5+5qIo/qGFBOrS+jKlEsyY+xJ2tQXpU6WTNnknpvvi29vFjM+Fu/Vb63ZQOdpHzRZimjMTrksc/GSG91GXeDej55tnYtaV2ypDx/VzN5Q+MANX13pNyqYQt63FxV7hk12riYe+d/06TpyFFyQifW/rx8pRR9bYDMWLtOnmt2p7vqk+qGq1qsFYl7ZypeWaznE9Lm4Qfl6y8/1lgo9d1hLqxJyNVrVJMcem6PHTtuJrR37vSEydOgfl3p+cIzkj17do0xs9eMv8L9VreuT8iq1evMBPvy5VyT85vrNYMJzSVLljDjq3c1a2y2D+uY5S71JISxV8jOnbtl3779Zt3zD6xiVBtiQkxEXI4QjMPec3cTzyRm/d0RQwUKqs2bt8qkydPE14R3z8xmXFfb4C0mDpRERYpcb7Ls2rVbbqlZQ667Lp9s2rxFjh8/oeOuOaRr547muGUIAKbRaiSAmEUHYsduMcaIPv777173JG9ffOGFKZP+jhCSJGOmDMYr0w1FCou9jg1qVXbu3EW1qHKFjyiv8Y8CkVL62/j9fzMCySIv93rO/Q+WTUeOHjfxeu5u3kxKligqr+mk+ctqHPDNt+Ml3Chzov+7+QRUU5AT18rn8imIYpcfvyQ18/63HUhV9dQdmCVQyPQf7NJcYp/l+sxT2WOltS893anZ8yG/Z7lWXiudtZ2SlsWLFzPNOXb0qNS7zaVwwAD822+/4W5mpljl3vTps6Vz5w7y0IP3GzdgSDDl92kJ5nMXpCtVq1Yxmwj4BIlSl36nNK4KBvZrVP9PqxkREWGOw3rokq6jTcWLFZF/98S/4ZiEyfjH0vzCSghiabMHDHg1Tq0lihd3b1t+DVetWmf2FVBLJLtYvI8eO+o+tH37Tr1ZXWeUi8PfGimdOraXm6pWFtzAw/QBvmLlKndapxVLWQMLHUuw7sv9mpUuOZb7dQZK127Pxyv6izFfyxtDBxqt+dw//5IzZ8/FSRMMfnCnBsH1tW3HbrMOKzBImbJl4lzjeXWGDYUESIAESIAESIAESIAESIAESIAESIAEfBFo+/mXslQ9q0BW7dwlHdQbyFAdsK+qCo83fotrdROiaa6oRU5CUlzHjMbMnWfiySCmTBudFPuQujWbut41ruGUv5h6Qnlv2gzTFrTnIx0/s4u/9dvz2bdvVJdzZ1QB4ylb1BuNiX+j7X1WPZ40v7mKVLy+kBnna6Au1fAvMvqKPHRLDflQB8rRuuOqqNl47pz5l18VFOPbtzXcsukk8UyqHIrQMcIjZ89ImYIFPatK1etfjPlWcufKKXc1ayLw3PPaq33Ue89j0uOFPu5+XTh/Qe697xETfgJWMVBiQKC4gRXI5MlTZeSHo6WhxlLBWGSzpneqa7JvzOTyQhqHBeOWGG+FIgNjh3fe2UBqqYs/yEz1tLRCx8HhtSaLWoA91d3l+ahPn57muPUHYSXgNejWujV14vWjUkHPX+PGDY3CxkqD9lRWC7RDhw7K8z1fMbs9J7yf1/P74ovPqdehQmbC+4kTp62sUrBAAYGSyC5Fri8sv/2qIUBy5jJ9xdjr9Bl/qOJjprwz4iMpXryo3H9fC7n33uZS6caKcbKf07HE+1u1NdccFDDjvv1Czp0/5+5joYKusVhvfB980MV3ypTpGlZkmamjvipl72jomsSPyjzrwPbGjVuwUOujElj4JVDEQP78a5Ff6a1E9TXWlmrhzGZk5BUzuX/goOEyWa2URn04woxPv/zy68bTkUvlG4qf/NWRuwpm9VoRlDdDK+cTKHV8KXJQhi/rnDqxF7HXivw8YFfMLFy0NI7Fj5/FpIhk1xcuKHff3dS0BQouBKCCXFKTxic7dzfr+IP4LZCffp4snZ98wrhFgys+3CTw4yoY++Pwls9kjv3zzz/bBO7ZSpcq6d6dM0dOs75uwyajuHAf0BVYr0CRAw3ytVDkwAei5eINfhEh6Gdm1dr2fLGPuoo7Zvbhz6FDR9zr1kqTOxua1VMn/7uBWcdWrV5rVvPqTA1LSqhmFbJR3bdBkbVMZyogOJrly/LbcROspF6XdoXOtVLkoIHRqhR2ihXU83k1CYx90YBVzLtqtYaHhl2Sws9eFra3qU9SXH/bVZM+YNB/1kBwt0YhARIgARIgARIgARIgARIgARIgARIgAV8Ejly85D48bOoM+VVn9r+olhWIMvOuxpn2lMOnTksttbBJSDACez52UjPSYuJzZo0bYwlcuXla/Fj7w3S/L/G3fl9l4Nj+UyclS6y3Gqe0mVSBAEsdtBnjhftjlV1Yro4dS/PM99W990h7VS58Ne8vmaKKnncebSM5Nf9R7XfOLFll496rP5Hbs33BXn/n3VHy0cdfSBcdU23ZsrnxbvTM053lizHfmKouR0aYMUBsIK4KxhwhxXRSO2TRoiVmOX+Ba4lwD5DVq9fouO5d0kTd8hVSBdjKVatNzG9Y2ZQsUUKtVqKMIsckTuBPhyceldYPPmCUQZdjlS758uWJkwuKHMilS/+N3/ma8H7ihGucGXnCwsOsYUBsxpO9+/aZMbt33v1IEH+9dq3q0l9d8mXNllUiI131ZfL4TaCADRs3md9KvMJsO7zxLVrUxbdVq5aqOGvpzlVEFUPH1BoIYq8DY8IQe1vMTi9/oIiCtVGgcu/9j8TLAjZz584z5/2AetCCog4Sa78XX6Mbr4Qg7aiXP4vPkrqXdV2kvhKhDF/KHM+8S5fHt27wRykDhYdd7ModuHNL6VJHg20hCD0sQCBw7fVDrM/C06dPq3/BXPLmsIGycNFiDTpVWWbMmG38OuKC2bptm5Qr5zIl26g/GigcDqoSw1e+yMuRxj0bzPOmTZ8lTzzeVhCL55NRI6SAamZD1VT10KFDRklisatZs5oM6PeyWqhUM7vwo76aglgvMH8sAcslfThCcTVo8FumCRs2bDA3xyGDXpdZs/9UjnlNbJ/hb3/gbmKXLh00qNktqtGubfYtiX2gnz3jskCpV+9Ww/S0Wo3An+P471V7fPa8iZmDumbPmWfywQ0YlDmFCxc22mB/A2VZCh0U4rluCr2Kf6Do++gDFzdUu2XLVjmvMw6uU75r167X9fOmf8OG9JOXXu7nblkw+OVURaBdpuu13P6xR4xbv5d7P68xdDabwHN9XulvT8ptEiABEiABEiABEiABEiABEiABEiABEvBKYMqePXJcrQOGPNhK1uq6XeEyYelS6XXP3TKiUUN5TWOmPFK2tDzftIncNmq0KTMsBCogkcM6Ftf2trrytU7ovU+tD7KqpcrkNWtknlq9QLqpq7KFu3dLFXVvdUgVRJCdh4/Iw3VqyxfLVkhXnbTqGbrAJNA/CdVvpUtouWDnLhmqbfKUwqpQyK9KnJblykhBHUf8Vdu+XgeXm2tbtxw8KMN1u7HG1Vl51DUJGhZKZXQMENKgUgUTS6ibKsM+u6e5Z7FynbobW7v36o4BxmlAkDcqaozyHNmzy/KVf6tC53MdPz0lHTWWUCVlkJAc1tjSxpNRzZvNoL3l0ejM2bMmK9x2QZnTuHEDM3Y5b94CqVC+vFrVlFPXbNlMuIyE6sDxojdcL49oPCOMR3bo2E3rzCUj3387XlYoec7q2CUsjBB7eqJO+vd3wjvGnsuWKROvTMQbR5gKuwwc8JpRao0YMdKMn86Z+ZsOz4bYk7m3LUOEsNAw976EViy+P078WWCdY8kp/Y21bdva2oyzrFDB1Yddu/fE2e9ro3LlGzVMxw++kvh9DEYPsMzCdXS9WsxVr3aTMc4Id5XgHZDfNfiZ0B9lTUJFoYyFRy96VehAgeMrLo6nGzZvdTnltytvoNzxpyxvdVyN/fljXX7hB7d69d9uJQXq7tqth3w6eqTxjdi2WBtjPbFjxy6R6XNM037+5Td5te/LrvWffzNL/PGVb9HipdJMzQk7P/m4TJ02W17vP0T69+sjFSu6blxHNcBZt6decJeFlRD9r6Hx16husnQGwHM9XHXGSZSMG7AGws3pypVI2btnn7Z5qFsr27vPABNgrJK239Lcbt26NU5rsqkP0/r1XXFYNqjF0fsfuB7U02fOkurVbzbWIfAH2blLD/n8sw+MEkcKQbt9Sfq+OsBtzQJfkjBfLFSosCxa7NLAx6nIx8a1VOJYzcqYMZOaYN5obUp+VSAac1FVAg57c4ScPnPWBF+D/8q6dWq60wWDn5MyB4rHAQOHyquv9lYT1JvMP5zjG/UheiRAc0d3Y7lCAiRAAiRAAiRAAiRAAiRAAiRAAiSQJglc0fELCCxOICGxS7Ohf75fvNjEiRnz1wJrl3vZ58/5UixvPo0J00R66qA7ykCMGCh9/laLlTaqjGmgY3StP/1Cpj//nKwb+LpJ87taWHyuY0mQjTq5+V2NpQxrnQNq6WK1Y/jUaTJCLVo2D+4vl1VREqn/MOHaU3zVrwVJUXXnFTViuDtLo7ffdZfv3qkrcOOGgfSmhQvJrIOHzKGcWbPIgTeHIPC6aeNzs1zjhk2Xr5ChrR+UQWrlgTxdvxorY3Vi7/xNW6Rro4bSXic3j1D3cP3ubykRb70hx2IVE5e1PcVUYZQra1aZu2OHZ/Wpdh0KtpHvDxeMjSF2OGK/VKxY3vQHE5wTkuk6IR5xzGExU7Z0abmxckWTZZkq8CBb/tlurFby5FELGuU3e85f0rhRA6lW3TUxfuXK+EYJJqP+8Zx4/3esp6bomGhpqVZTjRo5Gyp8qK7etm3fIZ+N/lC6duloJrj7M+Edde5Va6uyGkMJLucQlz1hcV3L5VU5BTdrcB8HSyNvckgVXxjfQ2wdxJpZrnqALeodypfMnDnH8H2o1f1mvPKsKmbLlCklz/oYg7ZiFG35xxU+xFf5OAYXeIg1P0ld5QUqnuOkyLte4/a8MbSfOl6LkTaPdpIfx38tgwa8Kvc98KiEWzeGQCtJTHq4UAuWvFghj1dljmcdTrFt/HXDNrh/7zhxcXr1fMZdtJPlDg5C4WO34HFnuoorg4e+I/jnSxBMqdVD7Y17M2hmN2lAK8+Hwew58/XmMD9eEb7ywWIF7sEyxZpkLlq8XJo1f1AQrOmkuh9z+hEjNsz7Iz8RBJjDAPzVkvkLl8kdjVskWN0zz/U2sx4qV66gZoA73coXK+O7742Sf/7ZKidOnDIKC2v/HFX2LV/+t8CdGrjCbA+8r8uXV31XZnYMBJYzh/qN1LRfff2dVUyKX/rLER3BtWBJxw7tzGow+OFG7nQu0bb5dz8k8KeZUU00dyIQHIUESIAESIAESIAESIAESIAESIAESIAEYgnMVCuTsF6vuHks1uD0ntvWgew6GfiSeqSxlC/Wfmv56C+TRPQflDZLtQzEhYG008nSXyxcLGt0XOi0DlLn6jdQ6mg83x066fWoWkhYctPIUVIzT25ZrwPgVl4cg4Jk7IAhJo8Vw8fK47n0Vn+DMV97JnOvX6dlOskSdVffv+U9MuuzL6XSex+aJJV0IjNkk3pdseShib9Ipp8nST3t72K1HrKslZp9+53pBxRP67SPX69cLdkzZpBNOoBuyYf33i171IIDx9OCQAGH8a3n1RVfUbWqwj+M7yHG89vvfKjeilwek7z1dfLvM+SGG26QVg/cK5gEjbyrlNuw4e+7s+xW6y0oSRAvGh6VFixc4lbmTJs+w50uRsMgeIrnxPsHHmxv2oQ405i0jkn3qEv/jyPnzp1Xj027tI7FZgL7sDf6S/dneyU44R2FrF27QZVEDU1fvhr7PXbFiq2S2L2/TposbR952MSxiYi4ZCa/Z8yQwcrkuER8oOZ3NZHmzZsZA4K+rw50TGftnDR5mrFuAd9GjRqa3edUuZg3b26z7vQHnpYgq1b/50LOKZ21D3HnDx0+HMcblXUsoeWwNwbGSTJz5my58cZKMmbMWBOqYtDgN+W9d4fLy717SMjMmTNj+vR7K9ljlECR480qp+3igwLXad6Ox+mNxwbyeXO3duLgFndKKF5GaJwOy4oGCh5PyVvYZTUC5Y392KjRX7qTeh7D/v6D3zHKmwnffeFOYyl5UF9KUOq4G5YCVzo/2V7atW2jgaeWS9/XBqfAFvpu0uefvm9uopYZoO/Uvo/2fulZE2wsU6bM8ueffyWoiPNdWuo4Gkx+qaPHbCUJkAAJkAAJkAAJkAAJkAAJkAAJkEByE4iRaDnTrlXQqimsk0OndOkkN6tXl1GzZkvP2XODVnZKLKhuvnzyR68XJGvffsnWvKMD+8krE3+SL9WKxx/J+f2v6tfH5arOn/QJpfn4o3fU/ZnL+iWhtPbjm9SNPyZ+exO4x3KaNO8tvX0/3LXt2LHbKGzsxxK7jVjqmHi/a/deU0SB/PkSPakeVkjeJrxb7Zsx7WdBzGpMavdHEDuoqE7E3qb99lfQH7BCmAqn2NzeyqlQvoyGITnh9srklA5lz5j6iyCmescn/zPucEpr7Zv0yziNcTPfxEyy9iXHMtyXD7pgVuhLUQMrm6Z/7Teu0wJR6viyzoGyxVK+wGWaXeHi5EbNs79QyiCNVYb9GBQ5EChs7HVhP6x4qMwBCe9yUM014ffv3z2uG4n3lCnzyG71mVhAZx9YgbKS0sqSJUsYzS00yx9/MiYpRaWavMHkl2o6zYaSAAmQAAmQAAmQAAmQAAmQAAmQAAmkKgLXqzuwMxcvygC1uhkWGyc5VXUgwMYuOX5cqgx6I8BcgSWv8ebbsifCFWA+sJzBST3uuwkmznKgCh0ocpDXlyDMwOlN/rnmcirH3xjaTnm97Ttw8HCcQ/C6lFiBFdLadS7XgN7KmDFjjtynLtMqVyovG/xggfAggShyUC8UOGvWbvTWBK/74bIuIenwxKMmNtHo0f6N0ebNm0vdyuWWnzzClCRUR2KPh8yePTum92tvJqtlji+rHKvhn2w7Ja9vcF1I/qR3ymfts5awtIFLNU/FDRQvCxctjaPccbLMsax5oJSx57cUOVY9WM7634Q46ZAfsXtQF5U6nqS4TgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALJQyDYljnJ00qWGgiBYFvmBFI30wZOAJYtT3frJGO++kbOnbsYeAHXOAfCNbRo0Uw+/WysXy2BNVYdjQ8+c9affqVPSqKr4mbtxAOlE2yjpzLHSuyPUmfliUvGqsfK47REHBtIUpQq/sbCCUZdTn3gPhIgARIgARIgARIgARIgARIgARIgARIgARIgAd8EqMzxzSc1HqUyJzWeNbY5OQiEh6qfu+QWKFxq5s3sWA2OvbflpGPsG1jq4J8vpc7y45ccy/XcmRQljlWOv2X4m84ql0sSIAESIAESIAESIAESIAESIAESIAESIAESIIEgElBXUHIVxjyD2GIW5Y0AziWFBEjAEAh3cYhJVhxQ1vxwa+E4dfhS4sRJqBuW+7Va+TJ7VQrZ83CbBEiABEiABEiABEiABEiABEiABEiABEiABEggfREIkVDJcvqsXMyTK311PI32FucS55RCAiQgEh4VFaUcQpKVxYzDFwRu1CBQyMCaxlLQ+FuxlR5WOigD4s2ix98ymY4ESIAESIAESIAESIAESIAESIAESIAESIAESCBtEci0Zz+VOWnklOJcJq8ZQhoBxW6kCwLhYWFhV6WjljImqZUFq5yktoP5SYAESIAESIAESIAESIAESIAESIAESIAESIAEUh6BmPVbJEuxIlTopLxTE1CLspw8LTiXEkLLnIDAMXGaJcBfQpo9tewYCZAACZAACZAACZAACZAACZAACZAACZAACaRDAjr4n2nBcoEygJI6CeDc4RxSkZM6zx9bnTwEYmPmJE/hLJUESIAESIAESIAESIAESIAESIAESIAESIAESIAErjaB6LNnJcPUPyRTlQoSASudXDlEQjmv/Wqfh4Dqi4428Y7gWi1aLXKiNTII4+UERJCJ0zgBKnPS+Alm90iABEiABEiABEiABEiABEiABEiABEiABEggvREwSgBVBsBNVwb8S28AUnF/ESMnhK7VUvEZZNOTi0B4TAxDSCUXXJZLAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwDQmoUkB1OkZiJPoaNoRVJ0SAVjgJEeLx9E6Aypz0fgWw/yRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQDghQWZAOTjK7SAJpmECoShruHrtGAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAqmbQGhICAwN6WotdZ9Gtp4ESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCCtEgiNiorSvlmeI9NqN9kvEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEkidBGItc1Jn49lqEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEkjrBEJjYuhiLa2fZPaPBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEgg9RJgzJzUe+7YchIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggXRAINYyhzFz0sG5ZhdJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARSIYHwsLAwWbFolkTT3VoqPH1sMgmQAAnEJ7B5224pkDd3/APcQwJXkcCRE6d4HV5F3qzKmQCvQ2cu3Hv1CPAavHqsWZN3ArwOvbPhkatHgNfh1WPNmrwTwHVYsWwJ7wl4hASSmQDHa5IZcDoo3ljmREVFpYOusoskQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkPoIGGVOSGho6ms5W0wCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC6YBAqIqEhDBmTjo41+wiCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAKiQQGh0dLTGMl5MKTx2bTAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkB4IhB4+cpiWOenhTLOPJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACqZJAaI7sOSSUXtZS5cljo0mABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABNI+gVB0MfJKVNrvKXtIAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAqmQQGhISIiEhYelwqazySRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQ9gkYy5yY6Ji031P2kARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARSIYHQmJgYgXUOhQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIOURCEeToMrxxzbn0zHfy9btu6V504bSpNFtjr3xJ41jRu4kARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARKIRyA0OjpaYvwwzJk9d5FR5JQrU0Kmz5onUNrYxZ809jzcJgESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAES8E4gPDRUw+b4YZYDBQ4UOU91bmcUObDQsYs/aex5uE0CJEAC6Y3Auk1b5fCR43Lo8HF31wsVzGfWq95YXgrkzytIs3b9VvdxrCCNdTzOAW6QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkaQLh/sbLgSIHChxPN2p2Mv6ksefhNgmQAAmkNwJ2JQ36byl2ChY4JoeOHounyLHSHDq8WNq3aZHekLG/JEACJEACJEACJEACJEACJEACJEACJEACJJCuCRg3ayZoTgIYYJFjKWuwdIqZ408ap2q2/LNdfp401ekQ95EACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAuiagXtbUzZqfUrpUCZPSWjpls45ZS6c09n2HjhyVNes32XdzmwRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATSPYHQmJgYiYmKDgqInbv2COLmQEqXLGqW/EMCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACKYXAJ599JfjnTdp3eMrncW/5uJ8EkpNAeHR0tISEhUpMdIzf9ezYuVvwDzF0nKR504ZSqmQxp0PufStXr5XRY76Tg4ePSPnSpSRb9qzuY7/9b4aMn/i7XF+ogLRv20oqVSgnz7z4uox44zXJkye3REVFSY/eA+Tj94a683CFBEiABEiABEiABCIjrwjebTJlypgmYUTpBJwrV65IxowZxCnu4cnTZ+TkyVNSqkQxwYSdy5cjJTw8XML0XY9CAimJwKYt23TyV3HzW42IiJTQ0BDJkCE8JTUxXbfl0OGjkjVLFsmZM3u65pCUzuN+HKn34AL58yWlmHSbN1rHJw4eOiTX5ctnnnnYvhbPMs/3itT2XPVse7q9kLTjCb07pXY2qe26TO28r2X7I69ESobwDEluQmRkpPldZM6cKcllpfYClixZLrPnLhQsx439NE53oMjBsbp1a8XZz43gErhyJVq/V/mtGghVl5u1ABQ5KBxKHCdFDmLpQJHjFE/Hs1FHNLj3i32HylNPtpPJP46RihXKuA8vXrZSfvt9lnw8coi89EJXGfL2R+bD7oYihWTJ8tUm3fpN/whuPhQSIAESIAESIAES8CQwcPj78lzv/p670tT6T5P+Z/r37579jv2aNvMP+eDTr82xdRs3m7Sz5/7lmJY7SeBaEThz9pyM/ORLWfn3WomIuKzXaT8ZOXrMtWoO6/UgsP/AIXll4HDp/8a7+h32gccRrvpLAEr0tz8YLX36DZPXh7wjuN4pgRFYvnKNPPdyfxk0/AMZ//Nkcz326DPA3C8CKynpqQcMe9f9XpHanquebU86idRbQkLvTqm3Z66Wp7brMrXzvlbtX6pjpUVLVZMfJ/6a5Ca0fbyrlChXI8nlpIUCoMBp0qieUdpAeWOJpcjBse7dOlm7uQwygTNnzsmzvV6Xdz/6PMglp+3iws2szpAQ0embAfX02W7tE7S+8Vbgpi1bpWb1KnJLjZtNknJlS8mefQfM+rIVf8v1hQvKkqWrzHZG1TrDCqhZ4wby069T5e5mjWT+wqW6vMNb8dxPAiRAAiSQAgn8/NtUWbB0pXwwfEAKbB2blFYIxKhVTlqWmBjv/bsYESELFq/Qd6bbDQLM1EyqnD9/UV4eMEwevLe5NGpwa1KLY34lQKYic+cvNtdCzWpVjSVdMC6MoW9/KHny5pZnOj8ejOLSbRmLlq6QEydOyQMtmknZMiUTzWHthk3y+djx8soLT0vRG65PdDmJzXgt6/9n+w7ZvuNfubnqjXJb7RqSMwetmwI9j7/PmGOsmrp2aCs3FCksk9RzR3h4mFrmBG69l9R7Q7THszSh52pKu797tj3Qc5CW0vt6d0oL/UzoukwLfUyJfejU5VkpXKiQvDHk9avSvJw5c0jVKhUl33VJt/aMDlKojavS8atQCRQ6lvLGUujAIgeKHLu1zlVojt9VpLRnjj8Nt48JZciUQfLmySUFC1znT3amiSUQ+NuQZvTHjVpChGOinAcYLl++IjD1y5c3jyni+e4dJX/+66RE8WIy9J2P5JC6ZZsx5y8Z98XIhKrgcRIgARIggWtIAB8Wnm6gDuj9++KFi44tsqd1SmRPY992yuNtn2dez3Vv6T33B5reMy/Xg08gsecjoXwJHffsSSBpPfM5rdvLsm875bH2YSIMXMzVv7W2tcvr0t9yT511uQmKUEVRQuJvmQmVk5KPB6OPCTFNqA77cfu2Jz9fx5DOfty+7VmWfT2QtJ554Spp9p8LpGa1KsbF2sWLlzwPx1n3VYf92D61KMmoH4TpQex9D2af/9m2wxTXVCfSJcWl1fHjp8xg/JUrUYlqXlL76E/9gdbhLb19/7btu0yf76hXVyqW/88DRaJApOBM9n4Hq6lwiXX4yDEpqp45ala/yRT79JPtvRZvb4d9O7H3BqucUEx89SJWGutwQvd3K523pb08+7a3fPb9Vj5fbbfnSY3bVj8DbfvVyJfYOpz6Yi/Lvu2Uh/uSn8Bife9ufEd9x4oSOkdOx+377NuVKpaXmVN/cqwvWDvtdfoqN5C0vspJKcc8FTpoU0pX5KCN/jxz7OfJvo1yPMXbcW/7kTeQY/YxoSyZMsmwAX08m+Be91WulchbGm/7rXyey0DSeua7luvhaLTg/cRZtxKnbbCQgWCZkCs1k9DLn5tvqiz9h74vu//dK9ddl1dWrFrnTllNZzD9MPE3qdC1jOTV2XUnT52WPLlzmeN3N2koH3/+rVStrNroWGWPOyNXSIAESIAEgkrgvCpevv/xV1m7cYtE6WDMLdWryhNtH5Lfps6U5avWyCsvdpe8uXMLLCp/+X26PP7Ig1K5UnlBHIQpU2fJTr3H4z5+X/Mmsn7TFtmw8R/Tvpf7D5PKFcvJ448+JDt2/ys//vK7Pg/2mdkYLTXtLTWqmnTTZ/0pfy1eJvc2byy/Tp4haE+LuxpJSVXuj9N2nT13Xprf2UD33WnSY4Dwx18my2JtDwa0695STdq2fsDEYUBZC9QP7sOtWsjX3/8sBdV/fdcO7eTHSb/L+g1bJJNOIqhfp6Y8oNYH9sErqx319PjMuQvM4FQdLfuxNg/KH3/Olz8WLJYuTzwqZUu7ZjB//vUP8u++/TLktV6m7qCelHRWGAYBJ+g5XbZqreF+k85Ga/vQ/ZI7Vw7Zt/+Q/PDzJNm5a69k0Pgx997VWJo2clmkANMvU6ab2f/ZsmaR1vfd476uYMo99oeJep1uN7Eg7mnWWBrc5lJ+fPjpV5JZXyhz58qpeZcI8j7RrrUcPHhI/qfXELYffuBeqa7vKvDtO2/+Ivlz0VI5evS4aUPr+++RhvXqxDlLsJYZ9Ob7Zma6ZTGA6/2TL78V1F1IJ6x8+d2PZn2ODnBjAKtK5QrykLb5m+8myu69+6WW/ibatGop2bJliVO2fWP7zl3mN3ddPteEGPtxMJs8fZZs2bpDIi5F6ESZG+SZLk9ILp3p58T61lo1ZNz4X0wx/5s1V/5cuER6PtNZChcs4C4a75G4J+CD9vSZs1K6VDF5sv2jGuPAuQ3ujKlsZYVeg1PVhd2BQ0cM4yf0/lVYYzsOe3eU3FLtJmn9QAvTo0Hq5i97tmzy0nNdA2aKexTuN8eOnzQc27VupTPSCxm3Qv3eGCH16twiu/fslQ2btpr75VOd28uMWfNkhcahLFWyqLRrfb8Uub6waYe36xwuzVAWfiub/tlm7su9nu8me/Q6mzNvobHIKF6siPmdlSxRNM5ZsvLedGMF2bfvoLnH586dU++lbaWIzpz3dZ1bvzEUeEJjOiGOSA19pjhJQr8ttNOzrQ/f30LGjv/Z3PdhDYFnzP33NJVba9d0Kj7V7gvk/jRz9rxEPZvgzmqv3icgfQcNF1znFcuX9fps/XvdJpk+e65ePy4PC7hXdWj3sN4/F6klxUxTzki9r+bMnk2GvN5Lhr/7sUSpdeFrvZ4zx77/cZK+Y2yWAX16mvsb+pgjW3ZjYTVD+3B30zvMM97bs90U4vAH14dT/U7vAs2bNHLsA2I4Wc9/XE+//u56D7mz4W1qtXSXqdXpfUd9mMsfsZZnn3w5TprqQN+9zV3vKQ5NTXW7ArkOP/p8rMBt36C+LxrFLZ4z/fX+U7pkCXny8TZe+z70HZd7P1yL+D0PeKWnfPnteDl67IS5jqx7UUL3scTeG3AP/nLceB3z2GPutacd3OThup27YImcOnXG3K+7dWyv9+7jGhN4nOmXt2emvdPWNRbIu+5EfXddou+6iJ+H9+knHm0tWbNmNkX703Z7G1Ljtv05gHdDPLO8fbtYfVy+6m/z/oV0nr9lX98QgVzzCT2/rHZg6ev3gW+OYL0betbJ9eARaP1oRzl1+qz88ts02fXvHnn+mS7SrGljmTpNQ0Z89pXs3Pmv3NW0kQzs97Lk1vHM8RN+kZ9/nSIv9XxG+r4+RMqXKyPPPP2k9O03VLp37SDf/fCzzFuwVDo+9rA8072zDFH3jn/pN+YTuv1s9y6SQy08167bYNK/8GxXaarPrpdfGaDfJlml8PWF5Ktvxpv3094vPiN3NHApmBbpd/Q34yYYz0boOcp6uVcP/dYNiwdilb5Lfj7mW5msz+7aNW+W5/R9/87GDeOku6TfDq3aPKFjwbfLln92mLTVq1WWd4YNkJIlS8ijj3WRyvqOaFkq/bN1m/RUN7rdu3WUFnc3i1MWN5JOYLuOyzs9c9as3Rhv3OPxRx7y+g1oPYe8vevgueI0ZnJQv4m8fVeid07f6tAB2MeE8I2LbxNrfAh5/Rkj8tZep3ezumolbRfc2yFZs2RVt8/rzLd8q3vvkjvq1/V5f/b1/mKvIzm3Q/ERHuNHzJzZcxeZODmIi4N4OZ+O+T7R7cIgyUs9OkvPvkPk4ce7y7nz//kRvlNfeOvUqi73P9pFOnR7UV4f/I4G5ooydTW+o578tXCZNLvzv8GaRDeCGUmABEiABLwSQMBU+Mpf+fd6KaKuL+vXvcXMuICLC7hfwcfrlUjXvfnchQtmGy94yPexvgge1Nhoj7a+T4rqwOKly5d1oLG4eUCiwuqq0Ie15X4dIH9n5GdmEAjKkROqvP9CX0RX6wsI5NTp06auceMnmcEk7JsybY58MPorKV2iuCpKQs32ER1Ih4zRvH/qS3C1KpXM4Or8RctlyvTZ5hjKwovIJ1+MkzKlikuDerVVIfSLvhRvUgXOXVK3ptZ/8nQ8RQ4yW+1A3VVvrGgUP4uXrZI16zeaF1awwMs35MKFS+ZlAGbCGAiiJI3APB0Qw3m8RWfw33d3Ezmpg8AZM4brgPphtdb90LixqV61spRTV0CZVAnjKYvVpR+uNZwfDPTifQdxDIaO+NAocvARn0+VjRhM3Lptp8mKgN+45pepr364MYDCcNRnY40ip4rOhsO1//X3E93VzJw737iGbRrr1gyTUeyz0DHb6Hod9Me1hmsQsnTlatOuMqVLyMWIS2Yd7SisvzUoVqBgHKDxKjJlUUtlVYos1UGb1WvXu+v1tnLg4GGfJuq79uwxH5dQOCFeIZRKC/RDD+LEOleOHKocKGSOFy6Q3/DMlCmj2bb+fK0Kp+mqUIA0bVTf9D+HDtymJVm6YrW5Nx1SRdsd9etIdv1wzpE9u+krrq9jJ1znFX0+eOioWpEfNd0PhOmiZStUcfarnFcrlVo1bjaDiLjGcc1AOY16/jfjD3NNlipe1Cj9Bg17XxUqe3RAoJT5LUyZPsfU6+s6t8qa+Ov/5F89/7fWri4SLYLt3Hq+H3mopfkusCu1UbCVF7/Js3rfh9IR7fp87A+S0HVuGhb758gRF58C+fJ67o6z7u2376HhtAAAQABJREFUtVfdMtvbiudS+Vh3YFlU4Yrf/XV5vZcdp6JUtBHI/QmDKTg3gT6b4M4KynEIOEJx7uvZukx/G7i33qUTK+AiA/eqnTpJI79O1sulA0+Q8upOGxPxIHg3wO/IkuMnT5p2RkW73ifQxyVaJhQ5mEBSqUJZn/Vb5diX3up3ehfw1geUaT3/x+okkAplS5v3Dtzv9uszyNv7Du7Z+NaFVChTSq6PvYeaHWngTyDXYUUdrMRzc9Ua1/MLCmTc00rqPcyX3FihnDmMiTa4DsN14BH1YrIDxLoXJXQfS8y9AYqiN1VJD0VO5Url1DroeqN8NhV7/MFxuIbH8x3rv+tEiWzZsib4zPQowqxa11gg77pz/1qsk6lymvfZv/Wd+Y13P1ImMUbx70/b7W1IbdtOzwE8s3x9u1h9nDNvUbzfMo75us8Fcs2jLG/PLxzzFF+/j2C+G3rWyfXgEah9i74/qZQvW1Ka6+SswoULycxZf8iTT70oN+j374s9uumEm7nSq09/k+7o0aOySCc+tWrTSd+9bpEHdRLQ+fMXZPXfG6Tz073Urak+K/XbA+/VNW9tqgraLOY964OPv5T5qtSBWOlxX4Vgkj0G8yf89Ju01EkHKOul3gPMcxnHZ8+ZZ+6XvV96Rm5UxS/K2rJlKw7FEcQj7/JUT1XQbJXPPn5HbtTJmVB42gXjsqjjrXc/0e/mE0bxhO3erw4y7S1frrR8+c0EOazeOCCz//jLpK9yYyV7USly23KzBosc/IObNcvlWkpssLdnjtO7jq9vQOs55PSug357GzPxVaa3b3WnMSHrmX5Y3xEh/o4RObXX27uZKdj2B/d2TJDD5Ay8c2Ki2fifJps4h77uz7ZirtmmcbMGNzh4EfcleHGFIuepzu2MIgcKnaTIffc007g3jQW+Gj0HBjD49dSTj5nZOhE6AIjZjZZgZtj8mT9Zm1ySAAmQQKomULWK62MVnTh85Lh+qLqUElan7Mex357GShvs5a7de8wHOD5kezwVWMA/PAghmJnfvcvjbldr1kxqDBZCJuksVzy8O7V/WOroCzFiow0aPlIHnxYbyweTSP/0eKqjGdCBVcKf85dI+0daqRupWjJTXxB/mTxd4BIGAyeYUQElimWps14titas3WBmaFtlwU2oNaMWkwMgGTKEG4WO57PISu+5xOz1cmp9g1kmg98aKX9r2TU7PKof7gXNQMXjEQ/JOo0RAKlf12Xp4Zmf64ETuHDJ5X4pSq1g6uos++Y6Sxsy64/55tqBpdWdDes5FgxzbZzTS1rG2g2bdQDxqBk0xAAnrARuv62Oum+pKsNGjBIEjkX8PkusvK9p4GpY3fTr3UMKqDXXufPnjVULFIjYfmvwqyYLBi8xK2+bvhvhesQHk6c0aVjfvCwuWb7KzNCGlQd+H0UKFdTyXS+uUAg9dN/d2tZNxgoZlspwKwOLCbiZ3bD5H3Pde5ZrX8cgqa8YF7DswD8oqTZu+kc2q3XSytXrzG/GG+uG9W81fa5xcxU3f6teKA0weIvBX7BIqwrMOX8uNF3u93IP90AddljKOYuHfRkI07k6wAQZ8MoLOkiXy1hNYaBy1Zp1cnus2zzca1596Vm9piPk+T4DBYqLwa++ZLg/3fM1tbTZbsrYsetfc607XedW7BKcM8x2z5kzu2zbscvki7wSqfe4UtLo9lvNtrc/sNyxLCve/2SMuY6gDPd1nXuWZQ3mY9DbScLDQ73+tjJquyH2thZQZePCJSt18kEBo5ByKjet7PPn/gQlbGKeTfXr1lKL04XGAg3PavzGfT1bu3ZsZ66/g/pBfFm/2zBQumbdRnlIrRQx8/KvRcukuc7stVt5JXQuenZ/UpWUpROs31s5VStX8lm/57tA3VtqOvahTKkS7uJ7dOsglfS+Pk8tMX7QD31MACiQL597kN/+voNJJbPUkhf3dctq111YGlnx5zq8TZ/buI/NU6vOW3VWLJ59EMsC2xuK+9XyCfwKF8zv8/fsz30s0HsDZg3jGen5/guluTV4arX5nmaN5D4dPMUYCu6/K9ds0PfTB8XXM9PK67QM5F0XEyZw/4ZgZjEGo/btPyBwWelP253qT037LsW6fbU/B/C7xHnyPHf2fr3wdKd4v+X8qvz3dZ+zyvDnmg/k3dDX72PHrt2m2mC8G1rt5zK4BJ7q2lFG6KTEyjrR7zm1nIGMeO9js+zb5wX9BskkUDx+oR4b8N5mydBBr0jnjo+ZzcVqkQ0Z3K+XdO3SQZYuWyn3t+4gXTu1k8ED+8r27TulXqOWsky/H+65u6lJ6/Rn6m/jJUuWzHJO711fffujWk8fkKJFi8jrr/YyscawjTZAmbRQPQrcqG22CyzPr5cCqpQqIEMHv6bPxVB7Evd2C/WaMeYzlwUlJm2O18ls+J55pE0r+faHX4wS64n2j8ivGi/3tjo1pHgCCnx3wddwxVORY8XIsfZhae27hk2MVzU8Jfh65ni+6+BZ5e0b0CrY6V0H36qWO2T7mImv78rlOjES4zxO3+r2MSGrfKsdVt4Ex4gCfDezyrcv3x/W3/xOimt8x4l6zW7Qb2Rf92d7/mu1HW7iGWDysG9djlHkWBY5WOLCSKpkCA8X0f+dJEOGDDrA5vpgczrOfSRAAiSQWgm0b9MiftNtE1ZuUiVKHLEdj3MsGTYwOA2p4vCy56s6POThcgyWEB99OlZnr2dT0/HHjSWNPd/22A+VUmplA8EMR8gOVSR5StYsWcym5V4TM5Ug+fK4BgIv6McrLBIgmLX5ug7AW3JZXVB4SrUqld2bcB/zgX4ET/h5ihlsgCWRpysgd8LYlYzhrmdS/tigk9t2ugZAoYT6atxEWauWOstXrzEvv1UqVbBn53YiCNypShCYkGOmNv7B7UQ7/VCw2NuVJp5VWMo567rBi+K/e/aaJBhgxD9L7IPyVl4M0EGZY12DefPkNlms+DFT1JXCbHXnAzeEcMEGOa7WQ3apUL6M+S3M1zqr31zZDLbA9Y6nZI/ND9eFkOw6wxcC1wwQ+4uu2Wn7g5fmjD7enaCE+vSrcer25rCW65o5flwt4iDeWNuqiLNp/e4q6KBrWlXkoMN79CMYg4aWlVIcCD42AmEKd0KYhQ5FDqRMyRJYmPuhpczBvQ/v7fhgx0d2Jm2TZUGDey0G8SD+XOclVCEDRQ4Eg9awqsLgKRTVnu73TALbH0uhgt036ExUKAWhzISVHNrh6zpHnsjIy1jobHsvHwF6zNtvC1aiTm0NxzdFOhF/70/BeDZZv3Fvz9Y16zcZd6y49uBWFXL0+IkknwkociAJ1Z/YijzfBfzpQ1a1xoPkUesjCOL/BfK+YzKlsT/+XIcY2K6tls/LVv5trK9Xq4ugsmVKmPtEMHD4cx8L9N6wR5UikApqVeRLcP+F4J4MSzD8Rs6du+Ari89j1nuG9c7i6123TOkS7rIwyQjKnF179hmFKg4k1HZ35lS64u2Z5c+3i9Nv2d/7jD/XPJB6e37ZceNZntDvIxjvhvZ6uZ18BDDZDFL39nviVHLy1H/fBvVjXTt7JsiZ0/VOfp3eMyHWO/p1sd+cZxxcPXrmx7UEgbs1yHm1noYsXbZc+g9+WzZt3mZcp2EfXF/aBeOu48eNNlY9LVs9oQrPsjJq5HBdlrcnNdtZYr/NsQHrW8gWtbyspxPlkPcHdSnXQCcGod4PRgw2x1Pyn0/ULR6scOwxcjxj6KRUhY4vrp7vOr6+Aa0ynO6POOZtzMRXmf58q1v12pd+jxEF6d0MVryQQmppC4EyHRNQEro/m8TX8E84Pgb9cbMGixy4WrMsdJISM+ca9pdVkwAJkAAJ+EEA7p4gCOILv6GeYg3kYfYPPtQvqZsoT8GMy5tvutG4koLboC/GjpfhA18RKwgrXEFg4BeuK2DJsPfAQVMOfKFDiurgYKBSoIDr5Te/tue1l1y++FFGSBhmKzgLBmbfGtRXXz63y5hvJxh3WzWqVpHs2bOqGftFr/FJdu/dZwq0ZrjXrFZVzY8nycKlK9QN6S6prS6SMLOcknQC8AH/4rNd5KCa64/TD4OF6joNM+DgvgDXDj7cPeO3JFSjdV1DaYf4SJY4+Y62jnlbrlPLr2ka3wSupp7u9LjGkVotMPe2xOXyJMIMvGOwB7MrYUn2u7rrg9Sq5XLPYKUPxhLKJ7xYe5MPP/vaKKf6qj9tzJR//pVBZtYU0ntjbU3Mi7QpRpHH+t1tV7/gTgK3g1nUVZyZOBSbAG4bLMUXdsEtHdw2WIMkTuVc633gCoUf/mHdEktxdubsWbMLvvI9JRCmuHdBcYhBcShErAHFYnqfDFR8XefRse6sPMvE+YElRbPGDWWqugiBC5//TZ+jitMH9PqA6x7XdeyZx1rfGmvVA2W8v9d5QZ1tD4HiEzPv7eLrt+Wtra1aun7PdjeHnmXDygRiPcOwbr8eve3D/tQmwXg2Wb9xp2crnpOffjnOXK/v6axGWOa8MnC4G5Ol4L0S9d+kioyqdDt95qy5rnD8Yqz1pTuTbcVX/bak8Tad6rcnSqgP9vT2bW/vO/Z02E5v15/FoIm6SYcyZ6LGR4TldoNb61iHgrpMyr3BsyFw4wvZHxs7yvOY0zrOKxQ5UPjj/dHXM9MpfyD7YH0O+Vctdi2BEgdyg77ThphAyL7bnhauQ2/nuvKNroFnp28Xi5fTMin3GXt5vp5fSGt/pl6t34e9ndxOOoGQENe3HlyUWVL/tltkwaIVsnbFXMmm9wNLsmX9z9uQtS+5l2dVAfSQhq6AcmXbxqU6Keyi3FTzDq/VIs7OskUzjWu2Tt16St/XhsjkX78z7+iw6oFLLydZqbF2IHChjt/mU50flx4v9ZOx6v4ccqdOekwNYlfkWG2GQgfKnpQq/j5zfH0DJtQ3b2Mmvsr09a1uHxOy15/UMSJv72b2+6+93u3q2QByQ+y3V0q/P4fjAzpMX6aj/IibAwUOlTj2U85tEiABEkh7BMqWKmU+TOF2ADFKbihcWDZv3yHParD08urTFzFjJmgQR/gTna6+7S3BYOd7oz7X2GYNJWeO7Gb2uLHC1ASIa4Ljk6fNlErlyhrfpBg0HPv9T3JAZwnBBRWkrlpfBCqY0YjA6/BbPuGXyVJNlTIY6IevdSf3Lhjwe2vkJ+oOq7wG4i1m/Pxas9p/08CPGKTvpEEiEcPNkom//S7V1bJn+px5ZtctN99klpjNAeWA5YrptltvsbJwmUQCiCNzUT8gat9ys+TJhVnf/6rlSbjUqHaTcbn3w09T5PjxU3JZP6Qw+xaBEH0J3N1gwGXBkhXmo6R4saLGoqpNrOs/X3ntx/R7xUiMWsOs0IC6k36fGSfJsBEfGYuOof16G2VlvTq1jDJntbrng5uqPLExFeJk8mMje3aXNcWWrduMBYVnliKqCIU7OUuyxbqqxYB7Y7Vysl6eD6lybPHylWZ2OaxBIN5YWy+0UFZCeYvfDJQNEPzuEL9lp7qlefuD0TqDqboO2q2Wbuo+Aq5O3lR3E1B2Pde1g0n/06T/yWx14dS1Y1upqecQJv99NLg1BtTff2uAibtiEqawP5idhZhZ6COsHTBQdFvdmgILPLg6w30H9w2Y5cM6ypJAmNZTd0QI2P7uh5/p/auyzPpzgSmmmirGA5VAr3PEs5ih9zUoc66LtXi0FB6e17F13tFfKH0OHz6mVkD7zfVQSN2cQfy5zgsWcM18O64WHFDmZMyY0eQ9ou5GETvN12/LW1sxKxXxphAHapFeqyX0t+1pSYUBzJ6vDjbPpPc1UC8U7us3bTEWpPX0XD6ulpoQTD5YoQMTvZ7rGsf1ojmYyv4E49nk69laMPach+kzcJP64P9r8dI4hEqXLGHi2E2f/aecPn1W3VrepDN4S6vie418O/4ntdCKMr+dOJlsG77qd3q2e2Z3qt/zONYx8ATx1gdz0MsfX+879izp8fqzGBQrWsS4wMWzD1K1SuD3NKssX8vE3hvsZeK6wnsCrIHh3vffffvjuVhDnj/0/TWD3rugqILU0Ps2pESxYmbp9Mw0B5LwB/e5MqWLmxhpo1WRmlPfBxAzB8+h4kWLqqVmiM+2p5Xr0Nu59vXt4gt7Uu4z9nJ9Pb+Q1vOZineqYP0+7O97sBykJC8BKDcQ42bK1NnSauYfUl6t8O9TF5FQ5vQb+KZxOXZKJ61kzpxZ7m7eJHkb41B6rK5J68/k+k5R91Geki82biEsanLpN8mzPV6WjupdI4++ByJenmXt0+Wp52XazHmyetkcfc9yWRAhFs53P0yUvapY/t/0P4zCqIjG3IM0v0v7qsqcTzWWD9yx5VOXpCldunfrJPjnTXwd85bnau13euY41e3rG9ApvbXP15iJrzJ9favbx4RwH/QUxK9J7BiRr3cz+/3XqvO7H3814V1mzPnL7LLi9gXr/mzVE+yl8g8RP/Q4wa6X5ZEACZAACaRgAphR/uqL3Y2Z9+Jlq43/UMzwwUz7yjqAiQFcDJrNVHPy5k0aunqiYyIR6j4HH0UYxERAxkI6i7DDY63Ncfh0xax2WHjCEqZ0yeLStUNbc+x3nQWOmAst777Tq6sza9DFmgnlqlQHYWK/nHo8/aS6lihtYniMHvOtWpMuUCuFY1ayOEt80ObXl9hpM+eawbwLOpj8mMbiwaxKK4actbQyHj16wsVBZ87DysJT0dOwnst6CQPjZdVlESU4BHKoQhAKRbjsw8d7fVWUVdagnHArAmUbrIsRFB5uDc6cOeOz0lD9qsG1+VqvZ02gbijscJ1s3LxVTnhxC+S+5nTSi6fgGryxQnkzqAL3Jl+rQtKKi+D+kI/5b1AfeTEohDg4kNsdXCyYA/rHmk2O9npKSGwbbq5SyQzW/KrKI/s1CvdYnq5eSuqANlw1oI0IJtmq5d0mL9qLfluzfFGPN9b4oGtQr7aJwQJ3grBk85Qe3Tu5B5fwu8cA/+nT/50LKLssiYm3opY5HsetwylteU+zxmqhWEevsXPyo84uh1sm3A8hD6pFCAb+cD3BLQ4Udda5CoQp4kFhBhjiyUzV+xKUk8891SGOQsLOxZs/80Cvc5QD5dvnX39v7nFwmdG8SSNTXYztOsZODHz/Pu0Pc6/F9dWnZ3f3oLg/13l+/bBHnVB+mfI0cDVcGcBiY4XGYPL12/LV1gfuvcu4qvtG/bXPjlWGmQo8/ngq21SX6BJrqVvWb8paemRNcau+7k9WYxPzbLKuX6sMb89WvCfg+Y84ZHimY8AK58eyDsC7Alxq4f7z+dgfzO/njgZ13e8VcMFRNzaAtJXHqtNz6a1+zzRO607129Ml1Ad7emsb92lf7zshysFJ0tL1Z/XPn+uwaaPbTXK4YsyUKYOV1ccy7jPXR0L3oaTeG6yC0J/2apUIQQyofeqWFPGnUL6nFL2hsHke4F0Y756IlwNJ6JnpWYbTupun7R3Aetd9/imNJ6X3aChx4C4Wz3HE9YOC2t+2p/br0Nu59vXt4sQa+6x3rkDuM+5zFIR3Q7TBn9+H1U5v74b29z2US0l+Ai+98LSZWNWhy/Pyk7rtfqxdGxn42osyf+FSafv409L9+b6yY8dOvxtiDY7HO8/Wx4WfJSF59mzZZcjAPrL67w2mLdnVJRXuT9a97L5YDwUfj/5SLkdcVoVODun8dC958JEn1SV0Fen/em9Tm93qHDvxnjn0zfflg4+/lOrVKsu4rz9xl4t3X8T8gbS6v4VZ8k/yEfD3mePrG9Bb63Df8TVm4qtMX9/q9jEhe/2BjhFZ+RN6N3P6pkHetes3m+84fN88pfFqoWi3xJ/7s5X2ai9DJk2aFNOixb2q0PH4krnarWB9JEACJEACQSOwedtuKRDruz4YhcIHOD5cMEjnKRjYzJEjm3sQz/PYRXXLE60uh+x5kAYzr7PpS6CnW6WTOvibKwdeMAP/gPesF+t46Th34bxaPuRybJtnerygnjt/Tl9uXTONrGNnz6qrI+0bZPxPv5nZxa+qEgBxetBua9a6lX7Tlm0y8pMvVRnVRIPJN7Z2p+vlER0cDsZ1iEHVUzrI6+36OKXXTpbMuJ78GSD675TAGgTWybAgS4rAjzU+aix/u1ZZMOWGWwIMLlgyaPj7cvDQ0SRboURGXjHuuPLGxm+wykdber02VBUMdxnrOOwHv+N6LvJoLBbEV4mKilY3ghfc8VKsvFZab6wj9EPvvLposGK6eObDOo4jKDGsIywB46w6k9ga+MB+z98WttEXDCx53g+wP1gSrOsQ7cE5PXXmtOTOmSvOvQp9gHWYp/s4q/2+rl8npqgDbtvs9ySrvECXgVznsE6E6zjPc+F5HSNu0/N9BpoB+p7du6pF1fk459tqmz/X+fcTJ8mCxStk1Igh7t/OKbXeyKIKcat+b78t1OPUVuxHe0/oTFjEt7I/TyIi4Aolxl0+0qMcxKeyrlGcL0xacHp2IX1iJJjXYKD1Oz2bdqgbCTwn7YJ7mKWUth/DtrdnK573UNriPugkYAxlDSZLQMD4tL4/YAAiELHXDwU13kOcpFSJYu7zbK/fKX1CfXDKY+3z9b5jpcHyWl1/Vhuu5XX48+RpZtJFn55Pm4k8mOm7LdZFo9U+a4lYXrAyTaz4c29AjK+EfgN4Vp45p9epPtOs+4O9Tb6uG+v+Hh4aZiZT2PNiG/75E2uli/LB0ele5avtaek69HauwdbbtwuO+RL7fcZXWl/HvD2/PJ+pVn7778PaH+jS/r4XaP70lB73w4plSwSly/gdHj9+3FigWN8CeK89duy4xpLLYybnBKWiRBaCCYvROjEne6y1vmcx+AaO0m9hWOZAkBbfRlDIWIL+XYq4aJRD+H4oXbGWtG7VQt4fMdS8r+aNtei20mP5WMenZOXKtWrNM9dMdPI8xnUXgWCP11jPHG/faajV1zdgQufF25iJP2V6+1Z3GhOytyOxY0RO72b2+++rg94yXmM+++BNM6EM37D2532w7s/2fgVjOxyNjdKbjb3RwSicZZAACZAACaR+AtYAjL0nVvBs+35sZ8mkrptc3pviHXZ6yUjsx2y8wnUHFC15M7oCMTsd99yHmYxOg6aWIsczrY4BuhU81n4M4o4cPca4ioFVjjV7wzrOZdIJ4P3E1/XhdP78qdVp4N2ffPY03pRBGEi2FDmLlq2QqTPmmhfGR9Slm/l92AsKYBvuM+yKHGRHW+rcUs0EsoerQwj4ecZ5gULH22/XF2sMsFuD7KZg2x+n406M7b+t1OQKBOc0b+749xb0wVs/AmWKOhJ7TdtOidl0OgdO6bDPcqPmedzzOvbcj3unp+IOxwK5zmH589fCZbJKLe9q6zULsQ/ue/ttIa1TW7Ef7fW83rHPEieFr70cnC+nwVGrjNSy9PVsgmtTDNjYBZZlQ17vZd/t3vb2bE3ofubE2H6u3ZX4WLHXP2/BElm9xuW6y54N1mLWzEp7/fa02E6oD055rH2+3nesNFimp+vP6vfuPfsEilu4Y4TLTcy2hUDhOiY2noKV1lrCegfxuhIr3s63573Bn98AnpW+3j3QPl/XjfVMXKbWhhPVxaiTPPxAC/f9z+m4r32u8p1T+Gp7WroOvZ1rUPH27eJM7L+99vvMf0cCW/P2/PJ8pnr7fQRW03+p7e97/x3hWnISgAKnYEGX+1irHli/FIh1RWrtu1ZLPNu9Cax3PMUpLfqXPTxuOuSBBbldkTNTXfB+rl4PFi1dJZ+OepuKHE+4ybxuPXN8VePrG9BXPhzzNmbiT5nevmucxoTs7UjoOWxPb207vZt53n+tdFji3mlvY7Dvz571BWs9HBp8mPPRLidYSFkOCZAACZBAWiJw/fWFjRspy3ewZ99OqpURZpM3uK2WNGpQL57FjmdarqdfAvvVTQvcF7RUn9m11J1UckrLu5u6XRclZz0sO/0RCNUZ5ojXUMaLK8lArnMoI+HKAG4YKMEn4OvZ5EthE/yWJF+J7R5+QPCPknIJHFMXppFqBdbq3mbqXtTljhathaLt3WH9rlnDr+ZvAMpqS2F9zTrMilMkAW+/jxTZWDaKBJQAFDsP3n+3VFWlu5PA8hdKrO++HiV3aKxOCgmkZAIVNc7VsRMnHZuYGu7PIVOmTIlp3vxuullzPIXcSQIkQAKpj0CwzXZTHwG2OCUQuJYuXVJC/9mGlEGA12HKOA/puRW8BtPz2U85fed1mHLORXpuCa/D9Hz2U07fcR0Gy81ayukVW5KaCHC8JjWdrZTZ1lBY5sAvIoUESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCDlETDKnBD16UghARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARJIeQRCw8LCTMCflNc0togESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCAULtbgao1CAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQ8gi43KyFhKS8lrFFJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACEhqiipxQ6nJ4KZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAiiQQilZFXolKkY1jo0iABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEggvRMIh2XOrj0H5HLklfTOgv0nARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggRRHIBwtKl3ihhTXMDaIBEiABEggcQQ2b9uduIzMRQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkCIJhMbExAiscygkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIpj4CJmUNVTso7MWwRCZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACYBAaHR0tMRQm8OrgQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARSJIFQFZGYFNk2NooESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE0j2BUMbLSffXAAGQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkYALGzZrQzVoKPkVsGgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQHomEG7crKVnAuw7CZAACaRBAvny5U6DvWKXUhMBXoOp6Wyl3bbyOky75za19IzXYGo5U2m7nbwO0/b5TS2943WYWs5U2m4nr8O0fX5TQ+8qli2RGprJNqZgAuExMTESExUtEkLznBR8ntg0EiCBVELgXEyEHIg+I4ejz8nZmMsSEXMlwbBkuPtmCgmXHCEZpWBodrk+NKdkD8mUSnrMZpIACZAACZAACZAACZAACZAACZAACZAACZAACSQ3gfDo6GgJCQuVmOiY5K6L5ZMACZBAmiUAJc7mqCNyKPq85AzNJNnCMkjukCySISTUrz5HxkQbxc9BVQL9E3lcCoVmk4phBajU8YseE5EACZAACZAACZAACZAACZAACZAACZAACZBA2iYQniVLFhEqctL2WWbvSIAEkpXA7uiT8nfkASkQnk3KZsybqLqg9MmgljnZQ9U6R7LJ8agLMvvydqmW4XopEZonUWUyEwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQNogEG66ARdr6m6NQgIkQALpnUD0nK4GQfShCRJa6BEJKVhHQqp08opla9RR2Rl9QkpmyC2ZQzN4TRfogXxhWSVbSAbZotY+l9VVW7mw/IEWwfQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJphIBLmZNGOsNukAAJkEBiCcQcXiNRs2+Pkx0KHcG/tS9IWJP5qti5Oc5xWORAkVMkPJff7tTiFJDABpRDRUJyyc4rJySjxtShhU4CwHiYBEiABEiABEiABEiABEiABEiABEiABEiABNIoAVcwB0TfppAACZBAOiZgKXJgjQPFTVjVkXFoWMetnYiRA9dqhcKyJ4six6oH7tdQB+pCnRQSIAESIAESIAESIAESIAESIAESIAESIAESIIH0RyA0OjpaYtJwzJzIK5Hp7qxGRERIZGT663e6O9HscNAIxKz/ypQFBU7onZ9LzPpPJEqtcexiuWDD/s3q/gwxcoLpWs1en7WNOlAX6qSQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkPwLGMicEMXOukkDRsGjxMlm3fmOcGs+dO2f279y1O87+pGx88tlXUrRUNdm0+Z+kFJOq8l68eEmKl60hL/bul6razcaSwLUkEHN4qav6AtVVkfOVGPdqPhoEC5lD0ecFcW2ulqAu1EnrnKtFnPWQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQMohEGoUOVdPlyPh4eHy3At95eG2neXKlSg3ibnzFsiDjzwpq9esd+9L6krhQgWlapWKki3r1RtwTUqbly5bKdVrNZIdO3YluhhYWlFIgAQCI+CpvHGyyLFKs9IdiD4jOUMzWbsDWsbExMiocd/IpJkzA8qHxKgTdVNIgARIgARIgARIgARIgARIgARIgARIgARIgATSF4HQsLCwq+pmDfW1uv8eOXX6rGzZ8p/FzMKFrpnxt99Wx+8zgEFRT7FvP3DfPTJz6k9SvHhRz2R+rdvL8pbJWzpv+72Vg/0HDx2WA4eOyJWoK47JElOmY0HcSQIkEIcA4uRA7HFx4iTSDSvd4ehzkk1dnyVG/li8UL6ZP0/2HzkUcHbUibopJEACJEACJEACJEACJEACJEACJEACJEACJEAC6YtA+JUrVyQsNESi/IybM/jND2Tths0+KbVtc5882LK51zR3Nm4goz79WpYsXyWVK1eSqKgomTJ1ltSuebMUKJDfWOx8MvoL+WHib3I54rK0b/eQ9Hi2m0AR9PIrAyRvnjxSoFB+eXvEKHmld4//s3ce8FEUbRh/UikJCUkgJKH3GnrvvXdQlCIigiAISlEUFSkiogJSlA+QokgR6b1IkSZKUVogQOiQEEJNqAn55p3LHXfJJTkgIYQ84+9uZ2dmp/x3s4f77Pu+aNSwLiZPmY7Fy1Yjm3cWdOzQFt3fegOLfl+GX+Yvwv8mf4ecObPrfqdOn6XKl+P27Qg0b9oAHw5+D64urrh37z7aduiKDu1bIzDwpO6rVo2qGDygDwoUyBdnLVu2bcf0Gb9g87Zdet5ffP4hypQuqV26TZg4Va1nI2rXqIx3enZFnVo19PEyd7ES8vXzwcw58+HpmVn3L/VLlq7EqK/G63Y9ew+AWBUt+HWG1fV27vgq4ltHnImygARIIMkI2GUziM23ox8gs12GJ+73yrUwjF8wH+81aY5bEU8uyqSzc8SV6IgnHjctHXDwaKBebslihdLSsvVa0/La09zJ5oJJgARIgARIgARIgARIgARIgARIgATSHAFHcbNmo46TZHDKlimp+/rjj23o8VYXnDwVpC11WrZsrMtHjxmHH6bNQf8+3ZWA44ivv/sB7pnd8VbXTjgVdAY//7UYmd0z4Y1Or6BCudJK1JmE+Ur4mTRuFIKvhCLkylXlzs0BoaGh2H/gMO7cvWPRb/161ZHVKwumzfwVAccDsWDuDC0oSVv5NKxXE61aNMacuYuQObMbvh49zGLtmzZvQ+c3++g5fDK4L/49eBhu7m44c/Yc2r76pm4rc1+0eCVe79Ibv8+fjurVqui57/xrH4oVLYiWzRpi4g8zMXDwMOzb8wf8/HyRN09ObZlTs3oV5Mjuq/uxtl4jH2vrsJgod0iABGwiYOf/LhC8ING2dv5v6Tb3oyPhZKdDjiV6jLGBWNZN/GU2+r3SAemcnXH4hEF0MNbbspUxZWym+AmEXAlDcEiY+h0IQ4PaVeJv+BLWpOW1v4Snk0siARIgARIgARIgARIgARIgARIgARIgAQsCjvKAUULmWDoss2hjsfP5x/2RkHVOqRJFE7TKkc6c1YPMTq+1xa8LliA8PBx7/t6vx6hdoxoePHighRyxaun6xuu6fN3Gzdi0aZsWc3SB+lowdxpKl/LXuxERhjfVnVS/PZRFTvr0cWNZGPsVIWXurKn6OCcl+Pw8bzFOnz4LX18fXSYCyZyZUyAi10Y1pny+Hq2rTF/zlLWPpLUrFygBJrepfPrMX7QoNXf2FNSvWwuvKQuhKjWb4fclq7SYY2y4etl8ZMiQXq09AjN/XogLFy6hcqXyqKFczInY01mJVIULFTQ211vjem1dh8XB3CEBEkiQgF220nAoNQEJxcuR+mdJm3fthL0SYxrWqIltewxuJZ+lv9R47PRZ89CscT34+WazOn2xkJz44ywMeO9tHV/NaqNECkXA2bh1txZ0ZJsaBJ2kWLdgeZHW/jDyIXbu3ovqVSo81bn8U7lelRh7VSuXT+SMs5oESIAESIAESIAESIAESIAESIAESIAE0gYBexEtoh49eqLViqAjok3sJGVSZ0tq1KC2bvbPvgPYqlyW5cmdA/nz58XpM2d1+dbtf6Fspfr6czTgBILOnLPo1ijkSOHHH72PsmVKoFffD1G6Qm2sWr3Ooq3sGPutXqWiqa5smVI6fyzwhKnMwz2zFnKkIH/+3NpSxlQZk1mzfiv8fLwthBypOnjwiG5RtIjBvU+e3Ln0/p/bd+ut8UuEHEnibk1SxB2D5ZDeiefLuF5b1xFPNywmARKIh4BY3Rhj4sRuIkKO0SpH6sTd2cPoJ7tvbvprF/adOIFXB32AwT9N03Fz/rdgXuyhEtyXMWXs1Jo2bdmpBfz45h+pBIBV6/7As8YHE1HDJ5uXSdCJb7wXpTyp1i3reZK1r167CaFh15IFw7VrN/G9EuZu3Lr1VP0HnjqtrF3PP9WxPIgESIAESIAESIAESIAESIAESIAESIAEXkYC9vLQTCk6T7y22ILOkwg5MliVygZRZa16mCTiSIf2LfUcsmf309sa1SrgZMBfps/m9Ut1ubUvsY4Ra5c1y39V7sp88HbvQSomjmU8ihzZs+tD/4sRXGTnaMBxXWZuXaMLEvmqVrmcFnlCQq5YtCxcuIDeP336jN5euhystxXKl9HbxL7sVewiSQ8fPIy3aVKuI95BWEECaZSAdrdmw9oz2Tk/sbuzrwZ+iNWTfsCi7ybgm+490bVmbbzzWkcbRnvcRFysydhMiRN4ElEj8d5SVwtb175q/WbcvnU7WRYn8euWzpuGLJ6eydI/OyUBEiABEiABEiABEiABEiABEiABEiCBtEZAeTFx1JYoT/MmtAg6i1esxZEjgTZb5BgBZ8rkiuZN6mk3Z1JWp3YNXeXq4oI2KnbO0hXrMGnydNSsURVHjh5DrZpV47gekwPElUvvPoNQtWpFlCheBN5ZvHAUjy1tdKfqy8UlI9q1borFy9bg8y++gqdHZh0zp3DBvKrfArh//4GxaaLbVi2bando3Xr2w9vdOmuLnKZN66NOreoY9dUEDBoyHL17vokVK9fqvlo0b5hon9KghH9x3e7nuQvRtGkD1K5ZPc5xia0D2mkeEHjiFK5eDUMWxYOJBEjANgLibs2xc+KWBNnsXXH5UThc7Z9WWLEzWQDaNjNDq4hHD+Grxn4eKSLiDj4d/o2KS1YSc1VMsgL58uDdt7tg2ux5OH32Avr0fAP1axvuUf8eOor//TQXZ89fRMO6NfBuj67KnaaTvq+K27Qt23ehcP58uB3xWGSXYyQ2WsTde3itbXO0UPc88xQZGYnJ/5uNbTv/hqeKmTbwvR4q3lgh8yaJ5kXUSMzlWqi6T46bNB3/HQ7AK+o34hU1l81bd+LipWD07vEGjh0/iZ/mLMDoEUOwfuNWLF25HpeVkN9W/U517dQeTo5OGDFmAoopi8xFS1bD0dkRg9/ric3bdmKT+rRW8dF6vtVJz1Xa5czhh3UbtmkWfXt2RdNGdeOsIzE2cQ6wUpDY2idMmYEjyur142FjUbZ0CXw0oDeWrVqn4s+t1JanXTq2VeX+OKR+f3cr95+hV69h77+HMHf6BJuuC7l++gz4FNOnfI1jgafwx5YdePgwSl8LddTver/e3ZAunTNkrT/P+123EZdsPd58HVlj/W5JG3HRdyn4CmpWrYD+774N48sPsvTFy9eoGHlh+hzKmtq1aoy+77yJtRu24PqNm+jyejtNaKu6Dk+fOY9uXTpYIcYiEiABEiABEiABEiABEiABEiABEiABEnixCdg/Ui7WoqKinnqW7Vo2eWIhxzhYk0b1dDazeyYlxBQzFuO7sSPx2iut8P2Un9Dute4Y9/1UnL9w2VRvnrl//z5yKmueTz77Ci3bdsUV9WDup6njIGJR7PTt1yOUBVALLeKM+W4KJC7Pb/N+emJ//l06vYpPBvdFUNBZvNtvCBYsWobr126geLEiKpbPVD3sR0NHqQdlgRg7+jM0b9oo9lQs9o2GURUrlNEPEiWOz2ude+H69RsW7Yw7Ca3DUcUB6vfuW/jvUAD+2LzNeAi3JEACNhKInOuG2J/Yh/rZu+HWo/uxi23er125Mvp0fsPm9saGMqaM/TxStHLptu+/w3B1dcGCWZP178SYcT+oeDY9MLh/T0yZ9rOexpXQq+g3aBg6d2iDn6ePxxX1UH36rF913Yw589XD9BtY9POPGNCvh2naIqDIMYP69cTUCV9inYpNdkYJROZpnxIOjh47gd9/+RGjPh+MHEoEeZqUmJXK4KFfopqKy7J03nTcUcLSn8rFZ/06NbBBiQ8iIkxSglIbJQ44qRcfsmb1xDejhmKJsjjZvWe/FiBkThcuXsYp9XsgwkX1SuXQ78MvUEv9vsye+h3mLlyGy0qEMLa7o0SOWVO/xacfvocx435UceIsLTFtYaM7s+ErobX3fvsNdW4zYph6KeP9Pt2xa89eLFu5AVMmjMTA93ti5NhJ+pzfVUxkDRXKldLXga3XhbQLUsKJBOSTPjZs3o56tavi1xnfY+/+gwg8eUqvIKOKcSei1srfZsJNXWsbVbvYSUS/Tur6kmuheZP6FkKOtBXB5nhgEEZ+Okgx/xZbd+zB8RNBKq5eccz/fYXpZY01G7aiaJGCsbvnPgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkCgKOYpFjZ2+fIpNt17Yl5BM7ZcyYARO++xJjvxqGW8oFjJeXp+kt9sW/zbFo7uriimGff4ShnwzUvvnNXbr0e68X5GNMEqvm+3FfYcyXwyBvfZsLPmLxEnzusLGp3i6aP8ti37gjcYak33d798AN9aDSQ1n5ODg46Gqxpvlr+zqEhYUhc+bH5VIZe+7vvdsD8jEmWcukCWPw5Yiher0yv9jHSNuE1iH1nwwZgHd6dkPGDBlkl4kESOAJCEjcnEfBC0xHSLyc2MnVLh187F0QFnUHXg4ZY1cny76MJWPK2M8zNWlYB05OTihftqR6MB+NHH6+yOrlpe5x13Hz5i0lWh9HkUL5UE1ZVUgSi5Uvv52CPsoy4s8df+PTIe9py0i5x2ZS9zhJh5W1h282b/3AXR66S92+fw+iUb2aul6+8ubOiQvKOmaKepDfsmlD+Ko4Zc+asnlbWiqGhIRqweHhw0hs+GMbotXLDbv+3o+mjeth6KA+WnCqVb0SqlYqr4cu7V8Ch44EYM/ef3EtRkDwVyK+pCYNa8FN3bNF9Dh45BjKlVG8VCpXqgTOnLtgmn+NahUhv3HSpzCQmG358hjiq0n7+NhIXLlnSbHXLlYx6dKlQ3olpkh+zz8H4OebTVvhyDjOyuLoVNAZPWTxogXRMObcPHxosGJN7LpwcLD8d4VYZomljySxBBLxzr94URRQ5WJJOk9Zfx04eBTini12qqIEsmkzf8WdO3dRQ1nhWktiQZYli6f+1FFC2r9KiOyoBKASxQrjb3W+ShQvrNgex6jPBls7nGUkQAIkQAIkQAIkQAIkQAIkQAIkQAIk8MITcBQRQsSJp3Gzltyrc3Z2ttlNmLiLMxdyEpqbiCFJkcQKJj43Zl7qYefTJje3TDYdmtA6vDw9bOqDjUiABCwJ2NefBrtDlRH13/sQYcfO/y3LBjF7RR28sfHBSbjYOSG9vZPVNklVeE+5V7sSGYEGzoa4XEnV75P046zusQ8eGqxI5N4n6ZESdx48iIRLhseClsG92n3Tb4oIJLGTHCPuyIz3KXFF5ufrY9HMO2sW/DZnCjZt3YF3BwzFkA96o2b1yhZtbNkxulnzyeaFksUs3bSJm05JHh5ucHZy1vNxUdYqkm6HKzd6Ku/k5Kj3H6oXAN7/6AsULVwAbVo0Vi7DHuqXAnSl2ZejEr7Mk1M6J8UiLoNHjxQ7Nf6jKGW6YpZsYWPWPMFsQmuPfaCMK8KO8Zz0f7ebskTKol6SuI30zvELiPFdF4YrJPYohn1nde6N/+b4SVlvHVWu0d7p3gk+StzauCWuZU63zq+iYtlS+G3pKsxdsAQzpoxN0KL23r0HiIyxOJZra41yt3b33j0tFsr1yUQCJEACJEACJEACJEACJEACJEACJEACqZGAvbhYMz5USY0L4JxJgARIIKkJiIAjsXNE2IkviYVMGSc/BEeF46GVh/XxHfek5dK3jCFjPW+rHFvmKlYb4o7t+Mkg7c5qrYoHU6taZf2SgLjV2rR5h3Yl9t/hozrWjPQpx5w/f0mJBV6oqlycifVErpyP3aiJ0HHh4iUtFLVu3hhvvN5Wu+ayZT7mbczFDHE5Fjv5+foqy08PRITfQeWKZbVVjcQGEoujiVPnKBdwoxF0+hx2/bUXN7QV0gm89UYHHdPl3IVLsbuzaf/SpRDdbrdyaybWTfnz5zYdJ+tOjI2pcSKZxNYuh2dVa78W486zjHJJJmstomLIyTkRd2QeKlZRcqetO/eg02utUahgfuVO1ZKp/NtEPuLuTuIlDR3cT1tSXQ27pq15xKLHmC5evqLdwl28dFm5WdutOBqEuwrlS+OIcte3dOU61K1V1dicWxIgARIgARIgARIgARIgARIgARIgARJIdQQMbtZeUMucVEeTEyYBEkhTBPLYe+BBdCSCIq/Bx8E1yS10xCJHhJx89p6QsZ5rMgbzsjOMKhacsZO9KsuhYpZ9ruKufPDRcIQrUaR8WX+MGDpAN5X4Jj/O+AX1W3REwfx5lDuxnIiOOWb40PfRX8WWETeVkcoqZPzXn2s3XzmVqCMB7cXl1/c/zoKnEhTEpdnYkR/HHj7BfVvEDHt7O3z35VB89uU4zPjlN93fYBXHZ/ff+9CqaQMlMGVX8YHeweDPRuO3n39A4wa10KXHB3BX7tRkfvZWXJRawaSErccuxxYsXomJKg6PpDEjPkImV4PrOeO6O77aGvGx0QfZ8GXL2qUbsVr5XK1dXKB9N+ZzJZScQ+vXe+jzJK7vJn4zPO5oxgUmcl2oRRuOjXvZaKHP2PHr7VroOch1UFwJSA4xTAsXyIevVIymeip+0W+K2VffTNGWTK2bNdAWPD/NWahcxNrhk0F9dVf/KrGwfZfeWiDr1uUVk5s7iXXUrkUjLF65HsWKWFpmGefALQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkBgJ2a9asiW7YsCGi1BvBTCRAAiRAAk9O4Myj6zjw8BK8HV2SLIaOxMgR12pikfOkQk7AiTMoWjDPky/kGY4QK8979+7r+Dexu4mIuGO1XCxRwpU7M4kPZhSLxJ3Z/fv34eriAqm/dfu2ikWTKU7Q+9hjmO/bKmaYHyNu1STOmDH+mXmdeT48IgIuGTOa5mtel1i+53sfoe87XZEvb25kSJ/eYizzdUs/1tgk1r/UP+naI+7cUQKKg3axJseL+7j7Dx5o/rL/PNI9db6Fuwgv5unWbeXqTolKIprdvXtPVxndiwovFcRJHeOEGcpVW0bFs13rZrqNxAAyT9NnzYO4V+va6RXzYuZJgARIgARIgARIgARIgARIgARIgARIIFUR0E9OHkZGWX3DOFWthJMlARIggRQiIGJLFueMCIi6ghMPrsHNPh1cVByddHaOcDKzykhoeuJO7b6y8olQ1ji3Ht2Hj72LjpHzIrpWs7YOeRgv1hzWUnzlYhkTO0aYPNA3PtSX+szubta6jLfs4NFABIeEKesNL1hzrRbfgUYLmfjqjeUiMj1rstaH+bqlf2tsEhv3adYuwpR5clIxf+TzPFP6dNZj8rgpkc+YjCKOcd94jRj3ZRtbxLkcfAWr1m7Cmo1b8dPkseZNmScBEiABEiABEiABEiABEiABEiABEiCBVEfAUd54dVDBrKNpmZPqTh4nTAIk8OIQENGlgmNOhEffx6VHtxCi3KNdiY7QAk1ido/iiUqEn0x2zvC1d0W5FzQ+zotDO+GZPKmQk3BvSVfbuUMb+Pr6JF2HVnp6UdduZapJVlS1Yjk4qn/HxE5RUZHIrtzhSewjT8/Msau5TwIkQAIkQAIkQAIkQAIkQAIkQAIkQAKpioDdunXrouvUrZeqJs3JkgAJkAAJxE8gJdysxT8b1pAACZAACZAACZAACZAACZAACZAACZAACZAACTwrAfvo6Oin8v3/rAPzeBIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggcQJGMScxNuxBQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQAoQ0GJOtARsYCIBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEnjhCNjb2SklJ7Ho3C/ctDkhEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEkgbBOxVShsr5SpJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBUSsI+KigLoZi0VnjpOmQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIC0QsHdwcEgL6+QaSYAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESCBVEnCMjo5G4KmziIx8lCoXwEmTAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQwMtMwFHcrBXKnxvRj6Jf5nVybSRAAiSQZggEnDiTZtbKhZIACZAACZAACZAACZAACZAACZAACZAACZBAWiBgcLNGISctnGuukQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIIBUSsNdztrNLhVPnlEmABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEjg5SdgEHNe/nVyhSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQKgk46lmLYQ5D5qTKE8hJkwAJkIA1AnfvRFgrfunLgoOD4ePj89KvkwskARIgARIgARIgARIgARIgARIgARIgARJIWwQcHz16hGjGzElbZ52rJQESeOkJODk5vfRrtLZA+U1Lq2u3xoNlJEACJEACJEACJEACJEACJEACJEACJEACLwcBbZljp2LmREfTNOflOKVcBQmQAAkADg4OaRKD/JY977WfOnUK+fPnT5O8uWgSIAESIAESIAESIAESIAESIAESIAESIIHnQ8BRhBw8oZs1efOZiQRIgATSOgF9/1QQklMMlzGM4zwJ7+ctaDzJ3JKzbUqIOSkxZnIyZN8kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIvHgFHeeBnq5u1CxcuY+ee/Qg6fR6hV8NevNVwRiRAAiTwHAkUyZ8bx06dTbYRHRwdkN03G8r4F0WN6hVhb29v81hPIwDZ3PkL3FCElee99pQY8wU+BZwaCZAACZAACZAACZAACZAACZAACZAACZBAMhBwjIyMhIO9HaISiJsjD6pOnT6L35esQ3Y/bzRvUhvlSu++sI0AAEAASURBVJdIhumwSxIgARJIHQTkvth34HBMGfdFsk04KioK585fxPbd+zDxxzno8loreHl52jTe01r02NR5Io0UGkQ8uA/XdOkSaZn01bLuJxG9kmIGKTFmUsz7afrYsGED7t69qw9t0aKFVdYnQwPx0bqPsajzItjbGQTIWycCEa3+cy9YGBHnzuL+7VvwLO7/NFPgMWYEIiMicC3gCDyKFodj+vQIPbAPbvkLIr2Hh6lV53kd8VHtIfD3K2kqS40ZXnsJn7XQ/Xvh6pcdGXx8ce3oYTi7uMI1dx7TQRO3jYeXSxZ0Kt/FVMYMCZAACZAACZAACZAACZAACZBA6iKg3awloOPo1ZxXFjm/L10HP19vdO/6aupaIWdLAiRAAqmUgFhO5s2TS3+2bt+DXxYsx3u93rApJkxyCxoi2PSdtRzrA8/j8MheSO+kQ7BhT+BZ9Jm/HjfuPkD57Fkx8Y2m8HbP9NzOQEpYyaTEmALUxcUFd+7csWC7ceNG1K9f36IsKXeOHDmCoKAgTJkyBffv37d6LU7eORlNCjZSL4o8jtt06MdJeKReHqk5aSpOLlmE8+vXo8W6Tbiy9x9saNbc6hTLj/kS6b29seOtHhb1GfLkQLs9+3Bi/lzseX+grnP3L4KczVugUIeOyOjrh7VtmuN24Em023cADukz4Ny6NfizazdUmjgeBVWbvV9+gWMTf7Tot85vC3DvWhh29+qDcmNHo2jX7rr+7JpV2DN4EF49cszU/uCkCTg46is0XLUS3hUqmsrXv9YWuRs1RZFub5vKbMmcW78Wf77xpkXTEh8NROkBHyJg9gzs+2iorvOqWgH52rVHwde7wF7dH+5cuoiNzVui2dYtat2+Ol9n4Xxkr13X1FezIs0wYcd4zOww21T2rJmX4do7Mn0qDnw6zCqKRup87B81AlnKlEG5oYY2NwOPY2WNmmjyx0Z4lYhfGLt68F+sa9BI9yvXpV/9BijZpx+cMrmZxnqoxMyFBQoiW71aaDDvN12e2N9CjoaNsaxsOVMfxkzr/fvgmj0HNjRtjkrjv0XBjl3w15DB8KtZC2UGf2xshsZFm6LL4q5oU7IdXNK5mMqZIQESIAESIAESIAESIAESIAESSD0E7PVDqATmK/FxdinXatmVkPP2mxRyEkDFKhIggTRHQCkazynVrlEJvt5ZsH3XP3gR4pZtOhiIPedDLFZ/72EkOs1ciSGNKmP3J2/quq9XbLdow52kIyBCzsyZM3H58mXTp3r16kk3gJWeBgwYgP79+1upMRQFhZ3Cnxd34ZXStv17watkKbQ7fEh/ig96H1nrVDPtF3j1ddVpNLR4E9NG2jZbvd4wmFIU3cv4o/2xAFT9dgJCduzA4ak/6LrIu/fw4Op1XN69S++fXrlMb6OjIvW2ZP+BehwRR/w//lDnfSpXBZQ1nKRDY79B1D2DBVL0o0jdl66I+Tq7fCmcs3jg4rbN5sVPnferXcfAYOD7+gG/rLNYz966Pzt1m5F5tv33AEp9MAiHJ03C4SkTbR6rZfHWOBB6CEcuH7b5mMQavgzXXiEliBmvvaw1qqDEkEGmfS9lNVZhxJcImPgDbhwPUO6IH+GfUV+gaL93ExRyNDdRulVqtecvVBn3PW6o63Nztzd0H7pCfYX8tVtfPyF/bFMC4jVdnOjfQky/jTesM81T5p9RWeLYkgpnK4JCmfPj9/8M4pEtx7ANCZAACZAACZAACZAACZAACZDAi0XAXtzDRKn/SY0vyUPD02fOo3Tp4vE1YTkJkAAJkMBzIFC9ajn8ezAgxcWcm3fuYdSqHRjdqpbFqvefuqD3W5UvDnvYYe/FUCw/EoTwu/ct2nEn6Qh4eXnBx8fH9EmvXG3Zknbt2oWaNWvq+EKFCxfGH3/8oQ+T3/yJEycid+7c2vJHhJvY1j8J9b/3/D/InSk7Mmd47OYrofYOzs7IkNVbf5zdMytXYRlM+47K8siYjG1kmz5LFmMx7JVFWHoPT3iVLoOCnbsgcOp0REcaBJl8b3bCubWrcP/GdVzduw/ZWzQ2HefsmkmPY5/OGc5ubjrvEOMWUEQad/9iOL1quam9eeb2mdO4eegYKn49BkGLFim96dlFXcd06fUcnFxdlSVROp2XORqTzFMsjvxq1kaF4SNx8MsxiLwTYaxOcOua3hXFPQtj77m/E2z3pJWp/dpzcnXRnOWacsiYAc7KcsZ4ndk7OcGzWHEUG9BPWXGN0JZdN48Hwr//AJsxZVBWZVlKlkaVr75B6PbduKpc4BnThS1/oOi7veFRsYwSdgyCo61/C+mzZDXNU+YrFlq2pmq5q2Hn2Z22Nmc7EiABEiABEiABEiABEiABEiCBF4yAo1jmKEVHvfsaN8lDHakPvXoN5UpRzIlLiCUkQAIk8PwI5MqZHRcvh+jYIynl2ktWO2XdbrxVrRT8PN0tFn/lZjj8vT3g5OiA8Wt3oGeVEpi2+zCuRdyFa4bnHz/HYnIv6Y4ILxJLRJKzEkbGjRuX6ErPnDmDatWq4aOPPsL06dMRGhqKsLAwfZyIOiLgzJ07F9myZUP37t3hrR5KDx1qcPOVWOenrp5CQY/8cZoV6tTVJHrkatQE3mUrxGkTX8HdMxfwz8hhpurMyj1Vwdc7m/Yl8/B2OC5t3wqfRnVhp64/SSJ8/P3hh8iihB5xTXbr9CldbsuXf+9+2P3hQORr3T5O8+BdO/Q4frXrYUf3d3Dj1EnInJ5X8ihSVA91JyRExUfxQfWZ07WLNceMLjqfuUiROFPJ75kfx8MC45Q/S0FauPZKKPdoyypVwPb1m1F7/q8wF9hsZScinAiEt1SsqKzlKmh3g+eWr0DtOb/ov4nzf6xHbuUizdb03/hvIMKnJDsV87L80C90vuacWXAvVFjnywweYiF66kL1lccjN+Yemmfc5ZYESIAESIAESIAESIAESIAESCCVEXBUSb+ZKw8GraX4yq21ZRkJkAAJkEDyEZAYOlHK6iBaBTqLto/W9+7kG816zwdOX8JWFRdn5cDOOHH5qkWjm8oCx02JNn+fOIdjwdcw7a1WWsyJuEfLHAtQSbiTK1cuFIl5eO+krAlsSYsXL9ZCzejRoyGxlcQyx5hWrVqFZs2aoVOnTrqoT58++Omnn2wWc87fPId8HvmM3Zm23uUfizeexUqYym3NuObMaWqaQVkmGNP1vw9gcaVyEMFHXGVV+36ysQqOGTIib4dX8fcHgyExUI7+z+CCzdQggYxf9RrKUsMV55VLq9jpnCrLXreefrAv4tHlnX8+VzHHKcZi54GyOHLLmw95mrU0TdE8bypUmWyu2fDXhb/Mi545nxauPWcXV3iWK4NgJeZ4lfB/amYZcubA/RjBNEzF1BEXgF7+JbWY89/Ir1Bl9LcwWoYlNohL9hxI52GwfLOzszc1z9W4qSkvQqa1lNXVG3ci7yFSuQ50tDfEObPWjmUkQAIkQAIkQAIkQAIkQAIkQAIvJgFHsb6JUj7i7dQDHWuJYo41KiwjARIggbRJYMTSLWhTtgiCQsJwSn0kBVy4gqI5vOGuhJwz125h5PJt+KpDA0RFG1x4uii3UUzJQ6B169Zo2fLxw3xbRjl79iyaNm2qhZzY7S9evIiyZcuaiosVK4bAQNstOnK658Kl25dNxydFRmLmFH3zbatduRbOh5pTZ+D60cPYrawo7ly6pIPBGxvnadYCN0+eUA/OSxmLbNsq4dT/gwE4OHECSvTuYzpGXLZdXrsJnsVL4LSKmyOusc6tXY2iXbub2iR35mH4LT2E8YG+LeOFhIcgl9tjQcyWYxJrkxauvQubNuDavgPI0bo5Dnz3Nap+nbjlmzVud89fQPqsBhHy4p9bIdftuXVrTK7yrh7Yj2yVq1g7NE6ZxJJyVYLO06TQ8Ctwd85EIedp4PEYEiABEiABEiABEiABEiABEngBCNhrVz3xCDkvwPw4BRIgARIggReMwJqDJ/Dhgg0Yt2GPntlHCzcg+MZteLu74uLtO6hVOBdK5PTB+bCbut7TNcMLtoK0MZ1ff/0VX3/9NQ4dOmSxYImxs3On9bgZWdUDZ3Px5vTp0xALDPMk7twk3b8f1+KqYJYCCLoRZN48WfNO7u46tkn+9h1QcugQ7PnsEzxSL6gYk7i1qv/z/CeKK2I8NmeDJnhw/TrOrFxmLEKICmovLrPuq/KQPbshrs1Ct+zEvauWVmqmA5IhE3bEcD4zZPOxufeTYSdQ0CuuK7jw8HB9LRw5csTmvmxp+DJcew/Cb2PX+/1RbvhwVPxiJIJm/4rQ/XttWb5Fm9vKvZpY4mTKnUeXn1myGK558ujrJ+zQQS3sXFICz/NIp6+dQSGPAs9jKI5BAiRAAiRAAiRAAiRAAiRAAiSQDARU3FSHFHHVkwxrYZckQAIkQALJTGDpgE5YOaiL/kzpYnDrs0K5XMuT1QNl82XXo/tmdsND5Q5uwa7/0LJYXrjSMieZz4r17mfNmoUhQ4YgICDAokGjRo20YPPzzz/j7t27uKqEiD17DMJczZo1sXLlShw4cADnzp3D/Pnz0apVK4vjRdyReDriri0iIkJb9xoblM1RDmdvX8SNu9eNRc+8jQqPwJ3Llyw+1jot/MabuHngEC5t3mSt2qLswc0bur9H9x/gfkw+8v49izZidVPy/Q9wceVjV2sXNm9E7rZtUHn0WP2pNn6SFneC9zwWx+4p6x3z+d67ds2iX2s7kXfv6GNkLg/vGNb74JZBDJX2Ms/wC+dxYeN67BsxAqU+/0S7kbPWV+yyiPvhOHr9BMrlLB+7CkFBQahevTqGK8EiKdPLcO0dmvw9MhUqgLxt2quYRH6a+d/DPkW0urfZkiIuX8aVvf9g14cfIGudashaqoyK2xSE8ONBqDRqjOka8u/3PoIW/26KKZVY33eDL1tcX1EPHiR2iKl+17ldqJrLNgsg00HMkAAJkAAJkAAJkAAJkAAJkAAJvDAE7MXFGl2pvTDngxMhARIggdRDwM5yqumdnTD7zWYYtnonin76IwIuh2FQixqWjbiXZAQyZsz4VH2VK1cO8rC9a9eukD7EGkcscCS1a9cOHTp00K7WcufOrcs++eQTvTV+2dnZ6Tg63377LVxdXbFp02PxJJ+yzKniWx5L/lMPp5Mk2WmrhiWly8D8ox+oq3mYp3SZPVDio4HKHdY35sUWeTsYjjk4eYLuL2zXPzg85ludD/lrt0Vb2cnbso0WayQvY4p1hm+1x9e0eiMGudq0xgUzAcnYn3G+ez4bIocnmC79uU3PIWDCZG3pI8cemfajPiZaTVnmuaxceRz6YRL8+/dH8V59E+zPvHLVkRXwz1IUJfxUjJZY6dYtg8s2b2/vWDUJ777s1971gKMIUEJdxZEqrpQ6x5KKvNEdEUFnELQskWs75rpcWbUa9gwZhKxlyqHOjDlQb04hePcObYmTKZfhb0v69a5YWcd8unHqpOzGn2L6Xd+0ucXfwjXlYtCWdOLKcQTeOIX2pTrY0pxtSIAESIAESIAESIAESIAESIAEXkACdqtXr45u0LCRVUFH4uk8fPgQHw/7FpO/G/YCTp9TIgESIIGUISAieN+BX2DKuOHPdQJ9Bw7HmBGD4ejoaDXmiUwm4MQZlCqWcq50otRvx43wu/Byc3mubGSww4cPo0SJEs913JQYMykWKC9zBAcHw0MFU4/9cF4e8osbNRF6njQdvnwI7yzvhe3vbIe9WYD2J+3nZWovrt/souNZkb2SmJLR3W2jnxpiZP2RqJi7UpwJiCA3ePBgHDt2DIULF45Tn1wFqfraU/f+6ChDPDBrfOwcDeKPtbqULBu5YTi8Mnrh3eq2C4EpOV+OTQIkQAIkQAIkQAIkQAIkQAIkEJeAo7xhq54jqEDVcStZQgIkQAIkQAJPSsBBPZhOCSHnSeeZ1tuLm9Xs2Q2u8WKzcHNzi11k834JX3/s7PXY7ZjNB77EDTd2aIfQ7XEtf2TJFceNRaFOXZNt9eu7b4i37127dqFPnz7PVciRyaTma08suDa2bhMv084hIfHWpWTFZw35UlZK8ufYJEACJEACJEACJEACJEACJJAUBBylE4ltYJ+Mb4UmxURfxj7kzdTr12+qt6Ld9YONl3GNXBMJkAAJkAAJpHUCdWbOwaN4Yq04ZcyQYniWLFmSYmOn1oGzlq+A9rHiUKXWtXDeJEACJEACJEACJEACJEACJEACqYuA0nDs4fCcXUJcuHgZq9Ztxp879uDGTYO/9pTEdvbcBfTq9zEuXgp+rtOQtTd/tTvOXbj0XMflYCRAAiRAAiRAAs+PgLObO9J7elr9OKRPOTHn+RF4eUayd3Kyeh6N5/flWSlXQgIkQAIkQAIkQAIkQAIkQAIk8KIR0JY50Y+ej481icEzbNQ4bNy6E2VLFsfN27cREnoVMyaNQZ7cOVOMjbMK2u2VxdNkHXPo8DEsWLISX34+OMXmxIFJgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIQAg4ShBviZsj2+ROs+cu0kLOb3OmIFdOPz3mhs1/IrufT3IPnWD/vj7ZLISbsOvXcely8vs8F+5MJEACLz8BEYj9SxRJcKG2tEmwA1amGIESJUqk2NgcmARIgARIgARIgARIgARIgARIgARIgARIIG0QMIg5aq3JLeWIVc602QswdHAfLeQIXhEzGtWrZSIdHh6Byf+bjU3bdsHPxxuvtm2B5o3r6vrtu//GgX+PwMsjMxYsXqnjzAz5oDfOKhdl02fPh7eXJ3p274iypfx1+5/mLICnanv8xCksW70JlSuWxqeD3sPiFWuxaNkaVK1UDr3e6gQ/32y4HHIFn3wxFuO/+gwH/juCSdPmKDHnCrr1HoQaVSrgrTc6mOZ4585dLFm+Fhu2bMel4Cto07wRXn+lpR5L+hn+5Xh06/IqpqvxQ0JC0alDa7zWvqXpeBGv5i5Yqo+tU6OKqTx2ZvXaP/C7mut55ZKudrXK6PvOG4rffOTJlUNxaa6bS8yd/h8NR/cuHRB+JwL/HTyKrFmzYKHi4+6WCT27dUSVimV1W5n3jzN+wdbtf+n919q1QKfX4g/gG3s+3CcBEng6AiLS9FBuHPu83RldOraz2skv8xZjyoy5mD7xq0RFH6sdsJAESIAESIAESIAESIAESIAESIAESIAESIAESOClJmAvFjnRz8FAxGjpUrJEUatARZh4f8gInDl7AWNHDkGrZg0wauwkrNu4VbcPD7+DeYtWaLdsY0d+DE/PzHirz0fYsfsfjPp8EHx9fTBp6hxT38FXruLrCf9D4YL58eP4UTh16qyOT+OsfJ2LaHPm7HmsXLtJt498GImA46cQGfUIpUoWQ92aVZTI4w0Ri5o2qmPqUzKRkZG4pEQbqRP3cHsPHLTo51/14HbWL7+hf+9u6Nb5FUz4YRZC1Fwk7d6zD5+PGo+2LRph5pRvkM07iy6P/SUxhUZ+Mxl9eryBeT9NRNEi+ZFRBUj2L14Ev8xfAmElKeD4Sezdf0itMR+Ez9yFyyHxf0YPG4wihfLjm+//p9uJkDZAsQ0IPIWvR32Mr0cMgYfix0QCJJD8BMQiR4QcEWtEtImdjEKOtEnMeif2sdwnARIgARIgARIgARIgARIgARIgARIgARIgARJIGwTstauv5DbLUSyDlZWKJC9PD72N/XVOWdgcPhqIfn3e0tY17Vo1Retm9bFq/WZTUxFYBrzXQ4kbBdGySX1dPmLoABQrXBBtWjTUgkx4xB1T+1daN0Gblo1RplRx1K5RWVvniNWMiCKN6tbEP/sPmtoaM2LN46usgsSypbASRHyyeRur9NZNlX/4fi8UUWOKSFIgXx5s3/WPRZvhnw7UY7Rq3lCXBwSe1NsNm3egacPaaN2isbZOaqNEHWvJ3t5eF587f1HPQ1g4OzujVrVKCA27rq2HpMG2HXvQokk9LfTIvvDRcytUAG3VusW66KpqL/2IyDRsSH/NqljRQmoeliKVHM9EAiSQPATEIseaoGMu5MRntZM8M2KvyUGgbq8oHDiWHD0/fZ8Bp4FKXaOg3lVgIgESIAESIAESIAESIAESIAESIAESIAESSMUElG5gEA6Sew05c/jpIS4HW49Fc1YJDpIKF8int/JVumRxbXlijOfj5Ohkqsuc2U3njfPP7O6u9+/fv29q4+joYMpnUSKSo6OjaV8sU27fjjDt25oRAUcsb9p36YWf1DY0LAzXrt+wONzBwTCubEVguXfvnq4/euyEtqKxaGxlR1y/ffPlx1i4ZDWavdJNu02TccU6p6Ny6bZmwxYtJInVUsO6NUw9WPBxN/ARHkFnzuk2KR2byDRRZkggDRKILeikdiFHwqz1mbkcBYZMxj1l3WhMJy9fxWcLN+jyjf8FGovTxLZLE3uMmvFiqSZj5zxC58b2cHg+P/Vp4jxzkSRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQEgQcQ6+GqeA1auhkts4Rl2Kurhm1NUnB/HlNaxWhRqyDfL2z6jJxE5Yvb26dDzx5GiWKFdL1pgOeU8boyiz2cKuVpdD/Zs3H0nlTlQVPNqxVgorE7LEllfYvqmL4BNnSVMXqqYhqlSrg770HlPu5kcilxLAqKs5P86b10LFbfzRpUBt3lVBTWlkdJZZEHJJ06vRZmLNP7DjWkwAJJC0Bo/WNuFyTlFAcnaQdOel723QwEHvOW4rzN+7cQ+PvF6BXNX9kzuCMqOgXS9hIegqWPbZrYIfewyNx8IQ9Sha0rEuJvRNKx5+/Igrjtj5+ESIl5sExSYAESIAESIAESIAESIAESIAESIAESIAEnp2AfWw3Ys/eZfw9fPrhe5gxZyEWL1+DK6FhCFLiwsBPRmHTlh3Ily+3tmIRaxex3tn9936sUDFt6tasGn+HyVSTw88XgSfPaIubBw8eWIwili5ibZM5s7t2HbdWWcnYmqpVLo8/d/2NHX/9A3EH9/uyNVYPDVAWPBv/+FNb3xQpXECLYHdjrHvy5c6FsspiacSY77WrOSczayOrnanCfHlyIauXhxKdFkAsoK7duIFV6zbH15zlJEACyUjAaKGTmoWcm0q0GbVqB0a3qmVByiWdE/Z80g2DWtSCZzpni7q0sOOWEahX3R67/7P97Yj169ejTJky+qWFwoUL44cffoDRGlVeKvj000/h4uKCChUq4OOPVcyzr782oVywYAF8fHyQO3duDBs2DG3btjXVSeavQ0C50g7wMBhqWtRxhwRIgARIgARIgARIgARIgARIgARIgARIIHUR0H7HosWZvrKOSe5Uu3plfPFJf8z7bTm++X66Hk5iyFSpVBYiSkz5bgQ+Gf4N2nTspeu6vNYGr7VvqfOJzc7a9O3sLP3K2Jvt61hBMQs25u3tDaOUKF4Y5cv6o2m7bno7+dsRMS2BurWrYcWaTajT9HUtkDRQbs4uXAo2zDFmEsZ+pNDc9VnF8qVRSX0GfTJat5eYPpJir+3e/QeYrQKlf/bleF1fr3ZVVK1UXuflq32bJorTt6iv5mJMsfswX7vE2/lxwpf4bNR36NC1rz5EYu00ql9Tczf2wS0JkMDzIWC00Hk+oyX9KFPW7cZb1UrBz9Pg3tI4gpNyLenl5mLcTZPbInnscDRIxJzYd2XrOMSF5rfffosiRYogICAADRo0gIg69erVw59//onx48dj/vz5kBcLXnnlFbzzzju6o5s3b+L111/X9eXLl0enTp1w9epVi0GOn41G8Xy2zcPiQO6QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAm8cATs1q1bF123fn1EP4r7JrE8ZHr48CE+HvYtJn83LEknf+PmLbioGDBOTnHdv9y6dRsZpM4Gq5MknVSszq6GXUcmVxeks/KG+Y0bN+Gu4tIYhaBYhya4Gx4eAYn1IzFwEkrCQeL8xG4nMXNmzFmA33+Zqvp5sgd1t2+Hw9HJERnSp09oaNaRAAkkQkCsJ/oO/AJTxg1PpGXSVvcdOBxjRgzW9wZjzLDYIwScOINSxQrELk6S/QOnL+EjFRNn5cDOOKHi47T+4XccHtkL6dV9xTw1HDMbAxpXRuPSRcyLkz1/+PBhlChRItnHiW+Acb9EY8u+R1g54XHMtvjaGstFqPn3339x5coVDBw4EB988AF69eqFzz//HKGhofjxxx9106ZNmyJXrlyYOnUqNm7ciC5duiA42PAywbhx4/DZZ58hIuJxLLjOQx+hYG47DOv5ZL8TxnlxSwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk8OIQsHdQb1LDipCT3FPMrIQQa0KOjOvmlinFhRyZRxblmsyakCN14mbtaYQcOdZVCUSxBRopj52Eg3m7a9dvYPvuvzFu8gz0ePP1JxZypP9MmVwp5MQGzX0SIAGbCYxYugVtyhZBUEgYTqmPpIALV3DvYaTNfbzMDS+GRiN/dtvFk3nz5sHDwwNffPGFFmjE4ubu3bsa0fbt21G8+OO4aCVLljSh279/P6pWfeyGtFChQqY6YyaPmsf54LgvahjruSUBEiABEiABEiABEiABEiABEiABEiABEkg9BAx+yKz5KEs9a0gzM93y5y5MnfErunV+BY3r10oz6+ZCSYAEXiwCaw6ewIcLNmDchj16YmKpE3zj9os1yRSazRHlYq1o3rhizo4dO3S8m9WrV5tmJjFxevTogVmzZmHNmjXaZZpUGmPmVKlSBceOHTO1N8+LsLNr1y5TXVBQkClvzBRRVjkBZ4x73JIACZAACZAACZAACZAACZAACZAACZAACaRmApZ+cVLzStLA3Nu1agr5MJEACZBAShFYOqCTaejD54K1m7UVyuWa0c3a9Yi7eKCsdO6rWGzXw+8hRIk8npkyQuLpvOzptjKo2brrEca8F3etu3fvxpAhQ/Duu++iWbNmGoW4ycubNy9u3LihY+IsXLgQISEhJkx169ZFq1at8Oqrr+r65cuXm2LmiNAjbWfPng2JmTNt2jTTccZMRX/g7c+icP2WPTzcjKXckgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpEYCMZY5qXHqnDMJkAAJkECKEohrgIJRS7ag2pg5uHj7Dj5btUPnT4dcS9FpPq/BF28EGtS0R+nCcUc0uuU0bqWF5EePHq1j46RLlw4TJ05E7dq1TS48a9asiW7duqFWrVro06cP2rVrp1x/ptOdZ86cGdOnT9fllSpVQuXKlZElSxaLgQvlAto3ccD8tXS1ZgGGOyRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQCgk4ijuX6BSImZMKWXHKJEACJEACZgRK5PTByTF9zUqA77o0xXcWJWlnZ9yvUZj6SVyrHCEwaNAg/YlNo2XLltpSJywsDN7e3hbVzs7OmDx5Mr7//ntIfLtGjRppscfY6O2338Zbb72lxZ9x48apmGiZjFWm7eCu9mjSLxLvvOIIB8PrG6Y6ZkiABEiABEiABEiABEiABEiABEiABEiABFIPAS3myNvBRh/9qWfqnCkJkAAJkAAJvDgEDi60LuQkNkMRamILOXJMaGiotsxp0qQJ9u3bB4m7I67YjKljx44oW7asdtM2fvx4rF+/3lhl2pYqBFxaR4+qJiDMkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAqJaBc9qtXda24ykml6+G0SYAESIAESOClIODu7o4333wT4eHhaNu2La5evQpxr2ZMPXr00FY5BQoUwLlz51C9enVjFbckQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIvGQFHbZVDN2sv2WnlckiABF5GAlFRUXBwfDrrj5eRx8u+JnGz1r59+3iXWadOHciHiQRIgARIgARIgARIgARIgARIgARIgARI4OUnYK8fDtrHb5ojYk/WLJ7Y9+/hl58GV0gCJEACLzCBc+cvIruPZVyVF3i6nBoJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEASEbAXsSYhwxypz5srO/7972gSDcluSIAESIAEnobAjl374O9fGHZKgJd7M9OLQeDwYb7s8GKcCc6CBEiABEiABEiABEiABEiABEiABEiABF5eAvbR0dHxhsyReDrywLB8eX9cuBSCGbN/e3lJcGUkQAIk8AITmD7nN1wKCUWVCmVgb2e4N7/A0+XUSIAESIAESIAESIAESIAESIAESIAESIAESIAEkpCAtsyJevQo3i5F0MmVIztaNq2Hi5dD8JN6oLjvvyPxtmcFCZAACZBA0hAQN5inz5zDL/OW4tq1G2hYtzqcnJxolZM0eNkLCZAACZAACZAACZAACZAACZAACZAACZAACaQaAo5imaMUHUTHM2URc+RTIH9utG/dGHv3HcSq1Zsx6+ff4zmCxSRAAiSQNggUzJ8HfQcOT7bFOjg6wE/FyCletCCaNq4NZ2dnfT+We/KLmtRPCm7dvYd0To5Irz5MyUsg6lEUqkytqgfpXPw19Kv1QfIO+Iy9Rz64j6k9W6DTVzPh4ZvjGXt7+sPPnj2L/fv36w6KFi2KIkWKWO2s75hHqFfRDm3qGtwaRkZEIOzIIXgW84dj+vS4sv8fuBcohPSenlaPfxkLbWFQt1cUvnvfAWWsYP1j5ni4emRBpTZdXig8y7/5BPnLV0eJOk31vGxZ5wu1gGSYjC0Mpvdpj6b9hiF7Yf9kmMGL1eWBdUtw+eRRNO37aYpObO3atbh3756eQ6tWrfS/C2JPKOA08OYXUdg1ywEOMf9kuBl4XP3/XjQyFyqC8LNncP/WTXj5l4p9aLz7j9QLJg9u3kzx+50t1yXvQYbT+PD2Ldipfzs6pksf73l9HhWJXXuBf23Fv+uX4NVhE+NMZ8qOSZhzcK4u3/HODjg7OMVpwwISIAESIAESIAESSEsEHB0cHPRb3iLqxJekjaTcKnaOn683pO0jZc0j24SOi68/lpMACZBAaidgjFkj90L9mDcZYtgYxXTZikWObI3345TmJz8ZfWctx/rA8zg8spcWbo5fCsV7P69G0I1wPb3XyhTEe42qIlvmTCk93Zd2fHkw9/BRJOa3n4tC2Qqb1tmtWzfMnj3btC+ZL774AsOGDbMoe947/25cDndvPwsh59ixYxBBJXa6fv06MmfOHLs4Sfal74MHD2LevHno2bOnVTFHHobOXfcIY/o/FiUjLl7Axhat0GzrFmT09dX5OgvnI3vtuvituEG5aLNnH5xcXfQ8l9WsghL9+qNA+9ewukVjXP/7gC53L+OPvK3boFiPXrCP+TdWQguTvh9cvW7RpN6SRUjvlRWra9XW5c5ZPJCnfXvka9ceWUqWNrUN3rUDm9q0Q+kRw1DinXdN5XOzZUPt+b8iR936uuyfkcMQdf8+Ko8agy1vd8XFlesgfXqWK4Pi7/SGb7Waul1CDIydd2lij1EzHmHxt3GF5xK1mmJ6r+Yo3bgt0mUwcDIel1LbK2dO4tCGRWjcd6hpCvGt0zVnLqysWg0527ZArR9n6Pbh6rpYVrYcmm/fhgze2bCo8GMVK0fr5sjbqg1yN21u6ju+zM1TJ3Xfses7nDyBM6tWYM/7A3WVu38R5GzeAoU6dFTXoZ+peUqc6zKN22PzrPHoMmamaR7PkkmJ+4Et8xUhesMPI9BpzByL5ilxrw0ICEBQUBCmTJmC++pvVl70iJ3GznmEzo3VvxnM/gQP/TgJjyIjUXPSVJxU94/z69ejxbpNOLX0d+zu1Qflxo5G0a7ddVdn16zCnsGD8OqRY3r/zOrl2PFWT513LZwPtWf+jMwFCsYe1mL/yPSpOPCp9d+cxhvWIeCn6Ti7cLE+JmuNKsjVtBkKduqihYf/JnyHc+vWovmq9bBTL7ZE3r2D5bVroPi7feBbpVq892HjBF7me5Atvzf3b1zH9n7vInj9Zo2k+OAPUOaDwVD/iDQiirO9svcfbGhm/T5VfsyXcFAvMMR3D7q880/80fYVtFEvSbhkz6773jHwPUTduavvk/Fde8ZJ5CtbBb991gMXjx+KIwz3rtYHDQs1xKu/dVTPHeL3JmLsi1sSIAESIAESIAESeNkJaMscceVjpx4SxpfkoaWjo6MWcORholHEoZATHzGWkwAJpBUCRlEnudZrZ2+nxCK7F84iZ9PBQOw5H2KxbBG2BjWugqqF8yBcPWD6aP4GzNv5Lz5oVsOiHXeSnoCjg6OOpWTsWX7X33nnHS3gGMsyZsxozKbI9lFUJP7432i0+3yK1fEPHDgAHx8fU52bm5spn9SZ0qVLQz7nz5+Pt+vvfnmEgZ0d4Joh3iYWFUax5fTy31GoU1ddF3X/AaIfRpralR01HPnVA69bZ09jS5fO6g35wiYxxdTISkb6rjJlIvxq1THVOru541bQKb3f8q/diFZ/f8dm/4QdfXuj9ZYdpod2F7dt0aLM6aVLLMQcU0fmGdWHMRUf+D4Kdngdwf/8pR/S1VMPfH2r2va33K6BHXoPj8TBE/YoGet5b7b8as3+lXBg7WJUbvuGcbgU3f756w+o8vq7NolLxn/7nl+yEtf7HoFH8eKIVn9vkqIfRZvW0WDZUmTKnw8hu3dje7fu8D58CBmyepvqE8o03bJZtc1qauLo4qo6j4aIgA3m/4YIZVm2V11LD67fQMXho0ztUuJc+9dtjmVf9cWlE0fgV7C4aS7Pmnme9wNb5npw8ypk9smFHMUsLVlS4l47YMAAnDhxQos51uZ+4hwwf0UUxm210YIh5vo9NPYbLRA6pM+gruVIk4B8LzRUCzk158xCjnoNsG/MKOz84D00U4JvQqnQ612Qr3Vb3eTP3j2RrVo1FO5suDemy+yhH8wX7tsL/r3fw7Wjh7H5lQ7I6OOrhc9ib/fCyfnzlNC0CAVeeQ3HZv2E9N5ZUahjF9w+HZTQsLruZb4HyQIT+7058r8ftJDS4eQpRIRcxqpq1eFTqTJ8a9TWfKx9eZUshXbqPiVJfkuu7PtHC3+y75TRBaeXL4n3HiRif65X2+DAt1+h+vjJCPn7L5yZ+xta798nhyeaHJ3ToWa3gdj282R0/PJ/Fu0lTqSTY1zB0qIRd0iABEiABEiABEggDRGwl/8pTUjIMWchQo6IOvJmuGzlTXF+yIDXAK+BtHoNyNuwsna5HybbRz2kl77l/vuipJt37mHUqh0Y3aqWxZSK5siGhqULq4ff6eCT2Q3NShXEsn9PWLThzvMjkClTJi2OiEAiH1vFkZ9/A2qql3O9lclZpQZA0BnDnC9cAqo1UQ+RHhr2AwIN7WRv1QagUXvAR72Q2/EdoF03oGxt4LDhpW59QNjFc7h99QJyFLV8GKor1ZdxnsatLdf8nTt38Mknn+hjRVjt3Lkz5OGqJHlzvWnTptr6uEyZMvjzzz91ua1fv29+hKolFYQnSGKFcWjiRG3hYu0wJxcXpPPyQtay5eFetAiuHvzXWjOrZfLwU8QA48chXTpTu3QeHnDPXwBFu/dA+PEgXDseoOtE4DmzbBkqjh2LmwcOIeLiRdMxiWVkrq6582irInngemTqD4kdYqp3U7phver22P3fY3HDVKky+ZQ7s6B9O82LEsw/ePAAb7zxBlzUnOQ8t27dGuIqz5iCg4PRu3dvXS9tRo8ebayyaXts60rk8i9vU1tjIznXR2ZONe7G2Torq7KM3j5KrKun667HnJM4Da0UZDQ7z3K+jf9Otxf3lR6e8CpdBgU7d0Hg1OmIjjQKSSlzrtMpoalA5cY4e3CvlZU8fZHxPmDc2nI/UKE90WuQ4T4k96Ivxz8eX/JybzOmISOAxasMe3LvatDOcNzwbx5vjW1le2rvDrXOOuZFpvzT3mvPnTuHjh07mq7b77//XvcpL0ZMVPeR3Llz67r+/ftD7nW2pr/U8/hypR3g8QR6uFjhufsXw+lVy+MMc3HHNi0I52zYGPbq3zxiESZWhrfPPf4bjHOQKhALRdP9KmMGOGdyM+1LP5KcXF2RPksW+NWsjXxvdsKZlctiyl1Q6auvsf+LL3D1vwP4V4mWlb8aq8fXDRL5Siv3oPh+b07+/Iu+RzhlctUWVHk6v4pzG9YnSM1B/ZvWeL6c3TMrV6IZTPuO6r4qKaF7ULmPP8eZeYsgVjp/f/4pKnw7Bq7ZcyQ4pnllbv8KOLplsXp51HBPM69jngRIgARIgARIgARI4DEBR/mfI/kfY+Obho+r4s/Z8j9U8R/NGhIgARJ4uQgkt3XOi0ZryrrdeKtaKfh5uic4tb9OXkCtgjkTbMPK5COwYsUK3L171zTAxx9/jOwx7k9MhbEyItwM6qDci20BSs4E/juiHt7EeGVRRiY4oV7EVs8ZdVKhkXBstSF/4xZwQb0NvmwF0FI9E/9sOpDdF/h1EfDVZ4Y21y6eQXoXD/VRVgZW0ocffmgSnMRq5u2337bSyrJI1rRu3Tr873//05Y2CxcuNFkRd+jQQa937969WLRoEWrVqoWwsDB42hDfJuwGcO9WNHL7WI6XQYli1WdO1y7WHNWbypLPbBZvJ1ejxoi4dFG5B1qjXWtZHq0EphVLcet0EMSdTeTt29pKJ3ab+PaP/TwLl7YbBCkHZyeUGzrMoqm4T7q0basuy5Qrr97eOH4Md88oAU25UhM3RsG7dyB/e3WCnzCJ27bTCxbqoxJjYOy6SB47HA0SMcfOWGTaemXPg90L4hdCTA1jMvJwW66JoUOHamFbxJrXX38du3bt0i3k/Mu5PXr0KET4ka2t6c7Na7gXcR2esWI4xbfOh+ERuuui3d7GxlatUeo9FafK+EdiNuiRGT/C2cVNubJahwLdu8K7QiWz2oSz+74eBScXg3tKj2LFlIVUR4sDHt4OV9fCVvg0qqtdUEllSp7rLLkKIPTMCYs5PuvO09wPpv0MXLsG7NmjRGd1vzoa+HgWZ9T9KUY/0IUnTgN5cxvq/9ut3FB+CeRXfza/zAVWKJGneVng3beArF6GNiEnj6BA+RqPOzTLPc299uHDh1psLlCgAP744w+4u7tj8+bNulfZFwFn7ty5yKbcIXbvriy7vL319W82bLzZ42ejUTxf3L87bTGoXuKTlKtRE3iXrWDRh3/vftj94UBlTaPULbN0NyQEHqVKmkTFDH5+uvZ+2FVkyhUD0az902TvXAnG5a3bUKT74/u+3Le8q1fDOiUiiaWgV4mSuuv4/jZjj/uy3oOM64zv9ybq3l1tuePipxTNmOSWOx9C9yed4GrtHuSirgtx1Sfu1jwqlkGh198wDm+wVk3g2pOGHqLAqnRLXQuZY/K6gF8kQAIkQAIkQAIkQAIWBBzlf5CfRMixOJo7JEACJEACaYrAgdOXsDXwLFYO7IwTl6/Gu/Z1B45hxdHT2PVx13jbsCJ5CchDwCJmQoO1uAoJzcDTQ1nb1EmohWVdmXJAZfWxV8/5alUFPDMDmwzag25488pleKqHvvGlQoUKmWLk+MU8LIyvrZRLrAh5e/3XX3+FBAGXJA+AJYn7NBFxJKZEuXLldEyer7/+Wj/8b968uW6T0FfwVcMDT29Py1bi2ixPs5amQvO8LlQvyJTs9z72jRyO3M0ftzMekN4rCzLmyIFMV0Nxdd8+3Au9YvPDUInR45Y/v+7KQVnrmadVjepr0Uberm+shCRjzJ7LO7cju4rV45ghI3I0bITzGzc8lZjjpKy8xK2PCEaJMoiZWPasdtiyL0b5M5+syrt6ZtFWWhJQ3ZaYQelVrAZxLXXp0iUd66hgwYKYPXu2qVexzJF/z8o1LtYMUm9runX1im7q4pHF4pD41nnjpEG0yOCTDUVVTIqAWTO1RZTFwWpHrHLSe3rBvXAh3Aw6qQLH34CjKrMlueXNBydlxSApY7bHx4g1xOJK5fS5FnGu2veTTd2l5Ll2U3GCTu9XikgSpie9H8jQYpkTpf50ndWfR25lEFAwn+0Tql4ZyJBBiWJKyFXPofV97Nr1x2JOcOB+ZFLXrbX0NPdauT8dOXIEy5cvR/6Yv2tj7LBVq1ahWbNm6NSpkx6uT58++Omnn2wWc85cjEbB3HHFHO/yj8Ubz2Il4izFr3oNZT3jivMqno15kmtX7gHG5KBcYkl6EBFuLHrq7eEx3+LUggX6ms7ZvhUKduxs0VdWNecLy1Ypa0b14xKT4vvbNNYbty/rPci4PqVsW/29MQrOjnJBxyQHlX9w86Zx96m3Cd2DpFOv4gbBzUe5dZNYR8aU2LUn7Yz34NthVyjmGMFxSwIkQAIkQAIkQAJWCOiYOU9qmWOlHxaRAAmQAAmkAQIjlm5Bm7JFEBQShlPqIyngwhUUzeGN9MoFkKR9QRfRd+EmLOjRGt7ujx8A6Up+PTcClSpVQt++fZ9ovHx5gI+mAJ1jRJzXPgZGDgHcDc+VE+zL/K13uRTUc3UluDw+xN3bF9fOnXxcECsnljjiUsnWFKLeFpckYk3sdPWqQWiUB8KSJF5Q8eLFIQ/9bUk+WQwPQkOuAW6uthzxuE2OOiqmhBJzLm3543FhTM6vWg31sLILoDTOfV+NRICKS5C13OMHrHEOMCvI1aAxctRvaFbyOFtdPdSPvH8Pf304CCHK6ieLKGsqnV29UsWg8FGxDpbinnqLXh6KPvjuNpxdM2m3SY97MOTs4gmO/eD2Ld3ePpaIFPt48/2LodHInz3uA2VpE37tKjL75rNJyJH2kUpEqlmzJi4qN3GNGjXCrVvKFEwlcaknrn9F6Bk8eDBEBJTzPGHCBNSvX1+3SezLLYu3bhJ+LVRZjT3Z/apQlzexvEJF5LYSNDxvyzbwKFoMxXr0wsr6tXBh0wYV7+Pxm+oJzavgqx2R3ixmjrGtBJ6vOXUGrqv4Irv79MMdJW4Z3Ril5Lm+dSUEnn65jdNMku2T3g9k0IHvAoOHAaWUVaCvEpS/Ha3cp9WybTrp1P1K7lvKs5RO6dTfvVm4K/gUKotb6hqxlp7mXivCpNyXjEKOeb9ynZctq0yDYlIxZZ0VGBho3E10m0f93Z0PjlbtrP/9xduB+lvy/2AADk6cgBK9+5iaOSsXj/dvKmUrJkU9MNzYndR95FmTuFYrrP6OzqxagVPKLMo8xlj4xQs48OkwiIuwvSOGwadGTTimS2/zkGnhHmTt98ZRCXKSIs0sc6NUXtxxPmtK6B4kYv+eTz9Gno6vIGD8JBR49XW45zO8gGDLuBHXDb/bmbJks6U525AACZAACZAACZBAmiVgL0KOiq/NRAIkQAIkQAI2EVhz8AQ+XLAB4zbs0e0/WrgBwTdu63zgpVB0mLYU0zo1Rvn8tvtKt2lgNkoyAjt27IBYqqxevTpOn/JA9HIksOQvYPlitY1pIg87Jd25a9ieu2jYGr8T+7eEV4482p3VvQjDtWI8LrGtPLCXucrnhrw2H5OyqDgLko4dOxZT8njjEfPQSmJSSBKXRvIWfGwXa2LxYS0WhZeyKkrvZodztmk/jwdWOXkbueT7A3BoioqdEx5hUWe+416gIII3bzUveuq8uHrLXqsOqo6foB9+RqgHxXdU0OuwXf/AQcWqCNmzGw+VWzdJV/42/N1m8M2GR+KLKiZJPr6HfaEiEFWyTXQy9ndEuVgrmtf6PzDDLp6GXxFl/hArSRwcOc9iUWWeNmzYoIUciYM0bdo0kyWW0bJcLHGWqdhAItaJ5ZVYaokAZEvK6O6p3f9dD451QdtwsLiYyte1I45O+zHB1h7+/rgeEJBgG1sqnZQrLs9ixbV1VcmhQ7Dns08g1k0pfa6vnDmOLLkLxFmCiBI7d+7EhQsX4tQ9bUF89wPpTyxxlv0CHFLGVk0aAV06ihBoGEmMFG6ZGZL8t//JZuBTsASuXTz7ZAep1vHda7MqsU7uPZcvX47Tp9SZizenT59Grly5LNoZLS3FQjF2KqKscgLOxC61bT9ngyZ4cP26KXaNHJVRWXnePKRcF6prTdIdJbJIkvgqz5oy+vhq92llBn+sY/YcnjrZ1OW+UV9oIafq2AnqPuaCwF/mmOpsyaSFe5C13xsRvMRKM+LCeROmm8qi0DWH5TVkqnyCTHz3IOkicN4v+tqpPHosin7wHuT8KfcfUmVTuh5suK7cslLMsQkYG5EACZAACZAACaRZAlrMeRgTPDXNUuDCSYAESIAEbCKwdEAnrBzURX+mdGmqj1mhXK7lyeqBi2E30XH6UvStWRrFcnorgeeW/tjUMRs9VwK7d+/GkCFDsGbNGotxz6pnKRInR72gjTL+QGallxj1CImBIy7U1mwCwtRL2nMWWBya6I6nXy5kypIDFwIOJtrWvIEIMTJX+dw0cxMjb7W3adMGkyZNwvHjx7WbrfXr12trjRzKlZm4Ppo1a5Y+RmJPSIptxVOjRg1IvAt52GweX0jatq9rj10HbX8QJccYU65mLXA7ULnWUq7JzNN9JajcvRKCkN27cGLeXORo1sS8+pnzvlVrIGudajg25ydc3rUTGfLkQPVvJ0Iersknb5fXcHGLwWLIvWhRnNu4Vlv06HgV27ZauHx7EH4bN0+dxPFfZuHEtJko3qO3zfO7rQS/rbseoZK/dTEnaO9O5C1bJU5/ch7kPI8cOdKiTlyoyUPr8PBwiODz44+W4onEGLmt2EpckTJlykCEvieJZVakdgucO7TXYkxbd4q+1RMXV66L0/ze9TCIZcGFjet1UPBcTQz3yzgNn7Kg8Btv4uaBQ7i0eVOKnusHdyIQ9PdG5PI3WIOZL0fE4urVq0PchiVViu9+IP3/sR1Q4YTgre5bpdX9y1Vt1TtrOlVShi5r1GlSOgU2bFXCzpPdhpCvXDWc2qMOfMIU371WrlO5h3333XcIDQ3V17eIlpLECm3lypU4cOAARJCeP3++ScA0Di/ijtzjFi9ejIiICH3fM9ZVVGvf928Urt8ylti+dVAmlSXf/8DimvarVlPfy86sW40oJfoGzvsVXlUrmKzCbO89/pbibrF0/0EImDAZEcGXtCXb+SUrUfbDT7QFX8VhI7B/6OcqJtml+Dsxq0lL9yBrvzcFu3ZV9+45kPv4jcBjOLtwsXK12dCM0LNnze9Bcl72Dh6Cyl9/o916Fu/5Li6t3qDPo60jnVX34KK12yjvceofIEwkQAIkQAIkQAIkQALxErCXGgczn7bxtmQFCZAACfyfvfMAj6pqwvCXSoCE3nsvIfTee+9SpYmgIoigKIiI+IuIioiogALSpPdeg/TeCaH3HkILECCk/mfOcpfdzaYhJQnf8Ozec0+/7y0bztyZIQESsCRgs0576OJ1BDwOxpgth1Dlx3/MnzC1EEt5tQTE9VR0Yix0G1ujrlpTRF0vtRiqzm3u5EDBgsC7b5tKZVH0m++Bfm2AwmmUoiel0cramY+4J5K6xiKqUcvRyRm13vsCOxdMMrJitbWdo2WjMWPGaDdbEhtIjrlPnz46DqCzcge2aNEibcWRKlUqdOvWDZMnT9bxVCzbi8uuihUrInv27KhUqZJlEfp1dMQvM5TVQ5BVdqx25M3oogP6R6p7aMi3WFi0GA6oINFZVXBveRs9NiJvWdsVW8iqkgQxlwXRy6tWIofEB7KoI9Y7Fxct1tYcJT4bgLuHfTBHWZcsKlocaYoXR66mLczDHBv1O9Y2a6Lj7NRZvBAZK1rzMVe0k1jora6jao4ooa4fW/G/cAZXjuxGqQatbYvUVG0eKk9riMu0ChUq6JhKuXLlQrFiprgMRn1R2qVIkQLu7u4YMmSItuyJ6R6wHLxq+x7YOXscglXg8JjEGNOol7pQYWRroTjbyL8tW2OJivNxavYMHRQ8Y/nY87PpyrRrwyaJcn3l9cVnOPjLz7iqFDqv61wf2bAC+Ss1QtYC6sFhI4YlnWFFZ1P8XLu2/C07mTILyOuhXKxlU+4hfwBGjzAppqVOzSpKuaOeTQXVs+tr9RzLXcfq1tDd2CC27BpFazZvJvJdAABAAElEQVTGzfPHcfXkEav8mK4zY77G1mjsoWLQbNiwAfPnz9dKSLESFMWySKtWrdCuXTvtak1iQIkMGjRIb40v6U/i6IwcOVJf9+vXKy37UymgDDBaN3TC7NXPp4wWF4GWzxxx+Vd54nhs6/Y+Zqtn5eU1q1Hpp1+M4Z576+Cg/xtqbp+xQkWkVgGLjk/+G7u/+hJlRvygrILUWwRK5Pkj99nBX9SJjYUk5meQ7eHb+73x/OBDrVSZlzcfVlStjiKffYIsFdVN8F/E5gaxfAYd+HEYsr/VFFlr1NIjuKVJo8/f7sGD9AsDMQ0bpl7a2DnnL1Tr2CumqiwnARIgARIgARIggTeegIO3t3dEteo13ngQBEACJEACiYXA8dMXUNwzX2I5nDgdh6+vL7y8Ii8qxqmTOFZ+HWMaUwwND0XZceX17tuebTCg1kCj6Lm34knnhlLqpFauxpLaCU8gljqiK7JXFtOgslg+omkx9Jq2QcXYyB5T9ViXi8WOWNaIZYajCgptiLhkktg6sphsuCUyymKzbf9FOFrWckC7+vaVDLHpI8Y6ao5ReaKJUMPKG+svSyLE4uX2bTi5JVEBzmMRGCmWEynWLgx/DXJCpeKRG6we+70KdJ0G1TrE3tLH6OXOnTtInjw5kiRJYmSZt8Y1YBl3Sc6/4YrNXPFpQq4Ty2tl1lc94FmjEUrUbW5b9YXti0s0h6jW15WfQgeLa/eFDfq0o5d1rn9XAbaaDfgJuYqVizRlUcLJ81Gsqeyds0gNXkDGPWWNIq4glRdBu+J/y2S5Y7cwhsydC6fB/9xJNO8/PIaacSuWZ5SLCjpm6wZSYkOJRZq4XYurHD6lXM31CVVKXWc4PXskxrUbq/oRypODWJwlTafm83RhX/KiEgcZ2EYBEFXdF53PZ5CJaNDdO3BRPgadjGBQr/H3JrpzfGybN3YtmIxuo2dHqjZq08+Y7msyBd714Q4kcY78/I/UiBkkQAIkQAIkQAIkkIgJaGVO9Ro1o/zPbiI+dh4aCZAACSRKAlTmvDnKnER5Ab9hB3VkzGgcFjMCO5K9dXNUHzvBTgmzYkNArK3EzZU9GTduHHr2jLtCyV5fsc1b27oFbm61P59yo0agQMd3YttVvK8nSghRToj1SPv27eP9fDnBuBMIUZr9uXnzRNmwsbI8Sl2kSJTlb0JBfHsG8ffmTbjqeIwkQAIkQAIkQAKJnYCD8s8cUbNmLYRH9VpoYifA4yMBEiCBREaAyhwqcxLZJZ2oDydUxRwJDXpi9xgdXV3g6q78RlGei4C4+ZIYK/ZELHwkZsmrlOD79xAehSWDSzKLt+df5aQ4Fgk8LwH1f8cgCUIUhSRJkRIOb7gr7/j2DOLvTRQXK7NJgARIgARIgARIIAERcBb3E+LGA1G5fUhAB8OpkgAJkAAJkAAJkEBCIuCcLDnkQ3nxBCReUnwSV7W4TSGBRENAuVCT2CiUqAnEt2cQf2+iPlcsIQESIAESIAESIIGEQsBRB+SMgyInJDQUDx48MB/frVu38N33I3H6zDlzHhMkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIvhoBJmROLvgLuBmDAwG+QPU8J5C9SEa3avoOLly4j4P4DjB0/VQUY9o9FL6xCAiRAAiRAAomLgJfXq3Xrlrjo8WhIgARIgARIgARIgARIgARIgARIgARIgARiQ8AxPDwcEDdrMcjnA/+Hf2YtxDeDP8Osf/6CBDYNDQuLoZWpWFy5xVXi2iau9eM6H9YnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggddBwFFJjOPe8L+JFavXY8hX/dDzg3dRq0YVLFk4E3lz5zK3XbZ8NarVboJa9Vti5+69On/zlu1o3+k9ZM5ZFD169cPJk2d0/tp1G/B25w/w+x/jUahoRXR7vw+uXLmmy8TaR8qkTYUq9XV/c+ctQlBQEL7+Zriu3/ytTjh06Iiuf+26Hz7q01/XF2shH99jOp9fJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJAYCGhNTkSYss6JRnyPntCltWtUM9dydnYypyVx9twFDPy8r84b+9ckvQ0KeoLGjepi4dzJOH32PCZMnKrzHyjXbBs378BVvxsY8cMQrFq7QSmL1umy74ePQrCy+tm5ZSUyZkiPDOnTomrVSjouj/e/m/H3X7+ieLEiaK8UPmHKMmjy5JnYvns/Nq5bhDatmyFrloy6H36RAAmQAAm8egLhyhLzTuBjBAWHvPrBX/OItT4Mw0HTz+VrngmHJwESIAESIAESIAESIAESIAESIAESIAESSGwEHEUh4uAUvXXOw4eB+rjDI6JW+nzatycaNayLJg3qYP2/23T9WjWrInfOnFi/cTPuBNzDyrX/WvEbPPBTNGvSEGVKeuHIkaO67PadO8iUKQNy5cyBLFkyIW2a1Fqps3DJSqWoyYTDh4/gSUgIAu49wPXrN1C4cH74XffHxInTUKhAAVU/rdUY3CEBEiABEnjxBMR75keTlyLfwDEICgnVA5y/cRvlhk5EuWGT4DVkPPrPWI1rd++/+MHjaY+dGzpi2N9R/07G02lzWiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAgmAgKOTk7KwCY8+po2nZyF9KNt37o7xkJImdTPXGfjlt3jvw09RKF9e1K9TQytgzIUWCXcPd4Q/nUOXzu2xcMlqFC5WSVnvbEeP97pCFg1FeSPikcIDRQoXwIjhg1XaHa3eaobF86fgfuBDNGj2Nrw3bLbomUkSIAESIIGXQWC9zynsvnzDqutU7skwvXtzHBvWE7sHvYtHwcGYsfWAVZ3EvNOqrgNWbgiDz+nEfJQ8NhIgARIgARIgARIgARIgARIgARIgARIggddBwGSS4+AQ7di5lZVMjWoVMPibnzDuz791TJwPlJJmk4qJE52IJU7j+rVRtmxpXLp0Jbqq5rLNm7ahY9sWWL5oBvbt9EbRop4Ql26tWjTE2YuXUahQftSuWQ1eSsGUMkUKLFuxGq7OLhg2dBBSpfTAqROnzH0xQQIkQAIk8OIJ3HsUhGErtmF48+pWnadOnhSFs2VUz2QnpE2RHGVyZ8HOM1et6iTmnRTJgNpVHLHzcPQvSCRmBjw2EiABEiABEiABEiABEiABEiABEiABEiCBl0Mgev9qT8cU652//xyNNm81xtAfRqNlm3ch7tBy5cweaVYRFoqhQV/0xcx5S1CpemN4JE9uruvgaFIeOSCyEilfgby6TdXazZHPswJKVqit4+0MGzoYxZQCp9lb76B0xXqYMXO+stiJgM/hY2jcshNKlK2FkiWKom2bluZxmCABEiABEnjxBMau2YlulYsjS5qUdjtfc+gExq3dhbFbDqJHzdJ26yTWzEK5HHDsHJU5ifX88rhIgARIgARIgARIgARIgARIgARIgARI4HURcPD29o6oXrMmImJwtWZMMETFq3kS9ATiGi028vDhI7gkcdHWMzHVDw0NQ5nKdfFp7/dRq0Y1BNy/h7oN2+LLz3ujb58PdXPpz0EpjJIlS2ruLjg0BMGPYz8nc0MmSIAESCAREjh++gKKe+Z7KUd28Pw1fDF3HZZ/1gmnr99Ci3EL4Pvdh3BzcTaPJ7Fy9ly8jhTq2f9b50bIk/HVxTLz9fWFl5eXeS6vOjFqegQ27g/H8tHKhSmFBEiABEiABEiABEiABEiABEiABEiABEiABF4QAWexbomtIkfGdHFx0Z/Yjp88ufI7E0dZtnwNgpXSyMfnqG5Zs1Y1cw/2+hM3a64eLuY6TJAACZAACbwcAkMXb0TLUoVw7sZtnFUfkeNX/JV7tQxmhc7PnRrqOGhj1+7EZzPXYHG/ji9nMvGw16s3I5A3a2Sr03g4VU6JBEiABEiABEiABEiABEiABEiABEiABEggARFwFGWOWLrEB5HYOOtXzkPzZg3x8MFDFaenMg7sXo9iXp7xYXqcAwmQAAmQgCKwyuc0BsxZh1HrdmseYqnjF/DAio2jcqdZPn92HPG/i4CHQVZliXnnqHKxVjh3/PhNTcyceWwkQAIkQAIkQAIkQAIkQAIkQAIkQAIk8KYRcHZ0VGFzZN0pnrj4T5cuHbp0av+mnQceLwmQAAkkCAKWVja+l/y0m7VlyuWauFk7fOEanJ0ckT9zeq3cmbPDB6mSuiJFsiQJ4tj+6yQfPAY27QjHjx/Txdp/Zcn2JEACJEACJEACJEACJEACJEACJEACJEAC1gScxSonLm7WrJtzjwRIgARI4I0lYGOAcv3uffSeu96Mo3mRPJjarRkc44n1p3liLymx0BuoW80RJQq+pAHYLQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQwBtLwDksLAxOyh1OWHg8Mc15Y08FD5wESIAEEhYBr+yZcObH3uZJNyhZCMeL5Vdu1R7DPUkSJE3yZsUyGzUzDH8NolWO+YJgggRIgARIgARIgARIgARIgARIgARIgARI4IUR0JY51OO8MJ7siARIgATeaAIuTk5In8L9jWTgM5eKnDfyxPOgSYAESIAESIAESIAESIAESIAESIAESOAVEHCMiIjQIXNewVgcggRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIII4EVCgDcbEWHsdmrE4CJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJPAqCGjLnDclOPWrAMoxSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESOBFEnB0UvENxDqHQgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEP8IOEvMnLCwMDg4Or7W2fkd24f9M38zzyFLsYoo2a6XeZ8JEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEngTCWhlzutS5IgCR0SUOFf2rrbiL/t7Jg1BtrINQcWOFRrukAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJvEEEnB2VRY64WRMLnVcpB+eO08oaY0xR2pTu2BeZPMvoLCkXEYWOodgp130orXU0FX6RAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAm8KQQcw8PDX7kiR+CKkkZElDg91t1C4++nmxU5ki8u1uQjZVJHxGijd/hFAiRAAiTw2giI/v+jyUuRb+AYBIWERprH9M0HdNm+s1cilTGDBEiABEiABEiABEiABEiABEiABEiABEiABEggbgRMbtZeg2WOMU2xuhlfLx3E6kbEiJNjxNCxdb9mtOOWBEiABEjg9RFY73MKuy/fsDuBy7cCMH2nj90yZpIACZAACZAACZAACZAACZAACZAACZAACZAACcSdgKO4WHN0iHvDF91CrG7kI4od+Sz9pIF2ryZWOc1HrzFb57zocY3+wsPDsGXs18YutyRAAiTw0gj4jumL9W974PgUk4WiDHTZe4bO2z2o0Usb90V1fO9REIat2IbhzatH6lIsdoYv3YQvm1SJVMYMEiABEiABEiABEiABEiABEiABEiABEiABEiCB5yOglTkhoWHP1/oltjKUOLbu117WkCEPH+D40j9fVvfslwRIgATMBMJDgnX6+sYpCA8zuSi7umG6zgsLfmSuF18TY9fsRLfKxZElTcpIU/Q+fFLnVfPME6mMGSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAs9HwFGaOTk7PV/rl9RKFDlxVeJcObgds7tVM1n1DGiL0CdB2DpuCI6tnqNnGaFeF/+nQyk8CriJ8JAQrBvWE383y6XzLh/Yirk9aul609oVw6H5f+n0gdljMbllAf3ZP/MP89EuVf3v++dXnT+llScu7tmItd/2wMRG2bBp1ABzvQc3rmBh78Y6f8uYwXjyIABBgfcw/8O62DNlpM6/ffEUDswZB+lHxjq0cKK5vZGQ8cRqSMpljEOL/kbw44d67oE3r+tqsiA8q2slowm3JEACCYBAeEgA7hzbjSd3byDwwo4EMGPg4Plr2HTqItorZY6tBCiLnUFLN+OLptXgoP5RSIAESIAESIAESIAESIAESIAESIAESIAESIAEXgwBrcyJCFd+cRKwPPC/gpVfNEf5rgPx/srrKN3hEzgncUPgjWsIfnDXdGRKmfP41iVEhIbj3K718D++H+8uOo2mIxYiXd7CaDBkiq739qTtKNqiG06tX4IDs39G4x/mockP83F4wR84uX6RrvPg6gXcOH0Yb0/dgZwVGmLN4DYoUK812k7agZNrJiPg8jldb1GfRshbvSm6LjqFkEeBOL5uPhAWhjvnDuKe30V0nnMEST1SYe/kIWg3cRM6/rMPOcrU0G0tv2S8kMD76DR9P2r0H4fdfw2Eg6Mj0uYthhNr5uqq13z3IjQ4yLIZ0yRAAvGcgINTMvhtnge/Hcv1TB1dUsXzGQNDF29Ey1KFcO7GbZxVH5HjV/wRFBKKKRv3onz2jHgcHILjV03xdM7738adB/Hf2ijeg+cESYAESIAESIAESIAESIAESIAESIAESIAE3mgCWpkjcXMSslzZvx1p8pREnmqN4OjigmwlordQSZ+vCB7fvYYNP/dDWNAjJE2ZDi7J3TUCV3cPOLm44sLOtchftyMyFiqBDIWKI1+ddriwfa0ZU9EW3XW7XJUbwD1TXuSuWBcpM+dAyhxeuHX2KAKuXUSQGiNMLWoeXTZNK3HObzEt2EonVT8eBrcUqZE0VTp4ZCmA1UPexfWje5E6e17zGJaJ/HVaQ+aWv2YzNdc0uO67D8Vb98DRFZMhVkdn/l0Mz4ZdLJswTQIkEM8JpC/9Fm7smoOr/05DqiJNEBFucr8Wz6eNVT6nMWDOOoxat1tP9Yu56+AX8ABh4eG4dOe+Lhs411uXjdmwH3vOXorvh8T5kQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEC8JuAsigBR5cRn2xy/Y/twZe/qKEGGPHmkrFKe2C0PsxMPSJQunWf74Niq2Vjcpz6q9R2NDJ4lrdqHBD+GR5Lk5jznJEkREhLZ8kUUP5YiFkHCNCzENJ9kaTPA2dUNydNlgauywjHE2SWJToqFTVtllXNu0wps+b0/shatjNpfPnPpZtQ3thFqsTQ8LBgRyq1a1lKmAON+R/fhzKZ5aDN+i1GNWxIggQRAIGutDvDfMwOPrh9C/g5DcPjoing/68X9Oprn6HvJDy3GLcCyzzrBzcUZnzetrj6m4nBl8Vlg0Fj80r4eyuTNZm7DBAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQNwJOIriIeI1GOaU6z402tmKAmflV51NMXA+aaDrRtUmc7EKuH/lGC4f2Kbr+Z/00du0uQrh2pGd6m33cKXseGYVI3FqQlUA8lJvf4Rirfvgwi5vZSVjCuQddN/kli1nuVo49e8cSEyawFt+OO09B5IXW0mTPR+c3Nx1nJy8NZogd+X6yFTIWmEkfUkMnTtnjqJA3bdQa8AYnN9pmuepf5dA3McZcvfSaZ08vXGZsiYKVNZCxSAWVcXa9MbGkX2RQlkHiZKKQgIkkHAIpMjjBbd0nsqiMBXSlqyZcCZuzPQ1/HYYQ3NLAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAm8SAWftYu01mOWUbNcL8jk4dxyu+ey0srwRKxzDEidb2YYo3bGvPieZPMvYPTfp8xRGxY9Gqtg17eHg7Aw3jwxoNW4V8tZsqt2Q/d0kB7KXa6SVKw6ODrh54hC2jR2g3JalQXDgHTT9cZF2mZatfBNMb18U+Rt0QfXew+B/4jBmdiyqx8xXpxOKNOlkd3zbTGEqFjfNRy7Hii/bYd/0H3SV6p/8huxlqum0lIvcv3oRq//3jk4HP7iD8j2GaeXT5l96o9z7Q1G8ZTdddmjOaOyZOESna305GUlTpNVpz/ptsWfCIH38OoNfJEACCYiAA0p8MQPhKt6Vo5Ozad4OpmdDQjgIr+yZcObH3nan6qietVGV2W3ATBIgARIgARIgARIgARIgARIgARIgARIgARIggSgJOHh7e0dUr1FTuwaLstYrKjAUO8ZwosSJSoFj1LHchoeH4UlggFnRIWVilRP8MBBJPFJYVtX5j+/d0kocQ7EiFR4F3IRr8pRwfuo+LUTF1BFxcUumt8/z9fj+bbgmSwEnZ5com0sdl6Qe5nGDHwWq/eTa+mZGx3Ko1u8XZMjvBZdk7lb9PLx1A7O6lEanOYetjjvKgVhAAiSQ6AkcP30BxT3zJfrjtHeAvr6+8PLyslfEPBIgARIgARIgARIgARIgARIgARIgARIgARJIsAScw5WyI74EzTGsdZ6XpqOjUySFhihqbBU50r/kJ0udIdJQyVKlt8r7L0ocoyPDisbYt7e1reOqlDa24pYitVXW0VWzcGjObyjSvGek47aqyB0SIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIEES8DZ8am7rwR7BG/AxMt2GYDU2XNHOtKIsFBUfO8b5K5iiikUqQIzSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAEEjwBHaQhIkyscxjJOr6ezYL1W9udmlfTLnbzmUkCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJJB4CDiGhYXBwSnhBNxOPOh5JCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQMwFHJycnIDwi5pqsQQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk8MoJmExy6GLtlYPngCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQGwI6Zk5sKr6sOgfnjsOeSUOsus9WtiFKd+yr8zJ5lrEq4w4JkAAJkAAJkMCbQeDi7fO4HnAFFfJWfSMOODwiHBuOr0OlvFWQLIl7nI/55oObOHx5P+p4NohzWzYgARIgARIgARIgARIgARIgARIgARKI3wSeWua8vknaKnIsZ7L0kwbwO7bPMotpEiABEiCBeEAgQnnn/GjyUuQbOAZBIaF6RncfPtb7kmd8luz2jQezfTVTuPvwNqr8Vhph4aEYsKgvNp5YF6uB7z66A6dvHVDz9/Kxqh+fKy0/tAhTdox/YVPcfPJffLPmyxfWX3zvKCQ0GPXnN8TVgGvPNdXjfkfRekHr52rLRiRAAiRAAiRAAiRAAiRAAiRAAiRAAvGbgGOEWpGLeE0xc2KjqKFCJ35fQJwdCZDAm0lgvc8p7L58w+rgRcEjsrpPe+wa9K7+NChZ0JT5BnzvvrAT7i4ma4oJvpOQL33sjn3zyQ3wcEiOLXf3wP+Bf4Im5XvdB7su7EjQx/A6J+/qnATnPz6PXOnzvM5pcGwSIAESIAESIAESIAESIAESIAESIIF4SEArcxziacycct2HQj7Xj+yJh+g4JRIgARJ4MwncexSEYSu2YXjz6nYBpHFPijQeyZAuRXK4ubrYrZOYMg9eUm6txlTCR8t6YNet/aj+R3k8iHiId2e/jV1nt8Z4qCuPLsZnpfuiRPJC2HRyvbl+aFgoBi3ph1RD3VFuVDEMVNY+P6z+n7l81p5pyDIsLfL+kBXfLBuAFhPqmcskIXOav382Goyrri1/es99T5c/CQnCtyu/1G2l7yHLB0LGEoluzOCwYHSa2krPRyyJmo6vi/O3zup2+y7uQemRhfHT3pGYe2ahTsv+7cBbujy6MXWFaL5uPb6NdpOb6mNo/Xdj3Hra5x8bRmoLKMum7Se3wKID8yyz7KYfPHmAj+Z008ci/MZu/BXycovI6iNLYbCS/bl7Z+jzIGmR8zfP6PMh9eQYheGs3VN1WVRf/eb3wrx9syIVS76cIxE5h1V/L4MO01vB7+5Vc92VPkvQbXoHfDz3fT2WzFvcqRlieR3M3f+Pka23526eNp9/matYOonEZj7/7PhbW5rJuZbr76z/ad2WXyRAAiRAAiRAAiRAAiRAAiRAAiRAAq+HgKMSwOH1DB7VqFf2rsb+mb/hms9O8yc2VjxR9WeZf3LtApzesNQyK8Gkt48fipvnjieY+XKiJEACiZPA2DU70a1ycWRJk9LuAZYfPgUFvhyLL2etRsDDILt1ElNm7nR5MKzhCDwOC8KvdX5Bmcyl0SZ7c52XP2PhaA81OCwE888tRfUCddGscAssOTLfXH/r6Q0Y5zMB05pNw+fVBuLnI7/j/J0zuvze4wB0Xt0V/Sv0x5TWMzHj6Exs8rO2iNl3xwfvr3wf9Qs0xL5396F8jkq67c/rvsfsI7Mxo9UsLG23FDN9p2Pd8VW6LLoxw8PDUCJLKez6YA9OfHgCqd1So+OMVrpdkcxeWPjuSrzn2RX1s9XUadlPlSxVjGPqCtF8HXp4AgXSFcL2Tltw6f5ljN/yu65dOW81/KKYiHs7kRN+xzD/8lIVX6ey3o/ua8Taofj3wgYsarMQX1f/Bn229DMr0u48vIMTN4+Zm998cANn7zxTZDxRSq39D45g8NqB6F99ELw7eyONezpzfXuJDB6Z8O+ptVZFojyafPwfZE+dQ+f3qPYx/mw9GTsDDiAo9Im5bsCju5h2bjaypMiqx5J5r/FdrsuN6+CLSgPxd8upWHP+2RjSf3ulGHJxcsXud3ahdp56qDWnjlawxTQfUQK96/0+htQeiqufXMXQ+sPh5ORknhMTJEACJEACJEACJEACJEACJEACJEACr56Ao1jlvC43a9Edrih0LD/R1Y1L2fWTB5RC5GhcmsSbuue3rMDju6a3nOPNpDgREiCBOBPwHdMX69/2wPEpQ8xtL3vP0Hm7BzUy58XHxMHz17Dp1EW0V8ocW0nm6oyJnRpgw+edMK59Xey/dAOL9hyxrZbo9lMlS41CmYvgRtgdtC/TGXeUoqVl0dZKqVAFaWNY5N97foe24imXqzxqFqiPuZeWqBhEjzWjDae80S5fKzQv0Qpty3RA3fTVzOx2n92OjE5p8GmdgaiWvwZ6lu5lLrNMfODVXdcpmaM0OlfspotG7v8V1bJXwWM1TqCyUKmcpTJm7J2iy6Ib080lKT6v9xVSuHngjP8JFExfCLvvHdbtkromQ660eZA2eTqkckuj07Lv5Ogc45i6Qgxfgxt+p3hWxccVP8HKU8t07ZI5ysIzWT4sP7xY7y9QFi7NsjRAlpRZY+gNmHV0FnqU+RC1CtdH10ofoGbailh11NRvjI2fVvi27nC0L9sZZXNXRIMiTaJtVj5XBWy+tFnX6TKtLabumIBLdy7oc188WwmdnyVVdhTIELVrvv71Buux2hZpjx0XTBZfe87t0NdB31r9UbNQXXxY6kPzPK7cuaSVTl/V/R/KqOvr2ybDddmOM1sQm/kYHYmiSo5PzieFBEiABEiABEiABEiABEiABEiABEjg9RFwDgsLU4stDipg89NgB69vLhyZBEiABN4IAuEhwfo4r2+cgoJdhsDRyRlXN0zXeWHBj+I1g6GLN6JlqUI4d+M2zqqPyPEr/iicLYN2qVbTK5/Oy5EuFQKUO7a/txxE1xploN4c0PmJ7Ussa8ZtHIULd87quDfjt/yBZRdXIV2ydMiUIjOqF6wd7SGvObYCuVyzYP6+2XgUHKjr7jy7TS/Mb7uwBS292pjbF8tUAgHK5ZjI/st7US5DaXNZgSgsgGoVrGuuI4n7j+9pBYL/Q3+sOb5Sl6V0S4kM7hl0OroxQ8JDUV25Abvx+CZqZa+B+8H3dRtxzeasruGoJKYxo2pn5Iv7uSQubnq3UKbCWoEkCi9RLvUu9zEm7P0THSt0xbiD4zCh6d9Gsyi3YrFyIfgaimQqaq5TKktZXAq4aN6PTaJyvmfKtZjql8heGqefXNQKHLk+7qjzmEYpviqmKoWkrsljaq6VTQbjDMnT4+RN00sp+y7tsboOCmYqYu7rpjrHIgUzFtJbGUeUX9fvX0Ob/G9HO5886fPjp4rD0HChSUnVq9B7+K7pCGVplVr3xS8SIAESIAESIAESIAESIAESIAESIIFXT8BZLHPigx4nW9mGKN2xrxUBcbUm1jkxSXhICNb/1AeX9qyGq3sa1PpiLLIVr4grB7dj6x9f4v6VY8hUohYaf2fyJX/z1CHM+6A27l05iRLtP0PZLp/qIS7u2Yytv/VHSFAgSrb7GCXa9kRQ4D0s+aQ5cparB98l4+CeKQ9q9PsFW38fiPt+Z1Hxw+Eo0qgDgh8FYsdfQ3Fu6xI4qDeRS3cZgGLNu5qnHvz4IeZ0r4q3flsJ9/SZEa4Wv+Z0r4bGw+dg0+jPkdWrInwW/6nbyvxPrJ6DS7tXIn+dDmq8EeZ+mCABEkg8BMJDAnDn2G54ZMuHwAQUNH6Vz2nI5/6TEH0yvpi7DhO6N1dB260XepO7JcG5gECEqh8ZV6fEqcwRAOISa+ulraiasSKO+5vcc4kbK1F+xCRiIZLbIye2nDXFMhHFzmql4BEriwrZK+Lk0/6kn+PK9Vdm94y6yxLZSuKP/X+Yuz93y+R+zZzxNJFKKWosxV1Z1Yg09WyB7lUiW/NEN+Y63xVakXNywEWtvJE4MQsur0CExal1cHBEuM1xxzSm5fzspcXNWpjqU6x8LiprFlFIiCJHpGWp9ui1qS8mbfsLj8KfoI5nA3tdWOXJ3z1i1XT+tinejxQK21ypcul6oji6G3RXp+XrzO1nLtbMmSrhntSarWWZbTp18rR63n9s/AW9in2A5aeXKwu39aidO3pln20/tvuemYti2uGp5uyLt8+Z06mTmu7HS3cuQsYXxeOxR2eUEimt3heO0c1HrLA+rfMFtivlYvu5rVDyQCl0q9JT9y8KvJ/XDdPpD5V7OOmfQgIkQAIkQAIkQAIkQAIkQAIkQAIk8HIJOMsbqrIO87rtcuwpbezl2cNxbtd6+B/fj3cXqcVFvytw8/DAA/8rWPlFc9Qd/A9yVayLa0f3wjmJ6c3ee1fOoMkPcxH88B6WftIAxdt8gCf372LNYOXOZvQapMyWG4v7NEW2UtW04uXeJV+41WmHjrMOasXOuu+6o+mIhbit4tds/rWPVuY4uyVFRs/SqPThEDy67Y+53cuhcP22cHFLpqfsmjQ50uYthhNr5qJM509wzXcvQoODkDJLDjy4egE3kiTD21N3YOeEH9Q82qDet7NR4YOvMOedUijR5kOkyk73JvbOPfNIICETcHBKBr/N8/Awt8lCwNHFFF8kPh/T4n4dzdPzveSHFuMWYNlnndTiurOy0LmhFtwdkTtDGpzxu4Xp2w+jbv5sSpHjaG6T2BKuTi4Y2GAIlp1YhP61vsJ5FWtERPJiEonxIhYi3u02QSwhRCZv/wuDN36Fn1qORq0C9dBmYVu0PdkRwaHBWOW3Ht3zmfhXyFNFu3WbsmM8yuQoj0kHJsY0nC53VMqW9/J3wZT9k1A5Xw0UyuSpA9v7KWuNyvmqRztmeHi4jgv0UFkQ3VFxasbteqZMMgYvplyGTTw4HtcCLiOTcncm48U0ptE2uu2cPdNR36spZh74B80KNDNXzeCRAe1ytEDPjR+jf9E+ZiWPuUIUiSa5G2L6oWloUqylmusVzXZ26Zm6tljRiALplN8JiOJn3sn5qJrFFG8oiu5ilV03V12M8h2D9e3W6n5/PDQKK95aEqu2UVWqqFz5icXP+uNr4ZnZE7N9ZpirZkubSyutpuz8C9+mG4GFyg2diLhcE4luPhdvn1exiO6iRI5SKJW9DNImSYPA4Ie6nXyFhodg8J5v9b64mqMyx4yGCRIgARIgARIgARIgARIgARIgARJ4aQR0zJwwtUDzukUsc7IUq2j1kbzYSPp8RVQsmWvY8HM/hAU9QtKU6XBl/3akyVMSeao1gqOLC7KVeLYQk69Wa6TJmR+ZPJXrH2c3BFw6i8sHtsEleRr4KSXLyTXz4Jo8BS7s9DYPX7Tlu0iWKj2yla2N3FWb6fa5KtZR4wWqsW/C0dEJucrXwpnNK7Bjgult1VtnTW5QjE6Kt+6BoysmQxRoZ/5dDM+GXYwiFG3RXc87V+UGyvonL3IrBVTKzDmQMocXbPsxN2KCBEggQRNIX/ot3Ng1B1f/nYZUKiZFRLjJ/VqCOSgLiwyZ88Wbd9Ho97koPPhPNB0zH0mcnfD1W7USzOE870QfqLgzEjumTI4y2Hx2I6rni90xbzixTrtYMxQ5Mn71/LW1kubY9SOoXqgOOhZoq4PWf7y8p44Hk8TZZJEii+d/1vwDn67/DFUnV0HZTGWR1sWepYjNSVJjDG/2CzIlz4Qi44vA6VsHFPizgIqBc0offnRj1i2iLGjTl0KaEamRb2w+FM9YXLdxsHgbpGr+mqiTsw48fy8Ml6FO8H9wQ9eJbkxdIaovpUwRa6UhGwcj4y/p4XPLB90qfmhVu0u57nq/fZl3rPKj2/mm0Q/aUiXH7zlQ4Z9KWsHVslRb3SSvUqx1yd0OhccXRtnxpaNU5Fged3RjGWUVclfRyQp5KqNeoUY6LXF/RM4pJaCci2TDTee30F8F9f7GE95a8aMr2fnK4JERg0p+jvrzGiD7bzng4eJuruWiLJnmt1+EqSdm6XP2/r+9MKH2WHPsm+jm43/fD6WnlNZzSPmTBwqmLoB3K/cw9+2gXwMy7YrCi0ICJEACJEACJEACJEACJEACJEACJPDyCWjLHIllYLEW8/JHfcEjiNKj82wfHFs1W1nU1Ee1vqMR8uSRsnx5EuNIDs7Kz79SroiVjLhHS54ui25TvFVPpM6RL1J7Z6X8CX0anNrJxVWXi3Lm7pXzWPBBVZTpNgRVPx6KBcd2ISzU2sVO1mIVdH2/o/twZtM8tBm/JVL/Rp9GgVgTSf8UEiCBxEcga60O8N8zA4+uH0L+DkNw+OiKBHWQXtkz4cyPvc1zblCyEHxVzJyAh4+QLIkrUiQ1WUOaKyTShEcSD4R9Y3pOT+48K9ZH2avGJ5CPpeTNkN/cl+SPbT8Zv4dP0C7G6o+tghpK2WPIB9V6472qvdSyugN+8f4eKZI8W8iXOgFDTDF4jPrGNq0KaL/gvZUIVC8j3Ht8F+lTZFLWUy662NXJNcoxxbXZ8h7euB14C+5qLHFHNhaTjW71VliM7zAN4zHNKj+6Ma0q2ux0qdgd8gmPCIff/es6DpFY+ljKuZtnIHF1xIoktpI1dXbs6eejlU1J1XF5uKUwNxXlxJQuczAycIyKEZNKszcXqoRYMxnn2zI/pnTbMh0gHxGJpWTZhyj0LPdt++pQvqs5q3etz9Abn5n3v2v2M/rXHaz+jotAyqTW1n1ibXVn8D3F7hrSKcWPnF9DoptP2dwV8WRwiOJzHamTpVVxfUxWxkZbOffRzdeoxy0JkAAJkAAJkAAJkAAJkAAJkAAJkMCLI+Ds5OSk3/p83QqD2LpUs3foty+eQhJlSVPq7Y8QomLTXNjljVLKldnOcf21xU32UlXgf9IHGQoWs9dc52VVljs7x/ojRabsyl1aKTwKuAm3FGkQ/OBelG0sC/yPHUCydFlRsvUHCLh2EaGPTYGhQ548xinvhShYt7V281asTW9sHNlXjZNXW95Y9hGbdEQ8sKKKzTxZhwRIIGYCKfJ4wS2dJ4LvXUPakjVjbpAAaoi7tUypni2MJ4Apx9sp+j/wR7eZb6N+gYY4cGUfdt8+hDkF65rn235yC5TOWhp3lUJmnM8ELG+/3FwWm4S7mzvkYykxjSl1RTHzvGJvzNj0JQqcLMptm6WIK7fRG0bilyO/Y1HzBZZFsU6LZUtU8l+OM6o+X1Z+imji94jlcJZU2eM8tLOT83O1i/NAbEACJEACJEACJEACJEACJEACJEACJBArAtoyJywsTFmlWL/pGqvWL7hSdAodcYkWldw8cQjbxg6Aq7tSvgTeQdMfFyF9nsKo+NFIFX+mPcT6xk351W81blWkLhyfvqWaNmcBVP10DJZ93gzOSVMod0ehaPn7auX6LI1uY/Cx505E8nJVrI1dk77F5JYFkCxtFiRJlUErye5dPodtv3+CDCqejszJU8XR2TNhkJ5bpMlEkWGMmdmrPHZPHIqcZU2BsqOozmwSIIEEQ8ABJb6YgXBlGeioFk612FgdJJhD4URfOAGxCulSpjvO3jyFlsXbYpyy0rG0kOhRqRf2X9qD/BkK4ky/C0j3H5QsxuRjGtOoFx+2jsqaNmfqXNjScZOO9xMf5sQ5kAAJkAAJkAAJkAAJkAAJkAAJkAAJkMDLIuCwbt26iOo1Xt8b4QfnjsOeSdEHii7XfShKtusVLQOxWHl875aOO2MoXqRBeHgYngQGIGmKtNG2Nwp1P/dvm/pRSpq4StD9u8qiJ7VVs+DAB0rR5KHzHt66gVldSqPTnMOxnpNlZxKfJ2nq9JZZTJMACZCAFYHjpy+guGdkN5FWlRLpjq+vL7y8vBLp0fGwSIAESIAESIAESIAESIAESIAESIAESIAE3lQCzo7KIkcsP16XmzVR0sSkqInNyREFTrLUGSJVFfcisVXkSGPdT6rnV5bYKnKkT0ORc3TVLBya8xuKNO8ZpzlJH4ZQkWOQ4JYESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE3gwCzuHKouV1KXLeDMTPjjIiLBQV3/sGuas0eJbJFAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAlEQ0DHzHmdljnRzC3RFXk17ZLojokHRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk8HIJOIoixzHuoWFe7qzYOwmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgCaglTkhoWHEQQIkQAIkQAIvjMC9R0G4/zjohfXHjp6fQFhYGFatWoWHDx8+fyfxvOX+/ftx9erV557lzp07cenSpeduH98bnjt3Dr6+vnGeprji/ffff/Ho0aM4t31ZDWauAr74LfxldR/rflevXo3Fixfrj3CyJ6f9T6Lp1CYIj3hWfu/USQScOqGrB168gNtHDttryrznIOC/by8eXb+mW9729cGDC+etehm16Wf8s2eqVZ6xs3Yn8M6QZ+fJyH9V2/j0DOr9YzgWb4h4VYdudxz5vTLury1bttitI5nzD83D0LX/syqP6TqwqpxAd0IVnxt7diEk8CEi1P/jJR10547V0bSZ3go+Vw9Z5Rk73/0dgYkLX+85NubCLQmQAAmQAAmQAAmQQNwIOEp1J2enuLVibRIgARIggTeaQIRaA/ho8lLkGzgGQSGhZhYX/O+g5aiZKD30b5T69m9M8N5tLkvsiRUrVmDq1Knx7jBDQkLQuHFj3LhxI1ZzCw4OxgcffAB/f/9Y1X9ZlX7//XfUr18/UvfDhw9H27ZtrfK/+OILbNq0ySovLjtff/01tm/fHpcm8aruzz//DFkMjkoWLVoE4WkrJ06cwIABA2yzzfty7dSpUwfXrpkWyM0Fz5koWbIkxCJcPl5eXvjxxx8hysbYSlAw0P/3ULSpq/98NTd79913zf0a/X/77bfm8peROH78uFZ0vfXWWwgNffYMtBxrzPYxaFawqbKAfzbfI3/+AZ8/RutqZxbNx47+n+m0LEDPyJjR7ufElL8RePWK3TLJv3viuLlsXpFC2PPNYNzyMS3iHho9UpfdOnxQj/NQKT1lnG2ffaz3933/P3NbY/yrmzfi7OIFOv/4tEm6nnxdXLUC0r+lyLFIO/+9eyyzsbb9W5B5x1UurV0daT6HRo3Q3Ryf+re5bHXLJjg5YyrCLa6fdY2b4OrGf3XdXV8OwJn5c6yGb1y4Kcbs+xMPn0RWbFcvDSzdEo6DJj2bVbtXsfMinkF31GK+cf3LtkWLFliwYEGcpn9c6b9mrAlH3YrWbhuSJ09u1bf0v379+jj1HZfK8jvk4+ODSZMm4fvvv7fbNCg0CKN3/YamRZpalUd1HRyd+Jf5+jGudWN789ABrG3dAvu/f/bcEMWrlItiMDqRe83oZ3md6tj/4zCEPLhv1UT2pY53h2e/XdHNR+7XCyuXmfs1+l9YXl2oSh6q+967aXMEXr6I4MD7On376T1vDNzSsyVGbzM9a4w8Y9uqpgP6/xGGwMdGDrckQAIkQAIkQAIkQAIJhYCzTDQi/PW/meN3bB/2z/zNzC1LsYoo2a6XeZ8JEiABEiCB+ENgvc8p7L5srRwIU2+nfzB5GRoWzYvpvVrryd68Fxh/Jv2SZ3L06FFcuHABXbt2fckjvdzuZXF94sSJGDRo0MsdKIbe8+TJg8OHI1stiAVNwYIFrVrPnDkT7u7uVnlv0o5YXuXIkQMVK1a0e9jvv/++XYXDrVu38M8//2DECNNiuW1jV1dXXLx4EVmyZLEteu59UTx16dIFZ86cQd26dbVSp0mTJrHqb4E3kDuLI8p4WleXa7ZHjx743//+Zy5IliyZOf0yEv369cPp06cxduxYu92fu30WW67uwLcNhtott81MW6w4Wvke0dknpk6C//69qPbHX3rfJVlyBN01vXXfYN0aJM+S1dw8SZq0uHfftHDcbNdO9Td9OKT9tt490WLjNkQohZzI5bVrkK54SVzZqCAqCQ825Rfr+xmKfNALmz7ohizVa6JAx85wTZESF5Yv0fWOjPgZBdp1gJNbUtV3KIJv3dX5xtfFpYvhmi41rm7egAxlyxnZz73NUqOm5nBiyiTcOnQQVX4bA6ekSXV/Duq/K2krlUX1cRMQcPoUdipF2JM7d1Gsz6exGq9gxkIokCovFhyeh3fKvWvVxs0V+OY9J/w0JRxzfnqmfLOqlEB2NmzYoJ+RGzduRJs2bXD9+nVkypQpVrP/ZXo4PuvkBHcTcnMbsc6bPHkyGjZsaM5LlSqVOf2iE6lTp8Y333yDGTNmYPr06Xa7X+G7FOmTpkXJbCYFh91KFpkF3u6MPC3e0jlben6AjJUro2Cnd/R+klSpUXbo91hVsxbytm6LlPkLYu+w/6Fwn15I61XMohc7SXm7RUnz3bvw5P49HB71Mza82wX15i2Cg6PpWrqh7k25T278u1lb0LilSYOY5hN45RKS5sqGRitWmwd1sFAMmzOjSDQr0gI/7/wVR6/7okhmL6tannmBysUcMGtVBD5oZa24s6rIHRIgARIgARIgARIggXhHQP+FKW9XvQ4RBY58Vn7VGUs/aYAre1ebP3smDcH4eul02cG5417H9DgmCZAACZCAHQLiQm3Yim0Y3ry6VenB89dw50kwPqpfCcnUIrC7WxLkzpjWqk5i3BEXX2JxMHToUL0wLmn5yFvSImIRI5YD8mazKCEWLlxohUEWrMaPH6+tYaRO2bJltVsrsUoRqwjJEysDY2vVOIqdQ4cO6X6kjczLUtauXavnJ7/9Mp9x48Yh4uliVM+ePVGpUiVdXcaX4/jtt2cvWki/NWvW1G9oV6tWDUeOmBafLft/UelcuXJpdrJQL8x++eUX3bUoAfLly6fTS5cuhcxDFiy3bt1qNXSjRo303OUYxApk2bJl5nJRYrRu3VofR4cOHXD79m1zmbjMEiuWnDlzauZ9+/bV50MsMWQsW5daRr7B0NyRTULevP/888/N50XOqWGVIsckvOWcyKKrjGnpFk/m3qdPH/z666+6XOoI+ylTpuhzJFZJ0kaOtX379uaRxb2azLlp06ZaQWcUBAUF6Xl07NhRM5Z28rF0ZyTXZfXq1dGpUye9GGy0la24XpP6Ml95+18UPoZEx13qeHh4IEOGDPo6K168OPbs2aObyjiW94bcP3IvnD171ugaG/aGo0El+3+zSr/CxfikSJHC3C66xI4dOzQj436QYxOJ6jqIri/Lsn2X9yKnR1akSpraMjvKtJN6ZiZNn0F/XFOmgrNSnhj7zuo+NsQtXXpzvpQ7OjkZRUiiFsBT5s2Hwt3fR+DJc7hz8rguy9WpLc4tXKCtWGSbp2tHcxtXdw/dn2MSV6XESaHTTkmS6HJZfE5Z1BPnVyw117dMiBuze0dOoNxPP+Lc/Pnq7TDTorZlnbimnZO46Tm4KOWsk/oNkWOUORoi80yWOQuyVKuBst9+B5/vf0Too8iWNkZ9223lnJWx/aJ9K7xKanF7iXcYwuLgbS26e0HGlme4WMbJfSHXmNzHItE9g6R83rx5+rklbeTesHxGyUsDcm+Iqz+5D+U5P3v2bGmmJY1SFIgCViwyReRZERAQoNucOnVK58mX3O8yP+M5JHkLNoRDONiTtGnTmu8vuc/c3NzsVbPKk/tInlPyDJZjkd8P43kRGBiI3r176/nL8/bPP/80/xZZdRLFzvYL21EtZ9UoSiNnu7gn19eTXFNOyZLC1cN0vev7yMUFaTyLwLNfH+z7figurVmFeydPoWjffpE7iiInqXqupStWAhV/+Bk3t+7ErYP7zTWvKIuxwr16InW5krixa4fOj2k+RmOZn/FxS5fOyI5x6+7mjiJpCmLfJdMz1rZBnXKO2LDnv9+ztv1ynwRIgARIgARIgARI4OUScJbFB/mT/VX/KScKGlHYGJKtbEOU7tgXmTzL6CxDgSN1RMkj23Ldh9JaxwDGLQmQAAm8JgJj1+xEt8rFkSVNSqsZXLtzH4XU4t/guWux6Mg5dCpTCJ0ql0C+zLFffLDqMIHseHp6YsmSJRgzZgwuX76Mn376Sc88ZcqUekFYFtdlEUzceJ08eVIrEW7evIl0TxdlxNJEFC6fffYZNm/ejGPHjun227Ztw6hRo5A/f379RrS8ZV2+fHn06tUL6dOnj5aOLBjKIt9ff/2l3262rCyLayNHjkShQoUgigixjhClTu3atXVdWfQrXLiwXvyXBTZZJBeRxUfpU5QSogCaNWuWtrA4eNDkvslyDMu0LJbLGPbk3r17cHbWRsKRirNnz67zxN2bKJREWfPRRx/p2C9586rXipWIsqFIkSJ4++23rRY7pUxYiiJA3iYXF2RSRxYPZUFRuIjrMMkX93iWC6GyOCuKEXkjPKNyi9O9e3etfPj000/1HGQhVayGDNm7dy9EcSD9RieygClvmM+dO1cvgsp86tWrp61pxJ2ZKPwmTJiglYCdO3fW515Yi9y9exd//PEHmjdvrucqbr0c1RvfLVu2RK1atfQ1JQu+olhxUYuShmTNmlUfvygLRbFjSBK1WC/ul3bv3q3HletXxPK6+vDDD7U7O1mEffLkidFUu9+TBeDBgwfra2TIkCGQ+RqKoOi4SydiRSX3gZzP+8qixLBkE6siUdi1atVKj7V8+XI8fvzYivXh0xGorRYg7YkovKS+IV9++SXk+KMTOZeV1dv54qZPrNHkvjQWzaO6Dr766qvoujSXnb11FvlTm65Tc6ZKFOj4jlnpkaN+Q2QoVdayOMb04V9/hih7RBwcHVDmq//ptPEVrq6Na5s36V2PHLn1NlmGTEhfrizOLZ6PUBXLLE2Rosot2m6jSbTboj37YOeAz5RFQ+tI9fx2bEOm+rWQpUZtbOveAwFnzyBVvvyR6r2sjNSFCuuuHymFeYrceVBt2hSkLFBQ55XsPxD2Fr5zpc6JGUdm2Z1S9qfGK1f9gRyxMGSRZ1N094IMIs8Y+YirMHERKRacItE9g0Q5265dO/2Mld8XUfyOHj0a3333nW4r9+O+ffu09aRc5/I8Ml4ekApi/Sa/P6IcFau8KlWqIKmybpJnqjx/jOeKKFlKlSoFp6cKwdsBQND9COSM4thFyb1u3To9B7Hak9+nmESeLd26ddOKGrHqkWfOgwcPdDOxCPT29tbPYPkdlGeB/PbUqFEjpm51+cm7Z1ApV5VIdWNzHURq9DTD66M+WFK+LLau3YAas2daKRKjamObL8pGUYTeiWFyYwAAQABJREFUv3QR6UuXhdyTl5YuQ41p0/W9f/nftcjZKHbWiI8vXMHe774xDyH3V/63OyGpUqZVmTxRKTYzw1lZ7kk6lfpNt5W8afLi5O1nCjzL8jzq8fjzDNFc2n+mWtZlmgRIgARIgARIgARIIP4Q0MqciNegzTEUOaLEafy9+uPWRgwXa7IVyx1DoWPk21TnLgmQAAmQwCsgINY3m05dxPLPOuH09VtWIwY8eoxdyvXax7lLwPvTtzF96yF8v2wzpvQwLc5aVU5EO7JIJkoPUc6IskDShsiitSzMyUK8KA9EMSLKB1molsV7QyRPFCwiZcqYXmqQtCzCydvPsphfrlw5iOsoWbSzXHSXepYiyhhZKBf3Wbly5dILfitXrjRXkQU1iUcgVjZioVGgQAHtLkqUOfK2tSwCiojbLstjMfqQeZw/f14vAg4bNkwrhGQBLioR6wtZeLQVUX4Yi4i2ZbIv85DjlbHkeKpWrapjKIilk8xNRNz8yMeYs860+BIFmSzWi0Kif//++o1wYSIWPWIlU6FCBcj8LGMyiHJH3mgXqxURUSBJ3AZZxJc5yFvucg5k4VEUWWJZIkql2IgoY4x4P7IVhZ0oMYSfKNTkrfmrKqZJsWLF7Fo9ibJHrFosRY5fXMzJubM8X1JHlDZixSRKKVGcGSLspa4oH+WatG0n9TKrRUJ5w99WZM4iosyR/sUdn3CR8yLjiETFXcpk/nIO/Pz8tIJTtrIYLUoceUtfGMg1KcyFvaWS7OjxcGRM6yTdRBIZWxSUhshic0wii93SThbZRTkm58CQ6K4Do05028v3LiFP6mdKP6NuhjLPlDdpPL2M7Fhvk2fNpi1wpIGty6UV9etAFn9lIbmBsiyQN/8NydmoKbZ27YbSw79T7YzcmLdZqlRVFgzuuKzcu9nKJZWXtVZtveAtSp3r27e8UmWOy1OLneCAu3pqORo0Mk8xi7LcsSfp3TPgkYq1Eqpcxjk7WiuS0z+93P3UT1tslDmxuRdkDh9//DE++eQTPZ0SJUrobXTPoGnTpunfAXmuyfNAnhHiQlAUp5bKWnn+GtY30qmh0BGrHLnP5LkncbHk90N+p0Sp8t577+l7Vn6rpk6dqp9hekLqy+9WhE5miHzb63x57hr3mOU8jPb2tqJIFoWSKIdFLJ81cpyiJBdrHRFRdovLyNgqc64/vIEM6nzaSmyuA9s2xr5rcnekKV0SfkqZk9arqJEd523S7Nnw5KnFp8SyEfeEaYsW08qcw9/9gIrDR8KwgIupc/enLzZIvaTKMk9EXCHmatxMp+XLMm3OVImM7hmx68ouyyxzOkNaB9zxj0BoGOBs/7FqrssECZAACZAACZAACZBA/CHgrP+TbPrb/bXMSpQ04k5NrG5EDGWNEUNHyl+3hIUE4/SGJShQqyUcXZ698RrbeZ1cu0C3y1+reWybsB4JkAAJxEsCQxdvRMtShXDuxm2cVR+R41f8UThbBqRQLnFEutUsA4+kbuhctQTq/jobdx48QhqPZLrsTfu6cuWKPmSJrSEfEVGaGNYuOkN9iYWFPZEFafnIQpyItBMrjujE19dXFxsKD8OKxWgjFjWyuCYKCLH6kUV+S4sGo57tVt6cloVveZPaELEAEoVQdCKWNxL/wJ5YLtTbKxdllrgSEgWUpA2FUkwWF0Zf8la7iKHsEUsQif0gyiXDVZuwFWWaIbJ4Km+rGyJ9GK6JZJFR3OrJAqm8YS8KsU1KWSdWWbERUdIYIgutoqQSJZOcM7G6krFkK9eNbQwgUfLZKnKMvl7lVpQvMhdR5IjINSQilluGMsced11JfYmVlsS3kWtHFGpicSCu/UQZJdYI85W7LrFmEzaStpQihR3VgrNlzrO0cBNlUFxErKXE/ZUocmwluuvAtq69/ewpc+Dag+v2iv5TXr62b8NdKXTsicSXCX0ShF0DPseNfXuRrmRpc7XMVavpeDPZatfFta2bzPkxJpycUPTTfvD5fTS8en5krv5EKVCur16vrHy8cF7FzRE3cZdWr0Thd7qb67zsRIgK/C4i7uViKzcD/ZHS1SOSIkfa37xj6iWzab08xi5jcy9IJ2I9ZykxPYPkJQCxvhOXmIaIEkbaGc8yyRdFtT0RRbQoqeX+EgWlWK2JMkXuPbGKkXtLXi6Q556hXJJ+MqUzafluKA4p3CP3LJZ/zZo9UyBErhE5R+KeGYpxy1LxDCG/KZbPXnmuSF5sJXPyjLgZeCO21WNV78r6dbiz/yCytWiCg7/8hEo/jYpVO9tKjy9fgdtTC9qrWzbBvWAe7brNcAl46+ABZKxgP8aZZV8SM6dw1/css+KUvqH45EhhsnK1beh/OwKZszlQkWMLhvskQAIkQAIkQAIkEM8JmJQ58WCShqWOsTWmZLhf2z/zN22dY+Tbbg8umIB81RrBI4P9/+Da1o/LfuBNP2wbOwBZS1ZR/WeJS1Nd9/rJA3BN5g4qc+KMjg1IIFES8B3TF37bJyNrvU9R+N2h+hgve8/Ayck94ZG7KsoPXxWvj3uVz2nI5/4Tk1Lhi7nrMKF7c6RNYXoL3EUt3os4q0VAkeCwUL1N7F+imLCMPSDHa1jQyMK1rVLFkkdUyg7LOrFNG0oKcQEkC+SyaGeIzE8UOeJeRyxDxOWauN2xF+9FFhMtxViol7gt9ha/LetapsWtTlSWK2IhFN0b3kWLFtXur+StdlnoE1disvgXnUWP5dj2lEVi7SOWH6IwKV26tF40NVwfSVs5Z4byRvbFMshQjIklj7gwEo7yxrlYdkhbywVRcSMmfYuSQOZvKRIbxxDp1yj/8ccftaXP2LFjdbEsvNouahrXktHecis8bM+XZXl0acPlUXR1LMvEZaAow4SBjGsoLC0Xme1xt+zDSIvSR+JkGCLWau+8847elThIxjVnlJcs6IBz1+QNpDiYlqjaUZ0TuT/EOsCeRHcdGPUN6x9xe2WkjbL86fJh99Xdxu4r2YqbJQnkXunX0fi3ZWurt/Ul7kzDxStM84iLMke1yF63IfYrV5AXli8xH8cNFexdLICeKKuPG7t3aldPV5evQZBS6tlzb2Zu+AITt48e0b0lzRiFXzA7Y52/cwEFUuezUwJc9DNlZ7FR5si1blhOiiJSrOFEYnMvSD3b+E0xPYPkeSNKcMt4ZdKPrdgqfG3LZV+ecaJQEREFbL9+/bT7NnG7KBZDlpJWHZZbCgdcUhzym4wfLYujTUd1j8mz1sfHJ1JbeUbI/S3PQUNESW5puSP5cl9F9YwqlKYALt69aDT/z9vgwAfY8UlflFZu7TJXropFJUoif7sOSF/qmbVsbAZ5oNyriSWOR85cuvqFRQvhnkvFgFP3iYgodq4pBU9slDm6wX/4OnP7NOrlq2e3h7NXgPJKQU4hARIgARIgARIgARJIWAQcZSEnjv8nfiVHKEqc5qPXaBdsRhyd6AY+tmwSHt99+kpddBWfoyxllhx4b9mF51LkPMdwbEICJJDICYQraz+R6xunqIDUpgXzqxum67yw4Ed6G1+/FvfriOWfd9afsZ1NLm2WKZdrudKnRqncWfW0l+45isdK0bPy4AmUyZoemVKliK+H80LnJW9Cy5vUojzRv62qd3FJIwtzEmtAlCuyKLhr1y6roO4vdBKqM1mgFoWHuFkTqxtxpWOIKGFy586tg2GLIkUW4MQ9lqWIpYooJ9asWaNjpRiKHnm7XOpKv2LJIxY54iooJqseccElY9n7RKfIkTmJYkrGFEWO8JW0peLEct5xSYsllBy7uCWyjJcjfVSrVk27wRMXaqJQkXJxjyYiFjublCWOSOvWrXV8JGFtLO5KvijKBg4cqN3Pyb6lCC9ZWJU37yVmjaHkErdIsmApjMRtm7gbiouIGyaxYJLzbVx7sWkv7t3kbX+5JuXajI3IuRARLjKeHK8s2IpbttiIuAG8fv06JAaUKHIMt3PSVq4x4SAu3Lp27RqpuxqlHbF2Z9zNyaM6J/Xr19eKO+OaFusiUT6KRHcdGBOTe1sWpEWp9/DhQyuGpbKVxsUHVxHw2OQCzGjzX7eP/a7j0fVr5k+YumZsJXOlqkhfszJOTJtkWxRpP/hegO4r/EkwnjxNi3WPpYjVTbFPPoUoawy5ssEbOd9qiQrDR+hP5V//0Modv93bjSoIUtY7lnMNUvdbTBL6+JFuI3MJefRQp4Pv3zM3k3kGXrmMK95rtYKp+JBBcE4ae8vPHZd2oFIO+xYRu3wi0LSOE5xs1rfFGlLuafnINW/If7kXonsGGWUSZ03uS3lOidu/2IrEfhKrM3neyH1qxKGS9h06dNAKcokJJZY2ttK6liN2KA5xlajuMbG2k/tcYmrJs0mU3xcuXNDdy/gSm0ys4CT2mMxX7jtLEbeeEnNInpvyrLKUSjkrYuulbZZZ/yl9ZMxv8CiQD7mVIlTi3si1teebwYgQP2SxkIfquea/by92DPhU33/pi5fE/fPnEHjyHMoP+9F8rxTt8wnOLVxgjp0VXddhgaZ7wPI+iq6+ZdnDJ4E4dvc0Sme3r4z6d284apSJm2Lcsn+mSYAESIAESIAESIAEXg8Bta5j8z+W1zMPq1GNODqxUeJIw3XDeiLQ7yxWDGyNlV931X1d3LMZMzqWw5RWnjg0z/TW5+UD27Bp1AAs/7Ij/m6WC0GB9zDnvRrYOWE4JjbKhtndquG6717M+6C2Lj+6apbuS+pNa1cM4m7NaLN78ghdZ/6HdXH3kulN24t7N+u20tcKFefnwQ31ypONyLxmda2k2677riciRJlmIfumj8bGkZ9hZpfy2v2c9/e9EBYagkPz/8L28aY3+KX68dVzsWXMYIuWTJIACSQ0AuEhAbhzbLd6s/kGAi/sSGjTj/QiQHI3V0zs1BBfLd+Kot+Mx+5zV9G/cZWEd1zPOWNxeSPWGOJ2SiwWRHkjbxWLazBZOJNFX3nbWhawbN80js6SwbbMdt/edH/66Scd1F2UDGfPnjVXkbYSH0RiL8hb2qJkqlGjhlVcEqks5RKPQeL1SIBtEVGsLF68WMcxkTfLRekjcWQMZY+uZOdLxhSljb2PnepWWYY1kyhyxFJCFs8t4/OI4kr6F75itWMcn9GJ7FuKsd+9e3e9uChv1stxSr+GyMKnLECK4sZ4S1ziwojIeHIeRbkj8WREUSUu4GIr8pa8KKNEySdWPoabJJmPxOKRcyLxIywVHLHpW9wYiXJNzrelKzcj5oy4cps4caLmY8SnkH7l+EVxIsoguTYNN3by1r6wkvMvIte07G9Siiw5J7I427lzZz2eLOKKMsTSWsrgrBurL8t9WRAX5dWAAQPQtGlT/PDDD0Y1fY2I5YBcX+KO0FZa1QGOnguH0hNbieXYVgUx7Mj5kPmLNZCMKdeYYSkQ3XVgdCvHJbF9xGpDrCTWr19vFCGPssypmLkMFh1Wi7YvQp5ey2tV4HSxGDA+d475CuBIIxTt2QfHRyu3aw+tF8BtK/qMGa37ur1jL3x/HKnTN3aZLAgs6+Zu1lIrayRPFrfPTZ2prReMOo7qmZejZQtc2fCMgdGfMdfdXw80qke5vbZls56DzP3mxu06fXSC6e94ifEp81xSugyOjPsDRfv2RZEPY+9a77T/SZwKOIvWxdtFGj9YGZr+PCMM/btE/n+R5fVr2TA294LUt9c+umeQKIq/VdYh4lpS7ku5T41703J8e/1KubhTy5Url7YeFOsey3tenp+ihLJn+SZt+3V0xC+KwyNrfZ6+P6Q8riLu4cSaSRTXcp+KcsZ4AeDrr7/W6WzZsul8sUg0FOfGOHIccn+JK8bkyZOb4wJJeZMizXBNxc3xuXrIqP7c27vHj+G4UkiW+07Fz1LzFCnUpTsenruAc0tiuIef3n/LK1XG7oGfI71yb1jz72n6vvTbuU1b4njkyGmeW4ZyFXRsq4CzZ8x59hMO2sLHuH+MbWyVSyuOLkPRdIXhlaVYpO6PK4Oo7Upp16GxuqkoJEACJEACJEACJEACCYqAg/J9H1GtWnW7/xF8mUcicXKiEkOZY1m+UilHJH5Oj3W3LLN1OiToEaa+VQANf5iPjAWLI+jeHczqXEJb9qTMlhuL+zRFvcETcc/vMtYP7YTKH49CwbqtEabePJzWpgDKdfsOBRu0xpJPmiPkcSCajliI2+eOY/OvfbRFjvQn9bovv4JQNZaky3T9H4o06QjvH3ojXR4vVHz/S1w/uhfOLm5Ik6cQNv2sFiPSZdH5m34fpN2sVXpvkFYwVXj/a+Sp2hA3T/ogo+czv/xyMFLXz2cHGg+fod9oXPp5UzQcNgdJU6bFwp410XXRKbi4JcOCjxqgZNveyFu9SSQezCABEojfBHx+7Qn/PTPg4JRMudlor1yrFcXpGZ+q2Fqp4JYhLyqN3PSfDuD46Qso7pnvP/XxXxqHKSX1vYdBryVOjsQekVgk8VFuq2DI4gpLFoz/y4sUojyJzopCFv9ExPWTvEVuL86KtJf52CuLiZ28XS0WMqLMsbRIialdfCsXBvIGuzCwdz4kvo4wlPP1IqRLly5aQSQLltK3PfbC9b9eHy9irrHpQ9iIxYAot+zxi00f9uqIIkssfUTJZk/GL4jAkTMRGDMw8qK7vfqxyZNrQeKfiLtDUepYyn+5DnyvH0GPpR9ia4+tcHR4cfO1nF9CS4cr1g5RGX44OsDhJb5k9t26b5E2WVr0qtI7EraVW4A/5oVhzRjTQn6kCtFkPO+9ENMzSCyC5JkgimPb6zKa6URbJNYt8owRa7IGDRrYrdv+i3C0rOWAdvVf3EK/KJuNuFq2Fpny4oP8ntjGkrM7OZvMabsn4/jN4/ixyc82JS9wV/3mRoRZv3xn2buDc9yvGcv2Lytdf1I9fFfnO5TLWT7SEF/+EYH0yq1ev84v7hxHGoQZJEACJEACJEACJEACL4WAs/xHwkH5E4gIj+p/Vi9l3BfaqSg3HNTilatbcq3oOL1xGVySp4GfsrKRj2vyFLiw0xupcxeCe6a88GraRY8vyhyRoi3fhXMSN2Qrq94CVX+wp8mZHx4Zs2LDD4HKddtN9R/LyH+kF2/1nm6Ts0JdnN+2UveTqXBp+B3bj12TfsDVI9vhrpQ5tpKjUn1s//MrPFHWPgXqvGVbrPdzVKinY/9I/J+cFZvi4p4NEEVQ6txeOLdtDbKXqoK7532Ro4KaL4UESCDBEkhf+i3c2DUH988dQKoiTXDvxIYEeyyWE3dSi3FpPKwXRC3L39S0vF39IkSsI2wDalv2a1jKiJWHPYWB1JU3pKMqs+zLXloW7mPrUste+/iSJwzE0iYqsY1zEVW9uOaLtYth8WLbVhQjCUXk+nqR14G4l/vrr78wf/58XHjqhskeix6tZfHxxS5AyrWQNavJTaTtmP/lOvDKXBTbP3zmdsy27zdx37tdK9zcGtnyR1iUGzUCBTq+89KwfF3vmyj7blwNaFwt8t/7UTawKHjeeyGmZ5AoPcRq5UWJuHaUuFyiLK1Tp06U3c756cUrHuWZF9WxPO9vkRzAO+W7RXkcL6pALNW8W7SMsrtOSuEWH2Vt93VRTuuHj1/sMzTKgVhAAiRAAiRAAiRAAiTwwgmo+NTqPy7xXJHjd2yftsqJ7dGHBgcpBYwzkj9VphRv1ROpc+TTljlOrkmj7MbZ2Q2hIY91uZOLq97Kolh0f+46u5pckEjlLb+Jdc5uVPtkBFJkzY2Tq2fqPiy/qn30HfJUboh9//yCfdNHoPOM/eptfBfLKlZp8Rcertysichx+C6dpK2HclVuBpckUR+LVSfcIQESiJcEstbqoC10Hl0/hP+zdx5wUVxdFD8CKoJYsWEj9t577yYao0ajxpaYaGKJmmL3i8YeS2LvsWuMxt577L03VBR7Q7FQFFHgm/Nw1t1lWRYEBbzX37Az8/p/3q7wzt77crccgFPnbI+JHycHJJ16JwQYmovfZBaLXwS4V0VMefnEr5Hb1luGJGRYKYa008Pb2VZScsUnAtVnz9N+r7W8B0liJ/m9NjafJQUVhj1jaEjdgzM220sodacrVRpNPTwSynBkHEJACAgBISAEhIAQEALxnEBYLBbG+tVEi3dpZb4djMOzBkTYJAWcY4vGm4g4LBORObqkh//De0iftwgyF6uAA5O9kSJjVhXG7NmTB3BMkUaJORGVj4n7XnvXouov45GpQCl4/rfatMpgzUVfY3zj6G5kK1UFGUYsxOwGWeHrfRvPtf4x7rW+R9DTm15qU/Qnt67h9rEtyF9/rqrrIy00265x3fHs3/uo0n2Maf1yJQSEQLwjkEIL0ejoWgBBT+8gbfHq8a7/0uH3Q4CL3iIKvB/2b9NqRCGN3qbOhFSWewnxEEvYBJKkSJmwBxiHR/fppxKaOTqPh1+6c9RC3YkJASEgBISAEBACQkAICIG4QCBMzHkPPSnevDN4nFgyBXdOHzARbbg3Dg8a988p2aq7OtfFDnVh9qPQ5x2wfdg3OOyWCy3+2onKP03Cmh6fwSFZCi2E3Cs0nhBWn0mx1xtW6vG5LW0kqu4Z5zM+1yrTonsbqizeohu2D9VCtmltpstXUhNowsI1uOUvpfbfyf9pSxxbMBrbh3fQxJoguFdsglSZ3bFnUn8VI/zTYQtUXffO7sfsxrkQHOiP/A074aNyYaEQHDRvofyffguPdbM0waq8oV05EQJCIL4SSIRivRciRPMmtLN//XEs+yrE14cp/RYCQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAKxRiDR1q1bQ6tWrx4n9szRhR19tBRxrAk4ej799YWfr9r/J4lTcnUrVNuk+bmvD5KldFWeL3q+2HwNeh4AO4fEoPBibM+fPkRSl9TaJsH2eBngp5ISO7uo11cvg5QkxNBuOyf0A/tfuvWPYXm0/YCMbdfY3rB3TIZKnX4zvi3nQkAICAEDAQ/PayhaIJfh+kM6OXv2LAoVKvQhDVnGKgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASHwARBwYOiv0DiyZ47urRNd7kldUpgUpceNU6p0Jvdi+yJJMmeLTVBQ0k0XcfRrc+GH9xObiTiPb13F6X+naeHbluDL2Yf0ovIqBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgkcAJKzGEoMYo6Yu+fQK6qDWDvED76XUjwS6TMlgtfTNsNZ9cM77+j0gMhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQuCdELDTjBu/iMURAlmKlkemgqXD9SZt9jwo1qQDUrplC5cmN4SAEBACQiDuE/Dy8gLDwMWGPXz4ENu3b7ep6uvXr2PlypXquHDhgk1lJJNlAlHhbrkGuRsXCAQGQdufMRjX78SF3kS/DzU6BuOEvKWjD1BKCgEhIASEgBAQAkJACAgBISAE4jgBO+WVE0fCrMVxVtI9ISAEhIAQeE2AzpxdZq9Grj6TEPjylbr7956T6pr3jI9Hfs+Em0ZgxYoVmDBhQqywuHjxIj777DOb6n78+DFOnz6NPn36YP369TaVeZ+ZgoKC8N1338Hb2/t9dsNi21HhzgoonvXq1ctiXfHl5ubNm9U+hPz90dnZGe3bt8exY8ds7n5cZLBkM5AtYyJkd7NtGJN2LYXziC/DHff9HtlWQTRznblzBe0XD1ftLjseXrxt84kdhv4VEs3apZgQEAJCQAgIASEgBISAEBACQkAIxHUCDsHBwbC3S4RgEXTi+rOS/gkBISAE4gyBbacv4dDN+yb9aVymIOoUzW24t2jvCRy5ehdpXJwM9z7kkw4dOuDVqzDh631yKFasGHjcvHnzfXbD5rb5e8rMmTPRr18/m8vE1Yz05Jk/fz5GjRoVV7toc78ePHgAX19fTJs2DV999ZUSCJW3dyQ1xDUGr4KBvpNfYdEQ+0h6/ib563KfoknxGoYbE3cvxZ4bHsjgksZwL6ZPfAKeoty8/6FT/gpIbmePEO2fuTWpnQidBr3CaU87FHnzUWyeTa6FgBAQAkJACAgBISAEhIAQEAJCIJ4SUJ45ouPE06cn3RYCQkAIvAcCT58FYui6vRjesKpJ68mSJoZrCmd1pEnuhPWnL+OLMgVM8iS0CwoNFSpUwKVLl0yGpt/39PQEw6tVqVIFDRo0UKKEccYhQ4Zg6NChqFevnvJy4CJ/SEj4RVrjMvr5P//8g4wZMyJ79uxYvHixflu93r9/H+3atVN15s2bF8uXLzdJj+ji8uXLqFu3rvK8YN3du3dHQECAyj558mTlzWNctmXLlli1apXxrRg979Spk+LLStmv4sWLY/z48YY2Tp48ierVq6v+kvGZM2cMaTypVauW8ogiX3qSdOvWDTdu3EDp0qVVXYUKFVKeMhzr6tWrTcpGdGGN+x9//KGeB9tiGzt37lTVBAYGqutWrVqBz4bj4LF7925DM0uXLgX7w7KtW7eGj4+PIc3aybVr11TdGzduVHXSW0afD5x7+tiN2+vRo4fFOcH79CCjLViwQM1bfSysy9hcXV2RI0cO9VzOnTuHJ0+eqOSI5p41BkuWLEHfvn2Nq1fnZK3ft/asraVx/JwzHD/5rlmzxqQdr9vAI+9QlCpge8zh5EmdkCmFqzoyJE+DZRePoEOJuib1xvSFi6MzrnSZhDGNuiKlQ2KL1afQdPOalexw4JTsg2kRkNwUAkJACAgBISAEhIAQEAJCQAjEcwJ2oVqsHNv/fI290d47fxTr+7cxHCeWTIm9xqRmISAEhIAQiDaByZsO4JuKReGWJmWEdZy6fhdeT/xRvVDOCPMkhAR7e3s4OTnh+PHjJsOhKHLgwAFky5YNmTNnxuzZs1G2bFkl7BhnpHfMr7/+CnrtUBTp3bt3uDzG+fXzp0+f4ssvv0T//v0xb948rF27Vk9SYlCLFi3g5+eHffv2YfDgwWjatCnoERGZvXz5UolAFAgoDnAfnj///FMVo2g1cuRIw6I9Q4xRNChXrpzVavfv369EJYoM5kdknkoDBw40CBP0ziGjNm3aqPY4Hi7QV65cGefPn0fVqlXRtm1bk77wGTB/nTp1cOLECfUMGLbt6NGjmDRpksp7584djBkzRrE0KWzhwhp3Zk+RIoUSQ7gvEYUbCk0Ma5c0aVIsW7YMo0ePVvOF4+BRqlQp1QpFn+bNm6s+UJh49uwZxo0bZ6EH4W+9ePFCjYeeSxQ+du3ahbRp04K/37HOJEmSqHSKYWT06NEjpE+fHtu2bTOpjPmnTp2KLFmyqDlIlpybd+/exbBhw8C5bmw9e/ZUvBneb+LEiUiTJo3VuWeNAd8jc+bMMa5enW/ZsgUZMmRQczeiZx3ZPCCPKVOmqOf99ddfq/cNx6rb1VuAY4pEcHHW70Tt9cDVM7gdFIgGRapErWAUcyexd0DGFGkjLZXPPRHOe70ZX6QFJIMQEAJCQAgIASEgBISAEBACQkAIxBsCDvzGZbD2LWC+vmujgEM7tmg8bh3ZaNI8rw/PGoAspT+BW5HyKN68s0m6XAgBISAEhMC7J3Di6h3svHQda39pDc+7EYsDa495oEXx3EiRzPHdd/Idt1itWjW1WN6wYUMVvoyL9hQ6atasqRbx2Z1cuXKpRWmKAebGBffGjRur21zcpzDE/NbsyJEjqr6uXbuqbHyl8EGjNxDFAS6wU6hwcXFBwYIFleBDbx1rlj9/ftCTh55Gt2/fRpEiRQzeLgzNptdDgYTjbNKkifIOslZn0aJFFR/zPPy9w1wgMM9Dj5mUKcNEQwpj9ELSTd/vp0yZMrh69SpKlCihvJw8PDzAcehGNj/++KO65BgotNEqVqyoPFrKly8PHqwjMrPGnWUpyvEZ8xlmzZpVVUdhJ3Xq1KrvFO/4PIzHwUwU5PjsOVZyZ39+++03DBgwAIkTW/bCUJUb/aCHV/369Q132BZFK3pUlSxZUjGhGEdxjV5Ds2bNUnk5JziHeVBEovfKvXv3DPVQpKEYZm4cA4VMij/cg4neaGRrbe6xjCUGnGf06KFwRGGSwhuFpQ0bNuDbb7817O1k6VkfPnxYdc1Smj4PfvnlF/W8OTaKUHwm7u7uqtyN+6HImz3878BzD65DcKgWg83MqucuiRyuWQx3Fx7bjGbZCyG1UwrDveie2Nqmtfozp0uE/47Z5t1nrR5JEwJCQAgIASEgBISAEBACQkAICIG4R8CB307UYq3hXX+Hj543FGt0o2hTslV3ZCwQ9i1V3TOHeXRhp8y3g0XU0YHJqxAQAkLgPRAYvPI/NC6RD173fXBFO2get7yRP0t6OCZ2UNd+zwMx/6gHFn3TQF0n9B/0uKFXBDeBpwiyY8cOtShNrwxbjB4HunGxWw9Xpd+z9Mq26CmjW758+fRT3LqluRpoRlGHB43CEkWEyOzs2bPKe6VAgQLqlXUlT55cFaP4wjBl9JBheDWKRbogYK1eBwcHJWZYyvM2XyRhuDR6bWzdutVQNfvHcF7GVqNGDeNLdU4RgkZvEXqusI8UMiIza9xZtk+fPooLhb106dKp6ug5E5lR/KOX0ubNmw1Z27dvr/qki1mGhAhOKE4Zm+6JlSdPHnWbY6YYR6GGnlqcq2TI8G7c/4bePPRyYj6GT2PIOF3EIVd6eBn35YcfflD1duzYEW5ubujcubMhNFxU5x49mihmcf7R24sCDVlS4KHQw/dURM/alnnA+UzT+8+9fnTLliERLl4P/1vw4ZseeKkJVOZWxC2XQcx58swP86+cwJrPfzLPFq1rW9qMrOLbD0KRM3N4cSqycpIuBISAEBACQkAICAEhIASEgBAQAnGfgAO/FcvFFOOQE++i27qQQxGn/rAF4ZrUPXH4yvBruqCj3w9XQG4IASEgBITAOyGw4bQnePi+eKna671kC2Z82xDu6VKr6x1nryBVsiQomTPMM+GddOo9NkJvD3pAMGzWjBkzwP0/KAxw8dsWs2XTePN66HHA0G260dNAN11E4AJ8zpwRh7lzdHQMJ2D8/vvvYCgqenPQuFDPxXLd6EH0/fffq5BYDONGkSgyO3TokArvZSkfQ57Z6nliHpKNi/u0sWPHwhpDCgUxZda4UySh5ws9fNzd3VWosgkTJoT7/YrczI1eRxSUjPcDMs7D58v9YyisdenSxTjJcK6LbvoNegPR+PxSpUoFhtDj3jb0tOE1hR2Gmvvpp5/U3KVHjbEA+fPPP6s9kw4ePKg8sDjPLXl2MWQbBSAKUronTGRzzxID7m9EMcvf3x/cK4meORR4KEJae9b0lqJZmwfWRMMcmpNNoG8ofP21MHlhuqWqb8oXPdWrtR9rTu9Ccjt7VNG8dcyNHlYMV0iBlt5LtpgtbUZWzzktxFrjanaRZZN0ISAEhIAQEAJCQAgIASEgBISAEIiHBNSeOQyN8b6MIs30Oq6gJ47ujcO+6HvoMI154rsFvwzChc1LEaItpogJASEgBOIrgZU/t8LaHm3UMblNPTWMNVrINV3I4Y3FB8/i2/JF4GD/YSwoUjyh9wM9GRgyjWG2uFcLF79jy7hPDT0ruKcNQ6ktWrTI0BS9dCgOUEjw9vZW4a+4IH/lyhVDHp7QC4ObwdP75vnz5yqNHhZcaKfIQu+IBQtMv2zBsXIvGIYT44I9BaHIjO2wPkuHLUJOsmTJFMtNmzaBXi76l0/ocUPPjfnz56v+0yNn9erVhrFE1q/opFvjrtdHzyrOAXoumRvFDgp9fB7Gv3tRJOMz5B5HvM99bdatW2cozmdET5UhQ4YY7kV2QgGBIgj3omF/Fi5cqIow5Brt448/Vnv4UJBj+5y/+v5HFI9OnTqlwuBxHru6uiIgIECV039QvKKAw719OCaKMbbMvYgYsG32gV5N9AiiMFa7dm3VnLVnbS1N76u1148yA2nSJ8Ixj/DeOdbKMW3a0Y3oUqQ6EmuCjrkxDGClSpVMnqN5nqheP/R/jFuP7+NFSDAe+D1R50HBrwzV+Glv4537Q1C2sHjmGKDIiRAQAkJACAgBISAEhIAQEAJCIAERUGJOIrv3v+BGTx0eFG94rP7xYyXi0HOn4bhNau8ca9xPLJsBP++w0DLW8r3LNOM++T+4h72TeyHg8YN32QVpSwgIgThI4Oyk7tj2pQs85rwJNXlz60J171C/MIEkDnY7fJcsrBde1vbROXr7AT4umjt8/gR8h5vLcwGaXiBcGKe4wwVwGj0p6BnAvToYooznugcEPUrMvQbMry1hozcEN6fnAjo3jzcOocawYVxIptDDxXx6fDRq1EiJNMZ1sc/cm4V7u+gh27g/yZkzZ1T4MfaxWbNmxkXUedu2bdVrixYtwqVZusHxULSxdFjKb+ke947hnjAUj/r27auycF+hlStXKr70DKHo079/f4PYo9djztP4muf6oee39mqNO/f3GTRoEBg2j54verg34/YYyux///uf4s7nou/7w7BnLMvFf95nPj2N/TGuI6L+medhPStWrFDeYuzPN998o7y56ClC47OnMUygLproIf8Ydo0iDuukxw/DlNFjy9gyZcqk9ini/jYU0dhnW+ZeRAz0tiku6X3TxSVrz9pamt5fczbG1w6aDjOkkz0mLYmamHPurhdO+T3CF8Vr6M2YvOrhEvXPAZPEaF50WT4Weaf9iIevXqLX/hXq/MK9q4balm8FalexQ7G8hltyIgSEgBAQAkJACAgBISAEhIAQEAIJiECibdu2hVapWi3c4kdsj5GCjTUz30NHD7X2/RbLG24vaqstRvSfifR5i1ir9p2mxcU+vVMA0pgQEAIWCZwe2wnehxfCLnEqVJtzFXb2DjjYty78r+2HU+aSqDBmp8Vytt708LyGogVy2Zo9QeXjnhvc5Dy+G70zdA8U87FwIZohUmnc+4P59L1AzPP6+PiovVjoUWMtFJl5OXq8RFRm2rRpmD59utqk3rzc+7gOCQlRHjoUcyhavI3FBHd6qTAkXHTCuzEUGtkzFBoFqpgwjol1UlSg2GKr6eUYro1so2rRnXvW2rH2rK2lWauTac+0bZbcPn6Fk387wN0tsty2pVNo5ecRvZy4N9O7sCLNgzGtnz0qFH0XrUkbQkAICAEhIASEgBAQAkJACAgBIfCuCdjxj9+IFozedWf09vR9dDIWKKXfsvq6ZWgn+N+7gnV9mmL9r18j0P8p/u1YG4fnjMHMelngffEUdv7ZC7Mb58GcJgVwevVcVR/z/dO+Gg7NHoW/PnNXZR7fuKzSrh/ehb+/rqDubxnSCaEap+tHdmHpdzVVneu0fXz87od5Ar3SQqjtGP2Lyss2vPZtgaU+zWteBAy3RmP9FHvYP+Z9+SIsxM3RBeOw/6/hhnaOzB+r8jM8G/Oxn/NblsCtUwfUff0Hx8L+/jfmF1Unx3nn7GEEPQ9Q+f0f3A2rRwvHwXxiQkAIvH8CIS+f4NH5Q3ihhc2hkCMmBHQCw4cPt+jJQu8WhnLTjYJBREIO89ALgt45URFyWM5Smbt376pQX9zPhF4kccU4NnqJvK2Qw/HEBHeKMNERctg+ny/Do8WUkMM6KfwxfF5UhBzjctERclg+unOPZSMya8/aWlpE9en3nbRogU92xpyQw3CADLXIEHTvSsjhWE4vESFHf6byKgSEgBAQAkJACAgBISAEhIAQSIgEwsKsad/yjc9WvccfsHNwRJ3f5qFO/ynQAs7jkdcJPL13HW3+OYO0OQsgQ4GSaL3oOBqPW4cDk3vgZeAzle/pjbNwcHRC64Un4Jg6vbavzb8KxZ7xPVHm6774ZuVlFG3SAQxFl0RboKneYxy+WXMVyZKnwtk1C8LyTuiHx9cvqDo+n7QF6XIX0PKF71Pg4ztKFHp69wY2/a8JSn/VFy3mHoa/903sHtdH1eX/2BuXdyxDrf7T0GDMKhxfOEwJMl4Ht8Hb4xjarfBEg1HLkdbdLISRNma/O5eQXhtn2yXnkbNGE+yfOgBJkjlr4y+CC5uWqPrvnD2CV0HaV1DFhIAQeO8EEtk74d6upbi3f63qCz11xIQACXDzee53Y+mYNWvWe4HExXKG6OK+Lp999tl76UNsNxoXucf2mKX+mCdAAYd7DNkaijDmeyA1CgEhIASEgBAQAkJACAgBISAEhEBCJODAcC12mpYTHLVQ4XGKRWJNjEmkxYZP4ugMnge/CBMrKnfV4usnT6n66l62Bi7vWodr+7eo64dXziF1lpzqvGiT9nBI6ojs5Wrj6t716l62CnWxb2p/vNA8XvLU+lzdy5i/JO6dP4aDs0bg9pl9SO4aFovj6t41qDNwLhxTpFaHyqz9sNQnpt0+uR/O6XIgT81GKmuxFt2x4/cO2vl4dZ2rRlOkyR4m1lCkenLjCtLlKojnmhi0Y/TPKP5FRyTL8pHKa/4jb83P1ViKf/E9/m49FUHP/FG06ffYPvx7lGzdHZe3r0SBT8L2OzAvK9dCQAi8WwLpSn6O+wf/ga/XcaQq+CmeXtjxbjsgrcVZAs7OzuARl4zeOvTKScgWF7knZN4yNiEgBISAEBACQkAICAEhIASEgBAQAkLAdgJ2FHNevgq2vcR7yHnv/FHcOrIxyi07JA6LUf741lUsbFUcLwJ8UbnrYCRxSY9gLZ69uTkk0eJsvLYqXYagZt9p8NyxEn9/VQ4Mc7Z7fF/sGtcTH1X8GMVb/oQQLWQZLfjFMwQHvXhdMvIXesY4JHsTC59CUqjWH0vh7igIaQlImSkb2iw+rXnk5MPKbnVxcfMyqw29fP7a+yYkFJmLlFN57507iss7lyL3a3HKagWSKASEQKwTyFyjJUKDn+HZ3ZPI/vE36jzWG5UGhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBCIdwTs2GN7h7CNlN9l78t8O9hqcxRw1mv70kyv44rVP36s8lor46gJNP4P71ms0/v8cTi5Zkbxpt9pIk4wXj33tZhPv0lRhfvjZC5aHvVHLATDo/l634bX3rUo801/ZNL28nl09YKeHZmKV8fJZVPxws9XecI8ueml0iLqU+ZiFcDwbhwjw72dWTULbiVrgcJaROZz/RK4N0+JL7ugSNNuuHZwq9pn59y6hXj12hOJZZ/cuabysU4XtzxIktxF1Vvkix+0/XS6I0XGnEoYiqgduS8EhMC7I5AiRyE4uhYAw6ul1T5HxISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAKWCGhuH5rjh+a98a6tePPO4HFiyRTcOX3AxPOGXji6J06W0p+gZKvuqnsZNRElIiv0eQdsH/YNDrvlQqM/V6ps3OeG5l6+phYabRBmN84Dp7RuSJoqfZhw8lo80fMlQpiY8sLvCY4tGK2FJuuged8Ewb1iE6TK7I7iLbph+9B2mldNCqTLV1KrI0wEq9lrLFb/0hTzmxdQ7ZVu/xuKZc2BiPqUNnseVOw+Hmt7NELIq0Ckdi+Kz0aH7dWjKjD6YWefRF09uHASeyf30sSZNAjyf4QGv6/AU0002jvhR7VPjkvaDCrfpv+1VeHY2MdGY9cYaipQtxkOz+iH8l3GGO7JiRAQAu+bQCIU670QIZq3np29+jjW4jOGfW69755J+0JACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIxB0CibZu3RpatVp1iyG+3nU3dWFHb5cijjUBR8+nv9IzJpG9HZI4JddvmbwG+j422dPGJNHCxcsAP3U3sbOLITXoeQDsHBLDIXGYyGJI0E7YvoOjI+yN0qz1iWHaWJ++r49xXZbOQ0NC8PzpQyRL6aqt94Yt+Ab5+ynvm8CnjzDvizz4du0trU4/OKVKZ1JFwMP7+LttSbT+5xSSpUhrkiYXQkAIJCwCHp7XULRAroQ1KBtHc/bsWRQqVMjG3JJNCAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIxA8CdgwpFnFwr3c7CHrq1B+2wHBERchhT5O6pIhQyGG6Y4rUfLHZKOIYCzksmCSZs0Uhh2ls31jI0e9FJC7xm/i2CjmsiwKOU2rNq+i1kMN7DKNmbuZCzrkNf2PVz5+hYMNOIuSYw5JrISAEYpyA9t8KfPV9u2K89vhboZeXFyg2vWsLDg7Ghg0bEBAQ8K6blvasEDhw4ABu3LhhJYckxQcCizYAvceHRLmrflqY3ZchcWPPyiF/hWLm8nfvpR9laHGgwAO/B9h2flMc6EnkXQjR5tf606vgH+hvMfOBy7tx49E1i2m23mTdbINtxRU7eu0Qlh//Rx3eft5xpVvR7kdIaIiac89eWH6OkVUc2TyIrHxCTn8U8BC7Lm6P9hDj0+dBtAcpBYWAEBACQkAICIE4R0CJOaFxRc2Jc3jiT4cSa95IZTsM0/beSByu06GaB1D59gNRvkPfcGlyQwgIASEQHQIUbLrMXo1cfSYh8OUrQxX/HjiFuiPnosSgv/DV1GU4efWOIe1DP1mxYgUmTJgQYxgoDH3zzTcqbOjy5csjrPfly5eoX78+7t+/H2Ee44SgoCB899138PaO/4tg69atw9y5c42HF2fOf/31V+zbt8+m/iSUZ1K8eHE1X7lHID3ofv/9d1BstNVGjx4NimBxxQKDgJ4TXuGL2raHx7zhcxdN5vRHxrHfIsvor/Dj8rEI4QdqLNpzLZTn3ANrkeePduowb6pJ9UToOTEY/s/NUyK/3nPpP/RY9oNazK8+oSy4uGnNGkyvjTFbhobLUml8SUzbOT7c/bh2w+PeOTRd1tTmbq09uQJz9k+3OX9MZgzSQkV/trIx7vvetVjtr5v6YK/nTotplm6O3DwEFICM7Z7vHdUG24pJ+3RaTdgPSoRUg5Oj1qQK2HpOU01ttJuPb+DU7ZNotvZLeN73sLFU3M328lUQ6v77CW4/id7vU5HNA/ORM3+Hha3g7Wfb7wzm5ePTtcfdc2i4pGG0uxzVz4NoNyQFhYAQEAJCQAgIASFgRMCOf1Ajdv+GNGpOTmOLAD2Cin3xPezswvbxMW6nUIO2yFGlnolHj3G6nAsBISAEokpg2+lLOHTT9A/9R37P0Hf1HgxoVBUewzqhlLsbxmywbbE6qu3Hx/wdOnTAiBEjYqTrjx49QuHChZEmTRo4OTlFaUE8sg5wcX3mzJl49uxZZFnjfPq5c+dw6NChON/PyDqYkJ4JBRkKizNmzMCQIUOwcePGyIZvSKeHWVzyZlq2FfjIzQ6lwrZMNPTT2snvOxbC72Ug7v/0F450GIOZlw5j56Wj1oq8ddqIrXMx4fA6VMyUCy8seFAUyAlULJIIf2+I+h8EmzzWwS1lZpy7exY3Am4hnYtpmF/zzudzzYdrj6+Z38bZpxfhnk7rSAKzs3dP4+C1/QliVJsursO1R9fe2Vh+KdwNRzsex5fFWuPjZfU1Qce2z4rGxb/A4Aa/wyWR8zvra2w2lMQhKa52vaq9P3LEZjOGuoO1LwHOvvI3AgLDwo0bEhLgScnsZXCua/wX/BLgo5EhCQEhIASEgBAQAlYIhIk5VjJIkhAQAkJACAgBYwJPnwVi6Lq9GN6wqvFt3H8a9od/oayZkNjeHoWypseFh48RrO33lVCNi+wVKlTApUuXTIao3/f09ATDq1WpUgUNGjRQIolxRi5mDx06FPXq1YOzszNGjRqlfcM9cl4uLi64e/cuxowZA1dXV+Mq1fnJkydRunRpVefgwYPDpUd0o1OnTmo8TK9bty7oSTF+/Jtvy7Pe6tWrK+8KjunMmTMmVdWqVQv0QOJ4+GWRbt26qcV39oV10RujV69eyJgxI1avXm1SNiYvjh07ptrj2OfPn6/O2T5FMNqLFy+UkMB+kPugQYNMBLE1a9aovo8dO1b1lfk4Vj4vcmGZvn37Im/evGjWrBmePn0aafcfPnyIpk2bKi4tW7aEj4+Poczly5dVvWTGtrp3724Ii/e2z8TQiIWTgQMHYvr06coTi2Pic6KIxzlIL7Ls2bOrsbI/vO/h4aHmsvkc1e8zdO+9e/fAPrM+HsOHDzdpmXM3ffr0ap4VLVoUhw8fNqQvXbpUzRFyaN26tYHRnDlz1DPcuXOnYsNn2aJFC5v6Q+GoXbt2qi98XsZebNbmAYWj9u3bq/Y4jh9++AF8hsa240gIPq4QNff2+/5PUEoTVZI7OiNbmoz4SHu94nPLuNoYP/+uQmMc7TYNn+YvH2HdtcrYYcdh28WcBQdmK4+JyaemY8ax6Wj5d1P4vHyq7j159jjCdnKny6uJOVdV+vANA7HqxDLNu/M5/EID4J42bLH6nyMLUHh0buWZ0XJOYzz0N+UeUeUfT6mKcdtGouSY/Kr86pNvPBZfaALaoPV94TY0rfL2GLC2D15pi9a6WWvz78PzVLmcIzJjybH5ehGrr0evH1b9GHlkDJZcXq7O2S+f12Pxe+GHLv98o/rCeif/N9am/UvpNdF6bhNVjp4r9HS6+vCKoS8nbhxDmT+LqPRB60w98uk11XjmJ4pri9mN8Dgw4udkqFA7mbV3iur/7seH8cuWn9R589kNjLNgxp7JihE9ak7fOmFI8/a9h7bzmqn+5PvdHUuP/m1Ii+wkRdIUyJVe2w+0Umd0ztceI/8bYihy8vpR0BOMDOjVZdymIZOFkw1n16j+sxz7M2nHHwbunGvG/eOzIsvL3qb/v1uoVvWl36qfDfPk32OLDdkiYzBwTS/llUZvGHoisc3nQWFhUZlWeUIptFzQBPce3zbUyZNtHpsNY+E8uO4T9r5imrV5wPSI7Pu/v0KlCSVV8iezaqn6+Z7SzVqbeh5Lr9bm+7ANAzBv/0xDsV4rumOZET++j39Y0h5/bh2h+PI9bO15B4e8QoVxxXDp3gVDnTzR73vev6ju0+Or1pRK6Lj0G5N8DBv4zYKW6Lqkg3oefJ8aexxa+zzweuAJfg5xfvH9rodw+/nfziZzS2+Q9/W5Mn//X2ousyznwBVvTz2bvAoBISAEhIAQEAJCwISAnfqDPGp/h5pUIBdCQAgIASHwYRGYvOkAvqlYFG5pUpoMPK9betTOnQXDV+3AqsPnMHn7EfxYvRTsjfb5MimQAC7sNdGKnjHHjx83GQ0X5xkOKlu2bMicOTNmz56NsmXLKmHHOOPNmzfBcFv02lm1ahV69+4dLo9xfv08sRZSk4v+ERlFFC547969G6dPn44oW7j7XNxfvDhsEYreOexTmzZtVD4uZLPOypUr4/z586hatSratm1rUgfHzPx16tTBiRMn1JgZIuzo0aOYNGmSynvnzh0lQvXv39+krPnF8+fPDYKALgzor6zPmhUoUED1vXPnzkpE4zh4pEwZNmcpgi1cuFCNlZ4hfD7btm0zVPn48WNMnDgRu3btUnkWLFigeb7agc+Lz5NjYYgwMqJgZ0u4tGnTpoFjJ6McOXKAwphuDIVHweHatWvKU2X79u34888/VfLbPhO9DUuv9HLp2LEjUqRIocbatWtXlY3tU8ChEEPRjewobFHc2bNnj+qncX1HjhxRdVCEoThEoYpzhGMsWLCgcVYsWrQIP//8sxKOmO/rr79W6RRqmjdvDs4LlqN4NG7cOJXWuHFj1YdSpUopEY39IZ/I+kNxiaKPn5+fekYU9yio6aKMtXnw5MkTzJo1C25ubmDftm7dis2bN5uM5ZRnKHK4Re2X6M4VGmLRhQOYtncFBqyfhgdaCLT6BSqZ1BvTF1lSZ4D27S2r1ebIDOw+FbmQrFdSNW8N/Fi5pxJhZjWdB5fEmsBZtjeGfjIKzo4uerZwrzlcc+HykyvwC/TFr0cGY+r+cbj3OgxY9jTu+O/CVrTa0BZ9q/THsXbH8OxlAMZut82j8eDDY5h2dCrGNpyKtkXa4qs1XxkW6kdvGYbFZxZjYZO/sbr5aiw6uwBbPMJCd1lr8+nzJ2iz8Wv0rtAHfzWei01XTedAuAG+vlEwUyEsb/sZsREAAEAASURBVLce7Qt8jbpZqqtzXqdySqVyjNo8GNuv7cCKL5bj16oD0W33z9h58c1nUET1cv+TYm4lcPC7w7jQ8QJSO6ZGq4VNDNm7rvwORdMXxra223HmvqnYPm33ONwPuIt9rXcjRxrtMyjAdLHbUInZyeclWqj+l3QpjF7leqnzsZ9PMcm179ourGuzEcmTuGDizjEqjXu9NJ/bEH5Bftj51U4MrDEYX65vZbIwblKJlYsy2crj6KOw/8u4sF5ybmlUcq+C0x1Ooap7NbT7p6WV0m+SEmmfCSPrjcWNbjcwscEUdN/TA9svbFEZymeviHF7Rxkyrz29As+DnyNnutyGexGdUOhacWEFFn+xFJ1KdkaLdS01QUYTxm1gcFXzVOuy60e4JE2JrW22oku5roZ5+32VrpjadDYOPDmOwFcvDM0zBFrdpR/j49z1cLDtfrzURL5WC5sa0q3NA0MmCycD6w/Hwlb/qpTpjWepZ92m3LfqOrI2LVRnuGVtvl97dAX3/O4Z8nr6XNJEzzfhGh8/88HUC7Pwn9cO9f6d22i+9qUIO0N+8xN7Owc4OTjh6I1DJkmemih36OkpTUTPru5PbzYPnct3w577B0zyUYye57UYbikyq+fB9+mms2tVHmufB+r/G010S2yfBIe+OoiaOeqgxj+1lICb3iUjtl8y/exg/tke85E1dTZQBGq3tQMG1ByM2z/exuC6w8HfL8WEgBAQAkJACAgBIWCJgLY2EfEvQ5YKyD0hIASEgBD4cAmc0PbA2XnpOlpoYk4409YK6xXNgxVnvDBlxxE80DZgKKaFWkvoVq1aNSVWUHzgN//pwcGjZs2aSJo0qTpy5cqFDBkyWETBBWwuVteuXRtcrDYXhiwWsnKTi9BccO/Xrx9KliypXq1kN0miQMQFchqFKJ4zlBtt/fr16rVMmTK4evUqSpQooRbd6ZVhbBQEfvzxRxQrVgytWrUyJFWsWFEt4NOjp3z58qoOQ6KFE7KjaGPpoFhjzZIlS6b6Tq+l1KlTq3OORV8coUhBDyM+M39/f9SoUQMUbMyNocCYj89GFyUoZtEbi8ax0JtFFwfMyxtfUxShQFKuXDklWBin5c+fX3n4sD+3b99GkSJFDF5PMfFMjNsyP+e4KGpw7lGcozjJvYa4zxKfH72tunTpojycmMbxc37zudDTikIUvWso7tHomcMvCiVJkgS5c+dGw4YNTZqkV467u7tKCwwMVPmZYd68eaoPFNzIgHOEgg3rT5UqlXqGyZMnVyImnyVFlsj6Q6GNQgzfoxTS6BXE8a5dG7YwZ8s86NGjh3rG9Kbav3+/yVjOeYQgQ1qTWzh75wpmHVgd7vj3eNhCfZaU6ZE2STIM3LcCf5zehTZ5y2oL/MlNK4niVWRt2lJd+rSJ8Mg7VPNWsSW39vmQxh2OiZOhlmtFlM+pCby+l9G8VCuUy1kJibXF1IjM3TUHPF9cV9+sr562PA75nMSNRzeQwT4NkiVxwpxDM0HRIGWyVNoeITdQPntl0PsnKPhlRFWa3P+p/M+okrsaOlT+QQlN1157rYw5NhZVslbCc80LyF/ziqnoVhELj8xRZa21edhrv+pb9xo9UT1fbXQs0dGkvYguOBZ6GqV1dkUqxzTqnNdcaKb9fe5vfF+qI2rkr4uvK3wHsthwbk1E1Rnuk3mPOv2RQhPMLntfQN50+dQCNTM8DvBRi/796g7SwpyWRd9aAwzleLL24lp0rfCz9owq49d64fctMslsdJHaKaz/zg7JkCFFJjUWt1RZjXIA/WoPQgktZNW3Zb/H+mubVNql+xdAkaN6zpq4/fSW1ucUKOCUC2tOhYkFJhVEcpFSE8HovcV5sP7MSpWbAs+1h14okbW0EqbO3Yn8iwufFG6IKpoQyX11nr8KRO6k2XHp9b46X5RsqVjqHh1/HZmOjqU6K2/KSLqnkjuW7oyqeWvil9r9VIi3I5p3lq0MyOXPL6ag9Efl8VWFDnBKGvaZQM550ucN1/yuSzvUvQH1hqky5E/Bh8JoZPMgXGVGNxgyUfeQo+ih5nByV5XDWptGVVg8je58N65sVsuF6v1Sp1B9FM5s4XdQo8xVP6qOo9cPKUGNHlj05Dl9S/Ms1t5nSRM7qpw50+cGBeSIrGed/ym2zQq2wP5re1Q2a58Ht7TPsWN+Z9C/9m/q/Tfo0+GqzH5tn6my7uWw68YudU1Ptbn7Z2ife9fUnC6apZhJF9JovD8u+KnhOZgkyoUQEAJCQAgIASEgBDQC6i+K0GDtm3iJtFU4MSEgBISAEBACVggMXvkfGpfIB6/7PriiHTSPW97InyU9Lt97iJ+W7cB/PVojq2sqrD5yDo2mLFP75zDsWkI1etxQOGFoL4Zb27FjhwqBRhHAFqO3i25cpKYY8zZ29uxZVZxiDC1nzpzq9W1/0IuDghQ9FHSjBxAX5I2Nwoi5cdGdRoGGi/wODg6R7slDLw8KMZaM5aNrvr6+qm1vb2+DpwU9U9KlM93rg+IGhQdzY9v0jNLHxPHQ+8ia0cuE4gdFPRrFJl0c4jWfGecRRSq+3rp1CxQuIjNbn4m1eigkmhvFFIp1urFfeihBCiOc6xcuXAD3JKIXDQUT3fOKXjc9e/ZUYgvHSO8aCkK6URj7/vvvVRg7CiVMpzh28eJFvHr1yvBMmJ9hzshO96jS6zB+tdYfcqRR1OFBo8hKUceWecC8ugDI+WEuXBbMbwftY8/E7vv54OB1U4GTGTK4pMIXqIXeG2egUpa8GNu4u7bQGIgSk39ArsMb0bHS5yb1ROUisjZtqcvbJxSZsiSCgw0f1dd8vLTwaP9i2+UtCHj1HL+t66cWJVeeWIoGRT5XobEiapPfQqdRuPg4T30EerzAds1Dpkz6kur+5ceXtHBIL7HJI0w85s02eb/Esxf+SOJk+fNAFXz9I79bEXWW6nVeX80DyPf5U9U/7wBvQ70pHVMiffKw97e1No/eOGzoGyvOm9HU0+x1s1F64TfyrwXdQcGMhQ3lSriVxo0n1w3XEZ281EJIVdXCbt1//gA1slaDb5CvysqQcWdvh4kZ2TXBjJbbSARg2C4uNOfOkE+lUWyigBBTlud1vWldXHE/OCyc5a3HN1X1ng8uggetWrZqcHEM805SN2z8QW8J7oGTxD4xrmth+ij+bbm40VCaYdheGHmuGBLMThYdnIMuW7qinGtJ5E6bB76v/FSYP2bLmNINTbN+iqXHFqFF6TZKHFlWcp1ZDRFfFsgQNjf4f1fZtMVwXJs7hdzCRIfIGHyW57OIK7aQcv/pHSV66sJEvtf8H/h540lAGH9L88BCVTbfstZmRk3ki8jeZr7rdVLgTe9i+Qsxeh7j17LZK+B/W/ri6LVDSjzeoXlf3fG9g2of1TTOFuE5RR8HeweVnt45HS4+OKfOrX0ePNA+X2h5De8xZ/Ueu6u1+0XuL1U/KOCsub4Bj577II0m9JZPVUITsZ2RQ/P+Gll+KD5Z/qmqg/N5SINRmtAf+WeeKiA/hIAQEAJCQAgIgQ+KgAPj+ieyt0NoSOgHNXAZrBAQAkJACESPwIbTnuDh+yLsm9K9l2zBjG8b4tyN+8iRKrkSclhzqRxZVAPXvR8jV6awb3ZGr8W4XYoeKFyoZ+gnenIsWbJELUDbuldNTHvI6oIBxQp6ddAjITrGhXVj0z2LGG7LWp8pjMSE0UslUybLC0T0kKDnRmTGRTX+nmNsukjCPYwY2iwiMxd39HysM6pG4SdPnjxKpKG3FNlSCNGNIdu+/vprTJ48Wd1i6DMKNeYWnWfCsGYUNbiPUeHCbxaP9botCWYcuy7eMB89sXRxkJ5Fo0ePVlwZUo170HAsfB/Q6I3D9wL3quFcoWcO9xSyJMBRJJo6daoqx/qZx3iPJpVg9IPCijkDa/3RGVJ0NBc19X1/IpsHRs2HOy2eNxG87vD35zdzombeMuBhyYK1EFlb713FguK1NA8Ne7VvTq1sBbDj8gkTMUf3ANI9wCzVZXzPWpvG+aydX9F0r7KaOGWLhWqeVwz5tPH+DrWXyaEbe9Wi5ItXQYbwUBHVw8VnekPMOTNXhaTy1bxkZp6aibYFWqsiWVNkhX0iB0xsPjOiKqJ8P/nrsG8NCjRS+6+YV2CtzQKZCmPeqbmGItc1ISsqxnBQIZoAY2z8DKEYcdXniuG2x4PzcE/lbriO6GTL2XVKyLnY67pabP770Fwsu7kOodoUzJ0hzIOD3hn0sLileZ/oxgVjcqf3QCnNg4ai0Plnl/Vkm145Z433GTIuZOlzMV3ydCpL9+o9rQp8xvVEdL7v6m4lwDA9Y/Kw/xfGN5uuhQ+MeM462SUF90rSjSHqKORM+2SqEmsYAm35sBUqFJqe56syHdB+Vdj/C40z14M1kUIvo79ee3RVP8WZxx7onqEXbGWQOlkaQ1lbTtJqbCnOcR8YenvdeHRdFUuVLLWhTUvzwJa69TyvzPbvs9amXsbSa2Tz3TGxE3wD33yJ5fTD05rQ+4lJVWm0cIJRsWLZSys+KzUvsMnVJ2DZ6cV49uoZBtUO85aJSl3Gea19HqTW2NP4LFI7p1VeZHyPpdHOeU3xdOJ/f6Bzke+w1nOt5uW+DTWNxCV63P1Uqzf2XdmLFkuaoPjxEvimUifj5uVcCAgBISAEhIAQEAKKgJ36xqEIOTIdhIAQEAJCwAYCK39uhbU92qhjcpt6qsSaX1rDPV1qlMmVBV5P/HH48k0EabF6Np+6iMwuTvgoQ9QWKWzoRpzKwoVvLtT/8ccfas8PLlxzXxR9cTu2OsvQXlyk5ybuDx48UOcMSUUBhx4R8+fPV4voc+fOjVIX6DXCvm/atEnVzW/V0uhxwwV61kuhhR45DB3G89gwCiD0eLF0cAHfFitatKjy9KCgpS/eU4iiWDJnzhzlDcJ6vLy8woXQsqX+qOShBwyFlUePHhn2JdLLM2QY93XhWBmyzDzk29s8E46zT58+4bxK9LYtvTJ8HEORcd8jCiLcR0kPl0aPHXri0Lj/zMiRI9V8Yyg0Gvfb4Vjo1USvM4a6M17opefZ3bt38d9//ykhp1mzZqqczof7D1GAIyeGezM2Cnjc44jvMf15WutPvnz5lAg1YcIEUNxkvQcPHsSVK1eUIPm286BaSTtsPmD7l6G4GN4seyEsObUTT575aYv5d7SQVFpIxlzFjYcJhiTkEVMWpHlt3Hp8Hw8CniBQW6Dl+UP/xybVbz8Sgmql3ohSJolmFx+ly4VOVbupuyMbjYWbSxZ0Kd8dfT4eYBAUzIqYXBZyLai8N4pkLY6y2cup8zzpwzxGGhX6AkturMJuz53aMw5W+02sObXCpHxUL7jg3z53W8w5NgsX7p1Xxbm5+L7Lu9S5tTbLa2HjGBaOG7/feXITi08vjFLzRbQQSjtu7lRlKR7o9ulHn2DByXm4rXmvHLl6ABvubUPlnNX15AhfOe+fBwciIMgfV7UQclMOTjTkpWcJF4znH5ilza/HmHPQVBD7LE9DLDw2RzFdfHCuoZytJ2Wzau+/C2vBfUOMxxJR+fxuheCexA3j/xsN7rfC53nwyh4tPNyliIqY3H+qLfB73D2LiTvG4C/P+ehdo79Kr5HvYzVn5h2YqcJoBWqh81adWKbOjStokONTLD+1BI+fPdIW1oPUPitZk2XCU40NrxcemG3wItLL1cr/CZ6FvMDAo0PRThN2omKLTy7APc1jZsPZNare8h9VxNsyiKj90lrYLtqiQ/NeP+vpSqxzS+WmPIyszYOI6tTv02urmHM+bNS85yiG6b8DWGtTLxvRq7X5Xk7zotnkqXmrBDzElrPrlddaRPXYej+9S3rFY/z5qWhZuq3mweavQugVy1ba1ios5rP2eZAlrbsSaeccmKbeIwsP/KXqYMhDWm332vjz7CTU1uYvPbHYt3LaHKFd97mKkzeOK2GuRNZSSJs0Dfw1bzoxISAEhIAQEAJCQAhYIhD2daZofMvUUmVyTwgIASEgBD4gAmbrfh9pm0f0rlUaPZdsRYH/TcWWc1cx9PPq2h+nEX9zNqHQqlu3LurUqaM2geeiNMUdLmLTuN8IF7MZemrmzJnqXA/BRmHBeKGb+c2vec+Sde7cGVmzZlUCyw8//KDO9TBQXGDv3bu32muEC9dRtQEDBmDo0KFwdHRUG86zPD1+Vq5cqcZDoYUCAzer1xd69DbM+298zXP90PNbe2U4M0uHcZ3WynNBnB4p9Bbhl1e4oE8bNmyYEr242M+66LVx+XLUvqWut8tnaM1TSc/37bffYvfu3UibNq1iq3u6MJ1p3IeGYeg4N3SBQy/L17d5Jsb1mJ9bYtmkSRMlTFIoYeg/GkMJ0igW0kuL4g73U+IeOp988uZb1BSP6J1FDyj2md5GeqgylqewRPGqV69eoFfMiBEjeFsJQ4MGDUKlSpWUhw456fs0qQzaD+7hQxGRwhH3FaJZ6w9D4LEOCkzsMz1/GjVqpMQmlrU2DyxxYRlja1ILOOcVghMXjO9aP/+lWgu80L5Nn3n8dyj3Vy/Udy+MlqU+NhTSxVHdE86Q8BYn5+96Ie+0H/HLnn/hry2o87zrinGGGj00h4J9p0PRsr7Zh7ohR/iT49ePqP0nuLfHymvrUFbb68NWy5++gBIduBdL8Wxh4dU+cs2linPfnV9L9kb1v6sj8RAHpP8jHdafW21r1ZpXj+kY9Oc4/LM/kNFZE7qnF4T9oETIMzWPQVSw1iZDO/Ur3kNtNp91fDa4JI48/KFxZyvnro5a2WuhwIT8SDxY+wzSRA3awHoj1Df3s03IhnLzKyixqXGJMGHTuLz5ee2Cn6BkuhJIMyo1ck3OhaIZwsJ4JXqtKY6oMwr9Dw1E2tGa589jUy+iDhU7Y/+9g4rp8N1DldBiXr+169Zl2ql9Zth20TFhXkDaJ7oqor8al0+ibQS/qs167LyxE5n+zKie5+eLG8H/ua9xtgjPufBdfmY5rD6/Apu/2KjtWVRH5c2dIQ/+bbAEP237BclHOMN5uBN+3dZX+7/ojVjGjN2q/YIbT2/CdXRaDFrXV33WD639OwbtGYRkQ5Ni0sEJqJK6jIl3D8O4dSn6vQrpViv/m/dlhJ00SqBYm3lcZjRY3hC/leqnvDFsZWDJw8jrgaeaq07Dk6lW8k3Lq67/u7BVeTpNrDoW7ba0V8960aWlmPvFQiUGMLO1eWDU5QhP+9UYiN/3jwDb7r3yR5UvV/o8sNZmhJVpCdbme/V8tZBM885JNyadCo3GkGqhZu9ja3VHlFbro1pqT68UyVKiYb5GStxJ5xLmLbb48HzFssqiaioEIz8TePhpnoL6Z4aleq19HnCvsH9brMDcC3+r92eH7Z0xo+Zkw9435T6qpKosl6Mi6uQL+zJU8dfikrfvPZScU1L1IeVIF+RNnQftKn5vqQtyTwgIASEgBISAEBACSKTFvg+tWq16uMUYYSMEhIAQEALxk4CH5zUULRC2MPY+RhCieXI8fRaoLWSELUC8yz5w7xFuyh7fjR4E5iKJPiYuNBgvjuv3zV/psUMPBuN9X6zVa6sowW+G00OHYo7ujWHedny5DggIUHsUkRFFo7cx8/BfxnXxefG5kT+9qNieJQGIXOnpZSnNuD7z89h6JtxXhvMoopBz5v3QrznvKEpQaImq0buMHCgU6fsSRbUOS/l9fHxUiDZLfN9mHkxfFoozl0MxqU/UROsnz/3hlMRR2wPEwaS7DLFGEZIecG3atDFJi62LvhNDkU5zrPq5jakQElvt2VIvN7q///Qu0jpr8+D1ZvC2lIssj3+gv/at+cdIlyKj2n/FOL+1NrnvTqj2L2WyMA8043Jvc05xJ1niZNo+MlELT+nj/xDJNS76ninGfaA3xdNA7bPfwh4j9I6553dPhQ+zJCAY1xOT5w+1/r7S9kJin2KqXXoH3Xt6WwkBDGNlqzE0mU+Aj0U+rKPpX/WRxzUvhjf609Yq1SL8vjZ7kS9jAU1Qsbf4PGODAZ+1T8ADzRsncziu1uaBzQOzkNFamxaym9yyNt+ZZmnOmlQQRy6sfR6o95i2T46rNtcp5tlqDGHo7XcXqZ3SavvoONlaTPIJASEgBISAEBACHyCBMDFH+xao7JnzAT59GbIQEAIJksD7FnPeJ9SEIuYMGTJEeTVYYkmviWXLlllKivQe9+BgCDhLNmXKFHTq1MlSktyLhADDilnbK4jhymI77F4kXZTkeEJg4sSJmDRpkvLUomeRmBAQAu+GwEGvfZi+dyLmX12Cy10u4yPXnDY3TK8Oijn0uhATAkJACAgBISAEhIAQEAKxSSDRli1blGdObDYidQsBISAEhMC7IyBiTvz3zKGnwLNnzyxOGi7wpkyZ0mJaZDe5Xwk9HyyZs7NzjHpCWGojod6jFxX3MIrIUqdOrUJ8RZQu94WAEBACQuD9Ejh5/SiO3jiEqnlqa3s/5YlSZ2bsnoRPizSEW6qsUSonmYWAEBACQkAICAEhIASEQFQJOHABgqE/IgrnEtUKJb8QEAJCQAgIASHwdgQorPCIaYvvYdFimkdM1cffo6Iaiiym2pZ6hIAQEAJC4O0JFMteCjyiY99V+SE6xaSMEBACQkAICAEhIASEgBCIMgEtLLsW4zvuhMiO8gCkgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIAQSMgE75ZUTEpqQxyhjEwJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhEC8JWAXHBwMeztxzYm3T1A6LgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIJGgCyjNHHHMS9DOWwQkBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAvGYgF1oaKhsmROPH6B0XQgIASEQ1wiEaN8QePIsMK516733x8vLC2fPnn3n/aAH7oYNGxAQEPDO25YGIyZw4MAB3LhxI+IMkhIvCCzaAPQeHxIv+hqdTm4+AHw1IOGOLzpMpIwQEAJCQAgIASEgBISAEBACQuB9EVCeOcEh8kfa+3oA0q4QEAJCID4S0L4HgC6zVyNXn0kIfPnKMITFe0/i41HzUGrwX2g6fjHuPPI1pH3oJytWrMCECRNiBMOkSZPAPe/Mj/v374er/+XLl6hfvz4spYXLrN0ICgrCd999B29vb0vJ8ereunXrMHfu3DjZ519//RX79u2zqW8J5ZkUL17cMGcLFSqE33//HRQbbbXRo0eDIlhcscAgoOeEV/iitp3NXXoeFIi5B9Yizx/t1GGpIL9o1XB2XziP+BLMH5sWWX+qlgRW7w7BiQux2QupWwgIASEgBISAEBACQkAICAEhIARsIaA8czRFx5a8kkcICAEhIASEgCKw7fQlHLppKhzceeyLX9ftxegWdXBiYHt8lDYV/li/V4i9JtChQweMGDEiRni0a9cOd+/eNRx9+/ZF+fLlkSFDhreun4vrM2fOxLNnz966rvddwblz53Do0KH33Y23bj8hPRMKMhQWZ8yYgSFDhmDjxo0286GHWVzyZlq2FfjIzQ6lCtg8BIzYOhcTDq9DxUy58CLEspC1/MQOHHxw0/ZK3yJnZP1xTAIMbG+PkXPki19vgVmKCgEhIASEgBAQAkJACAgBISAEYoSAnb29vfqWZIzUJpUIASEgBIRAgifwVAuhNlQTbYY3rGoy1gMXr6FYprQo6u4Gl2SOaFQqH1af80Jg0EuTfAnpgovsFSpUwKVLl0yGpd/39PQEw6tVqVIFDRo0UCKJcUYuZg8dOhT16tWDs7MzRo0ahRAbvGWZN2PGjOpIly4dFi1ahO+//95Q9cmTJ1G6dGlV5+DBgw33Izvp1KmTGg/z1a1bF/SkGD9+vKEY661evbr6vYFjOnPmjCGNJ7Vq1QI9kDgeeg1169ZNLb6zL6yL3hi9evVS/V69erVJ2Zi8OHbsmGqPY58/f746Z/uPHj1Szbx48UIJCWRIloMGDTLxEFmzZo3q+9ixYw2cOVY+L3JhGQpoefPmRbNmzfD06dNIu//w4UM0bdpUcWnZsiV8fHwMZS5fvqzqJTP2qXv37oaweG/7TAyNWDgZOHAgpk+frjyxOCY+J4p4nIP0IsuePbsaK/vD+x4eHmoum89R/T49Su7duwf2mfXxGD58uEnLLi4uSJ8+vZpnRYsWxeHDhw3pS5cuVXOEHFq3bm1gNGfOHPUMd+7cqdjwWbZo0cKm/lA4ovjJvvB5LV++3NCetXlA4ah9+/aqPZb94YcfwGdobDuOhODjClH7QtR3FRrjaLdp+DR/eeOqDOePAnzxy/Z5mFy7neFebJ5E1h+2XaFIIqzaGoxg0XNi81FI3UJACAgBISAEhIAQEAJCQAgIgUgJKM8cLjqJCQEhIASEgBCwhcDkTQfwTcWicEuT0iS7i2NSPPB/brgXwBhEmj0OeHPPkJhATviFCCcnJxw/ftxkRFycZziobNmyIXPmzJg9ezbKli2rhB3jjDdv3gTDbdFrZ9WqVejdu3e4PMb5LZ3T84TeCg0bNjQkU0Thgvfu3btx+vRpw/3ITri4v3jxYpWN3jnsU5s2bdQ1F7JZZ+XKlXH+/HlUrVoVbdu2NamSY2b+OnU076wTJ9SYGSLs6NGjYGg42p07dzBmzBj079/fpKz5xfPnzw2CgC4M6K+sz5oVKFBA9b1z585KROM4eKRMGTZn2f7ChQvVWOkZwuezbds2Q5WPHz/GxIkTsWvXLpVnwYIFsLOzA58XnyfHwhBhZETBzpZwadOmTVNjJ6McOXKAwphuDIVHweHatWvKU2X79u34888/VfLbPhO9DUuvnDcdO3ZEihQp1Fi7du2qsrF9CjgUYii6kR2FLYo7e/bsUf00ru/IkSOqDoowFIcoVHGOcIwFCxY0zqqEx59//lkJR8z39ddfq3QKNc2bN1fzguUoHo0bN06lNW7cWPWhVKlSSkRjf8gnsv5QXKLo4+fnp54RxT0KarooY20ePHnyBLNmzYKbmxvYt61bt2Lz5s0mYznlGYocblETc7KkzgBrHvEDN85E95J1kT1tRpO2Yusisv6w3ayvu3I7/kdejC2MUq8QEAJCQAgIASEgBISAEBACQuCdEHDgH7qJtAUKMSEgBISAEBACkRE4cfUOdl66jrW/tIbnXdNvqZfJnR23/bZi6f5TyJMpHWbvCVus1kWdyOqOr+nVqlVTYgXFlGLFimHZsmW4ePEiatasiaRJk6ph5cqVS4VAs+TBwQVsLlbTuFhNYYj5bTV6nnBBPFWqVKoIF6G54M777u7u6NevH9avX29TdfQK0QUPClFcLNdNr6NMmTK4evUqSpQoobyK6JWRP39+PRsoCPz444/qmjwobNEqVqyoFvAZDo4H67BmZBeRaGPcL0t1JEuWTPXd1dUV/v7+JuNgfooUFJ0oGNFq1KgBCjb0ujE2hgKjF4mxUcyiNxaN3kn0ZtHFAeN85ucURXr06IFy5cqBHinDhg0zZCE/eo3Qw+v27dsoUqSIwespJp6JoSELJxRbKGrQOP9o3GuI+yy1atVKXXfp0kUJGxTgOH56KdHLifOOoh29ayju0eiZQ8+dJEmSKO65c+dW9/Uf5Ml5yXwUwfhKcWvePG2vLa19zj8y4Bz57bffMGDAADW3Ob+TJ0+uPJeMn7+1/lBooxBDYY4iIr2CON61a9cq8cyWecBnRtGW3lT79+83MOF4znmEIENae31o6vXsnSs4dP2syT1epEjqjC9K1Ap33/jGviunsFkre7rhDzhzJ+x9Y5wenfOH/o+x+sxui0W/LFkHTkmSWUwzvpkuTdjVPe0jP9u70ZiMm5dzISAEhIAQEAJCQAgIASEgBISAEHhNwIHfNOU3KSnqiAkBISAEhIAQsEZg8Mr/0LhEPnjd98EV7aB53PJG/izpkcrZEQu+/hR/HziDyf8dw9cVCuPo7Qfa/cgXC621GdfT6HFDwYShvbgYv2PHDrWXDcOR2WL0dtGNi9QUY2w15qUnhLFXydmzYQvJFGNoOXPmtLU6q/noxcE9eeihoBs9gAIDA/VL9UphxNzovUSjQMNFfgcHh0j35OHvJqlTpzavSl2zfHTN19dXte3t7W3wtKBnCsPVGRuFBXMhh+lsO3HixMoji9ccD72PrBm9TChM6SIdxSZjjxU+M84jehTx9datW0q4sFYn02x9Jtbq0YVE4zwUUyjW6cZ+6aEEKV5yrl+4cAHck4heNBRMdM8ret307NlTebRwjPSuYfg93WrXrq1CAnLuUChhOsUxCqCvXr0yPBPmZ5gzstMFRr0O41dr/SFHGkUdHjSKrBR1bJkHzEshh8b5QeHS2ArmtwMFDmO77+eDg9dN8zE9g0sqfIE3HIzL6Odd101B6wKV4HHvKjzuhomdx29eRImseZEsiaOeLUqvz4JeWOwPK/m8aHWbxJwHYdEJoWn0YkJACAgBISAEhIAQEAJCQAgIASHwHgk48NuTIuS8xycgTQsBISAE4hmBDac9wcP3xUvV895LtmDGtw3hni41yudzVwcTDnveUOkJXcyh9wkX6hn6iZ4cS5YsUQvQtu5Vwy9VRNfo7UGhRPeKYD26YECxgl4d9EiIjnFh3dgo5NAYbstanymMxITRayZTpkwWq6KHBD03IjMKQuahZOndQeMeRgxtFpGZizt6PtYZVeMzypMnjxJpSpYsqUQLCiG6MWQbvVwmT56sbjH0GYUac4vOM+F+ShQ1uI9R4cKFzau0KJhx7Lp4wwL0otLFQXoWjR49WnGlkMg9aDgWvg9o9MThe4F71XCu0GONHmmWBDiKRFOnTlXlWD/zGO/RpBKMflBYMWdgrT86QwpH5qKmvu9PZPPAqPlwp8XzJoLXHX4Z6s2cqJm3DHhE15ZeOAAefq/CBMJ2q8ZhfZtByJ0+TJwla4q49N6iKBWZZUuTETNb9Iksm9X06/fCkt1EzLHKSRKFgBAQAkJACAgBISAEhIAQEAKxTUDtmROdhYnY7pjULwSEgBAQAnGPwMqfW2FtjzbqmNymnurgGi3kGoUc2tmb9xCk7ZJ94+ETjNqwD92rloCDffTFClVpHP/BhW8u1P/xxx9qzw8uXHNfFH1xOza7T28I7rNjvFBOAYceEQyzxr7MnTs3Sl2g1wj7vmnTJnCDeP0LH/S44QI966XQQo8cikl6qLIoNWJDZgog9HixdHAB3xZjODPuc0JBS1+8pxBFsWTOnDnKG4T1eHl5qRBattQZ3Tz0gKGwwvBk+r5Eel3cl4X7unCsDFnGkG/G9jbPhOPs06dPOK8S4/rNzxk+jqHIGEKNggj7q+/JRI8deuLQuP/MyJEj1XzTw/xxvx2OhV5N9DpjqDvj3zMpRNy9exf//fefEnKaNWum6tL5MPQaBThyYrg3Y6OAxz2OOK/152mtP/ny5VMi1IQJE0Bxk/UePHgQV65cUYLk286DaiXtsPlA1Dzbg4Jf4dbj+3gQ8ASB2heqeM5QaLTj3afj7E9/qWNZs97q3qmuUw1CDm8MGTIElSpVUmNQGd7yh7X+6FUfPB2KBrXskcA/yvXhyqsQEAJCQAgIASEgBISAEBACQiDOEtD2YE2kbcQaZ/snHRMCQkAICIG4SsDC/x19l2xFgf5TUGPMQuTLmAbta5SOq72P0X5xr5U6deqoTeC5KE1xh4vYNO43wv9rGXpq5syZ6lwPwaaHOjXujPHCt/F983N+Q58eQfpiuHE6F9gp8nCBnQvXUTXuUzJ06FA4OjqqDedZnh4/K1euVOOh0EKBgXuo6GKP3oZ5/42vea4fen5rrwxnZukwrtNaee7TQ48UeovQq4ML+jTuV0PRi4v9rIteG/rePtbqs5TGZ2jNU0kv8+2332L37t1ImzatYqt7ujCdadyHhmHoODcsPdO3eSZ6Hyy9WmLZpEkTJUxSKNH3p2EoQRq50UuL4k6aNGnUHjqffPKJoWqKR/TOogcU+0xvIz1UGTNRWKJ41atXL+UdNWLECFWWwtCgQYOUUEFxkpz0fZr0yrmHD0VEzmt6ptCs9Ych8FgHBSb2mfU2atRIiU0sa20eWOLCMsbWRIuads4rBCcuGN+1fn7+rhfyTvsRv+z5F/4hweq864px1gsZper7M0UUgtAoq02nkfUnSHPAHL0wGD3bJmxR3iZYkkkICAEhIASEgBAQAkJACAgBIfCeCSTSYt+HVqpcxaaFiPfcV2leCAgBISAEbCDg4XkNRQvksiFnzGcJ1r5p7uMXgBTJHOGYJHHMNxBJjdx7pFChQpHkivvJ9CAwF0n0XnOR2XhxXL9v/kqvGnowGO/7Yq1eW0UJekTQQ4diju6NYd52fLkOCAhQIavIiKLR25h5+C/juvi8+NzI/8GDB+qZWBKAyJWeXpbSjOszP4+tZ8J9ZTiPIgo5Z94P/Zrzjh5bFFqiai9fvlTzi0IRRcOYMh8fHxWizRLft5kH05eF4szlUEzqE/tiB/cPcnZ2VuEBZ8+eHVNorNazfjcwcWkwNk0K2zvIamZJFAJCQAgIASEgBISAEBACQkAICIFYJaDEnKrat0BDQ6IWJiJWeyWVCwEhIASEQLQJvE8xJ9qdjqGCCUXMYSglejVYMnpNLFu2zFJSpPe40TxDwFmyKVOmoFOnTpaS5F4kBBhWzNpeQQxX9i7C7kXSTUmO5wSOHDmCMmXKwNPT07A3VjwfknRfCAgBISAEhIAQEAJCQAgIASEgBKJAwIF5RciJAjHJKgSEgBAQAkIglgn8/PPPal8XS80wdFR0bcOGDaDngyXjN/7FokeAIcX0EG6WaoipkFiW6pZ7Hw6B0qVLR+ix9+FQkJEKASEgBISAEBACQkAICAEhIAQ+XAJKzGHoj4jCuXy4aGTkQkAICAEhIATeDwEKK7EhrsT3sGjv52lE3ip/j4pqKLLIa5UcQkAICAEhIASEgBAQAkJACAgBISAEhIAQeEPAjiKOhT2s3+SQMyEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgfdGQIk5oaLmvLcHIA0LASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCwBoBO4YGQai1LJImBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASHwvgiEiTnvq3VpVwgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCwCoBu5CQEMimOVYZSaIQEAJCQAhEgYC2FRv8A19EocSHkdXLywtnz56NscHy/+8HDx7g2bNnEdbp6+sL7o1nzQ4cOIAbN25YyyJp75jApUuXcPLkyXfcqjQX0wQ8rgJlvwpGsPartq32MiQY93x98Co42NYi7y2f9yOgSPNg+D1/b12QhoWAEBACQkAICAEhIASEgBAQAh8UATvNPqgBy2CFgBAQAkIg+gT2aKuTufpMMjm87vsYKjx06TpKD56BYr/NRIuJS+D91M+Q9qGfrFixAhMmTIgRDBcuXICLiwvSp08PZ2dntGjRAtevXzfUzfPixYsjZcqUSJ48Ofbu3WtIMz/59ddfsW/fPvPbEV6PHj0aFIDiu5Fhr1694uQwVq9ejWnTptnct4TwTDgPGfqXR8aMGdGjRw/cvXs3XjMYNS8ErT+2g72Nv2ovProZqUa2Rs7JPyDzmK/w4/KxoLhDm7RrKZxHfBnuuO+nKSqxZCGaELzF4xBqTftJtXvDx/R5pE8DFM2dCAvWWBeMY6l7Uq0QEAJCQAgIASEgBISAEBACQuCDI6D+vAyNylcGPzhEMmAhIASEgBAwJpDfNSUO9mtnOLK5plbJgS9fodXstehTtxwO9Pta3Ru5Zo9x0Q/6vEOHDhgxYkSMMHB1dVUCzfPnz9WCt7+/P8aPH2+ou0uXLihWrBiePHmCtm3bom7duggMDDSkv83Jhg0bEoQnz8OHDzF//vy3QRFnyiaUZ1K/fn3lbbZ161blmWQ8pyODHdcYeN4AFq8JRuv62t6UNlqJLHlxuv1oPOm9ELu/GorFl49h/Zmwz9Cvy32Ky10mGo7uhSujREpXZHDRFJVYsi3nD6DNmokonimnaiHEwiabPzSzQ7+pwXguzpix9BSkWiEgBISAEBACQkAICAEhIASEwBsCdsFaGIdEtn5l8E05ORMCQkAICIEPlICD5tGZOnkyuKZwVofD6/9Djl+5pYg0LFUQdlr8zqO3H2D1OS/4J+BVPv4fWqFCBTAslrHp9z09PcHwalWqVEGDBg0wc+ZM42wYMmQIhg4dinr16ikPm1GjRkGFPzXJFf6CYg49bxwdHZUXQ9WqVbFlyxaV8dGjR1i/fj0o6NAr59y5cyoUm+5NQxGjadOmygOiZcuW8PF541kVvqU3d+bMmaPa3LlzJ7p3767O6RGk2/3799GuXTs1jrx582L58uV6knodOHAgpk+fju+++07lKV26NC5evAi+ciyFChVSnjL0yqBnSmwZRS222apVK7DPbJvH7t27DU0uXbpU9YdeIq1btzZhdO3aNVV+48aNqhw9oxYvXqyYUzTjNbmSMesl/8js1atX+N///mfgcuzYMUORy5cvKzFO91gh+4CAAJX+ts/E0IiFkzVr1qBbt24YO3asmmN8LmfOnFE5t2/frsbGPjVq1Eh5helz3tp7geMcMGAAOD9Y9tNPPzWZ705OTuDcLly4sHrPsB3dGHauevXqqhzfT3pfImJgS39evHih3oMcG5/boEGDwHK6RTQPbt68qebAlClTFBuOQ++PXvaghqpkMXukTqHfifw1b0Z35EyXBYnt7MHzoqkz4PDN86pg8qROyJTCVR0ZkqfBsotH0KFE3cgrfYscpbMXwLWf/kK3yk0jrKV4fiDQNxSaU6aYEBACQkAICAEhIASEgBAQAkJACMQyATt7e3sgRMIjxDJnqV4ICAEhkGAInPF+jLz9pqDUoBmYtvWgth9E2IYQ3k/9UTh9aiR2sMfYjXvxXflCasyPAhLuhgr8P5QL0MePHzd5vlyAp3iSLVs2ZM6cGbNnz0bZsmWVsGOckYvCDC9Fr51Vq1ahd+/e4fIY5zc/52IzF6B/++03VQ/TKVDQ3N3dsXDhQrU4zn7cuXNH3Wf4Lp6zfzly5LB5b5bGjRurPpYqVQp9+/ZV53/++aeqkwIUhR0/Pz8Vsm3w4MFKzKBwpBv35enYsSNSpEiBXbt2oWvXrggKCsLRo0cxadIklY39GjNmDPr3768Xi/CVIgIX4M2PyZMnR1iGCUmTJsWyZcvA0GR8duTOg+OiUaxq3ry56gMFBO5JNG7cOJXGHxQA2Od+/fopDhxL2rRplRcUhR4KEBR3qlWrpgQJPoPIbM+ePUo04fP86aefsGTJEkORly9fKpGMdVNAYv0697d9JoZGLJw8fvwYEydOVM+K41mwYAEYmtfb2xu1atVSQsyRI0fUM2zTpg1seS8w1OCMGTOUWHfr1i3F2XhPJwpqPXv2VHWPHDkSw4YNUz3jPKIwVrlyZZw/fx4UL+lxRouIgS394Vzj8+H4yJbv023btql6rc0Dfd6yvyzHOU1WxnbxeigK5rDdK0cv+9D/MRYf3YSuy/7APp87aF6slp5keD1w9QxuBwWiQZEqhnuxcZI2eSokS+JoteokiYFMWRLh8k35W8IqKEkUAkJACAgBISAEhIAQEAJCQAjEAAEHVYf27Uhth+QYqE6qEAJCQAgIgYRMIJtrKvzToRFcXZxwUIsj9L+1e1E6Z1aUzJEZTzUPnBTJkv6fvfOAj6LawviXSkISSELoJUgPvYTeFSkiRUQRkabiU8ECNp7lKSIodgWp0hQFG0gRpEmH0KQTahJCDS2UhITUN+eGGXY329Io4Tv+lrlz+/3PnUXu2XMOtmj5B85cxOSnu2Hypr2IT8zf/nfk0F4O97t166Zcm4miQCxOHnjgAaU4kP1QqVIlFC9eHJcvX860PURxIAfSIqJQEMWQ1HdG5HBcDp3LlCmD2rVrqyb6GFeuXMGLL76oDr/FSkRcromI1YvEI2nSpAnq1KljHJirQjt/+Pv7Qz5i7SOWDMHBwUZtsUCSeciBtihkJJ5PjRo1sHDhQqWI0CtKnhygi8haRekl0rx5c2Xp0LRpU8gnMjJS5dv7QxQs4mbOUsSyw56IRYjMXRRpMk/TdUi7mTNnqrlJvKGTJ0+q+YiyTCxKPDy0k+sbIhZV4hZMl59++kmtQbiKkkisRwIDAw3lgF7P2lXYiXJC70+UCrqEhIQoSxaxeJH5yHPWrUBy45no49i6ivJFYjPpIntORCyJRDEmSi1RsogS0dG7YGp1VrJkSYgSyFSEuTwPXVmix4ESSzORRo0aqb1Rv359ZdEWHh4O4WNrXzqaz+jRo9Uc9H10//33K6WVWFjZ2wf6nGXt8jyefvppZcElrHSJOpmOysHmyhxR1Mzfc9MCTK8r194N2qOgpzdir13F75prtb/PRKBjiQoo43+TvV5/1valeDy4JgIKFtKzsnV1Zj7OdFy1nAtOnHGmJuuQAAmQAAmQAAmQAAmQAAmQAAnkhECGMicnPbAtCZAACZDAPUMguGgA5CNSXot+vTXiFJbuPKSUOYU1RU7UxSsYOX8NPu71IFLTMyx2fLwK5Gs+YnEjh7riGksO3P/55x8Vx0ZcQjkjYnGgixxk60oXPc/edc6cOcotlCgbHnvsMezduxdyIC4i7sw++eQTdTguih058BYrE1E86coib29vpXSxN4YzZWJlISJKHfmIiDJLlCWmoiutTPNE8SEiigFPT0+4u7ureZrWsZaWvsXNnKXImnIioogTd2BLly41unn22WfVnHS2UiAKKEuR+esiafk4E6tILDweffRRvalSJun7QJ6p7LHq1aurq7AWhZojcfaZ2OtHFG6mihype+bMGTU/eV4ilStXVlexnnH0LoiyarWmuBIFjDx3iSElrtx0EeXikCFD1K0oVsT6Slz3iVWXKEMllo4u0s4RW3vzkXdC3gexNNKftVjYFC1aVA1hbx/oc9DXLpZZukWcXla+tAuOn5EfSt1U6FxLuo6wY+F6FbNrjzptlTKncrFy+GPgKCQmX0fH79/E56t+xsddXjTqXtKUPT8c3YEFPYYaedlNODMfZ/o+GJ2O53o4U5N1SIAESIAESIAESIAESIAESIAEckIgQ5kj/86kYU5OOLItCZAACdyTBPy8PbVfkieqtRcr7IuTV69prn9qoWbZEvg38qTKD9Ti6+RnqVu3rlKQiKsu+WW+uMiSQ2JxNeaMiOuqnIi4kxLFiViKSPwbOfQWkUN3cWsmcxElU6lSpdQBepUqVSAH/Q0aNFBKC2diupjOT8YTZYep6AfgcsBesWJGsHTTcj0dEJChCNTvc3IVayNRDFiKWP689tprltlW78UtnKWISzpRKH3zzTeWRWb31hQq2X2WojSJ0tyo6SLPS1eiiEJuwIAB0N3HyTMV5YapZPeZrF+/XrnFk3hFulWQab/6czXNE8WFKAQltoyMqyuNRNElc5YyW++CKODEzZ+4iRMLMYkt9OCDDyrljukYktYVjmK9pe9pid9ji7E1BvbeTf35SSwrURhZir19oLsPFCsvW1JNs8pZtc38f67LBZbAlCeG22pilu/lUQAdKtTFbwfC8LFJyYLda+CrxdRpVbmBSW5GUiy3ZB+JUlis9RxJVuZjq6+kZOD0iXRU1FytUUiABEiABEiABEiABEiABEiABPKWgKv4Kk9nzJy8pczeSYAESCCfENh0IAqnYq/genIKJD1r2wF0D62mVldfc7UmUtK/EJJTUjFn4y50rX4ffPO5ZY4ceIuC5IsvvlAxQMTNmcSjkYPkvBLpXyyBxDJBDrsl5oxYOoiyRFx7ycG8HNCLWytxFyVl4r5MRKxjxCXYxYsXVayQrM5R+pE4IbJO3W1WtWrVVHygb7/9Vlk6yEF/WFgYjh49mtXuna4vsU3EHZfl59VXX3WqD7EOEUWXzNM06L3OZ8OGDSpfOC1atMipPrNbSdyB/fbbb+pZ7tixA/PmzTO6EiWcKJ1knVu2bFFuwIzCG4nsPhPZR8OHD8fixYstu7R5L4onEYkzI3tg+vTpav+L2zRH74LsWVE4yH5s2LCh6keegS6SFiWk1JP3SZQ4opgQKx2xfPnhhx+Uaz3Z96IM0t2jSXtrDOzNR5RCohiT+YsVjkhERAQ2btyo0jndB41qAdt3pkL7unRa5u9ajaPnTiAxRYslFb0fE3evQvcqjczaT9y2BINrt4WHptCxFHFH16JFi1zdr6cuncXJyxmxr05eOge5N5UdmqGRVyEXVAk2zWWaBEiABEiABEiABEiABEiABEggLwgoZY69XxbmxaDskwRIgARI4O4ksGp/JFqN+QE13puIvjMWoV9oCBpXzjjF89IiYc8Y0Bnv/7UBIe9OQPjpC3i9S8u7c6FZnLXE2Gjfvr0KhC6HwKLc0WO3DB48GPL3rAR2nzJlikrrLtjkQNny72DLe2tTEcsMOVQXl2Li6kn6WbNmjWG1IEoVOagXN2QSN2fBggWGS7JnnnkG4tZLLCzEmkcsELIiffr0UUokcdumx+kRd2JykLxy5Up1AC+WLeIiy9LyxXJtpveS1j/OzEcsMSSGjeVH8p0RWb/EfRElgMxXj8siFj8jRoxQh+KSL/X0MtN+Tecu+ab3YoGSlbWIMkfiCcmzlHgwEoNGF3leEiNH3JrJvnn88cf1IuOa3Weiz1m/Gh3aSYjl1YQJE1SsGdkDogwRJYvO3d67IEoasRjx8fFR8ZokDpFYiOkinEUpJMpIYShKQ9njYqUjCi55l0QRJHnvvPOOFu4xXW8Kawyk0N58Ro0apeI/iTJSGMja9DhO9vaBzku/GpMwSVTRXquendwwe8nNOZoUW02uOrIDtb9/A0U+64/Os0ej6311MLjlo0bdfacjsOvqRTxW734jzzShu+bTv3tMy7KbrjzhFTwwZ5Rq3v7XTyD3pjJxbhpGDHKD5mWTQgIkQAIkQAIkQAIkQAIkQAIkkMcEXDT/4+mttcMBWufkMWl2TwIkQAK3iED44SjUqV4pz0a7kpCIuIQkBPoVhJdHhrdO08FSNWuQS3EJKFLIxzT7lqQlvohYpNztIpYipgfVpuuRA2Q5OE9OToa4e5I4H3I4binSXqwZxDpBP2jX60j/586dU26xdLdVzoypt7d3FVdv4oZNxtX7tlf/Ti0TvsJPLJ1EgZATscdWGOmcJH6LKEhMY+/o4+rPUq+r5ztzzYtncv36dWXdJdYzWZmTWNPIfERpY7kvHa1FLMGEgyhzhFNuSXx8vIpVJW7iRDloKjnZB7sOAZ1eTsHxxe5wczXt1XY6ISkRF+Ivo0ShILg7qZjUe2vXrp2Km3Xs2DGl/NPz8+p6RjPYqdYzBdGL3FHIN69GYb8kQAIkQAIkQAIkQAIkQAIkQAI6AVc5FKIiR8fBKwmQAAmQgCMChby9UCqwkFVFjrR10w6nb4cix9G876by0aNHZ7I40S1QevXqpZYi93Igbk2RIxXk7/cSJUpYPTCXQ3QpMz2Ed2ZMZxiKJUtWD/id6fdW1xG+YkWSU0WOzFssbfTnZ3mdNGmSsTRRJlhT5EiFnDDNi2cilkKy/0z3kLEQOwlRxAjXrCpypEsZS8bMTUWO9CvvUOnSpTMpcqQsJ/ugThXg1N/OK3JkPG9PL5QJKJ5lRY4o18Qa7+uvv74lihyZa4kg4NJqKnKEBYUESIAESIAESIAESIAESIAEbgUBl6VLl6ZL4ORUxs25Fbw5BgmQAAnkOYG8tszJ8wXkYID8YpkjlgKmsURMkchhvwSbz225HWPm9hru1P7E/ZVYeFhBTPjNAABAAElEQVQTUSTkhsLIWt/MIwESIAESIAESIAESIAESIAESIAESyD8E3OWXu9Tj5J8HypWQAAmQAAnc/QTkgN+WxU1ere52jJlXa7nT+s1tS5I7bX2cDwmQAAmQAAmQAAmQAAmQAAmQAAmQQN4TcBWf+i55Pw5HIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESyAYBFTNHglVTSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE7jwCyjJH0+jceTPjjEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABODq5uYGiZtDIQESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESuPMIKMuc1NTUO29mnBEJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkADc09PT4eLqShQkQAIkQAIk4JDAuvBIDJz5l1m9ZUN7o0LxIirvyOnzmLn2X8zecQgTerfHg3WqmNXlDQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQNYJuLtqihxxsyZKHQoJkAAJkAAJOCIQElQY05/rYVTz9/FW6UvXEtHxmzl4vnkt+Ht7IjU9zajDBAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQPYJuKelpVGRk31+bEkCJEAC9xwB7VcACPD1hpuFVadPAQ9sfnsgihTywbJ9kfccFy6YBEiABEiABEiABEiABEiABEiABEiABEiABPKKQIabNVrm5BVf9ksCJEAC+Y7AnrOxqPr2eGV982yz2hj0QCOl2PFwc1OKnHy3YC6IBEiABEiABEiABEiABEiABEiABEiABEiABG4zAXdxsebqAs0dzm2eCYcnARIgARK44wmUC/LHnEHdEeRXEGGHo/HuwvVoWLEsGlQofcfPnRMkARIgARIgARIgARIgARIgARIgARIgARIggbuVgFLmJKekQmLnUEiABEiABEjAHoHgogGQj0j5YoHYGnEKS3ceojLHHjSWkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAOCSgNjpu7Ww67YXMSIAESIIF7kYCftydiryXei0vnmkmABEiABEiABEiABEiABEiABEiABEiABEjglhFQypz0NPpYu2XEORAJkAAJ3MUENh2IwqnYK7ienAJJz9p2AN1Dqxkrio1PQMylq7iemobYuESVTk5NNcqZIAESIAESIAESIAESIAESIAESIAESIAESIAESyDoBd2kicXPS06nQyTo+tiABEiCBe4vAqv2RmDZjkbHofqEhaFw52Lj/aO4qzN8Xoe7fW7Qe8ln8ci9UKVXUqMMECZAACZAACZAACZAACZAACZAACZAACZAACZBA1gi4ixLHRWtDVU7WwLE2CZAACdyLBN7u0RZDOjVFXEISAv0KwstD/SbAQPFF34fwhXHHBAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQG4QUMqcdGpzcoMl+yABEiCBe4JAIW8vyIdCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwawi4ios1muXcGtgchQRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgASySiBDmZPVVqxPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRwSwi4pqWlQQXNuSXDcRASIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIGsEHDVJCv1WZcESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESOAWElCanPRUzTqHQgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkcMcRcE1NTYWLG61z7rgnwwmRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgEbA3c3NDUhLJwwSIAESIAESyDGBdO2vkysJiSjg4Q4v7UPJewKJyQnYErUZVxMuoVPNLnB11f5evyFHzx7GtaR41CpTV8+6Ldedx7ahYAFfVClR7baMnxeDbtOYlyxcCqUDyua4+7jEOCzdv0j1E+RTFK2rPpCtPs9dPYddx7ejXfWOTre/GH8ee07sMhszt+ZjbxJRFyIQfmoP7itaGdVKVLdXlWUkQAIkQAIkQAIkQAIkQAIkQAIkQAIagQyTHBcXwiABEiABEiABhwTWhUei0vBxZp+ImAuq3cFT59BhzAw0+PB71HxvIt79ZSliLl112Gd+qRAbfwEtvmmA1LQUvDn3Faw6sMzu0qSe2wgX9Sn1URE8Ma07Dp05YLeNZeHV61dR4uOi+HTlSCzYOw8p6eZuU+fumINvV39m2SzP7hfunIvpGydl6v+7dV9h3q7fMuXnRsaYpSOx6cja3OgqS30MXzQU/xxYnqU2tionpSZi18mdmL5lCkaveN9WNYf54Wf2oefvPR3WM60Qfnofuv3SzTQLuTUfs05Nbr5a8QmaTWiIubt+xaGYrO15k27MkrdrH5hNgjckQAIkQAIkQAIkQAIkQAIkQAIkkIcE+LPpPITLrkmABEggPxIICSqM6c/1MJbm7+Ot0mlpaXi9Y1M0q1oecdev463Zy/Dzhp0Y2rmlUTc/JzZHbYKvh69a4uS9U/FS62FOLfeXh3/WLBNqYMamyQiZFILTw86gmF9xp9quO7wKZb1LYtHzK63Wf67VS0hOTbFalheZe0/vRlRsJAY2+09edG+1z78PLkK5gGA0RSur5XmV+XO/uSjomfG8czpGoE8QPuzyCX7YNBU//Ts9p91lqX2D4EbY91K4WZu8ns+snTMxscsUdK1z83vEbALZuLld+yAbU2UTEiABEiABEiABEiABEiABEiABEsgWgRuWOdlqy0YkQAIkQAL3IAF3V1cE+HojqJCP+rjfiLsWUqY42tetCl/vAijhXwid61TGnzsP53tCO6I1t1bjmmHwgv8g7Px2tB7bGFfT4zFwdm+EHV3ncP1FtIP8mqVr49Me36BygWDM3DjZaDNn64+o9VllZb3z5PRHcD7uvCo7fuEYGnwegmf/HIj9146otNxfT05U5eJeTayEOk9+AJPXjjX6k8SIv/6LkX+9g47jW8P/Q1988veHmrfVmxY9tsY068TiZtuxLWoOY7Z+jl+O/GHM58KN+Ur1aE3Jk5tjTl0/Xo2zNnYLXls2VKV7TetizOzslTPoN/NxtcZqn5THr9t+Nsok8f6CNzFx9TcYNKuPqtPoy9pI0FzSdfiuhXqewuZ/C4erMrnqMm/Hb4ptj+mdse6wuRJN1vf1ijFqLvLc5u/8Q2+GxXsXqHyxxpL5jPvnC6SLX8Icys9bZkIsuyp+XBq/bP/BrLfPl32k8mVMWd8qC0si2bftxrfA878+bdbO3s3Yfz5XlmemdcSqbO6/v5pmWU3L3pN9ujP+AIYufkmlp62fYNS1tfeSUpPw1IxH1bOQtXSZ9CAizx9V7Rztg4cnPgB5R3Vp9nVdHI45qN/a3AdSwdZ8pCwsYgN6ft9ZvZvCfsme+ZJNIQESIAESIAESIAESIAESIAESIIE8I+AqBwnpjJmTZ4DZMQmQAAnkNwJ7zsai6tvjETpiMiYuD9Pcit1UBJiuNezICbSuXNY0K1+m7wuqgI86fYoEzVXWV+2+QGjJBnisbDeVV7l4iNNrllg3Lcs0x/6YfaqNHLz3WdwP/231DrYP3I5ryfH4auXHqqxEQGn8MfAvvNHkDTQuXEel5d7TvYAqL6PFcZn+xGw0Kd0UkRePmM3hRGw0Ptg2GoOavIBfe/yCdza/j6NnM+rYG9OsE4ubGiVrqjk8W30AOpRpa8zHv6C/UXPiwem5OmaP+k+ocRr41cKbTd5U6a96jFfjiXKq14xuuJp0Fav7r8b793+I3n/1gcSU0SUyNgqD17wKvwKFsbzvcgxu8pJSrmy+sBM9a/ZCr0qP4qe9P+Lvp5Zi1L9jcPbqWdW0jRbPRtgmpSZryrUMF4N6n6LMm7htAr7qNgH9avdD/wX9DYWNi/b/W2Me+grRL0djbJfxeGXd61jpwBWf3q+t62UtTlLfJQPwVrPh+P6RGfg7cqlZVV+vwvjlyXmIfCkSvWs/iXa/tIfEyNFl0uMz8WLTl7EuZpOe5fDavGIrfLHnW4hbQZEDZ/bjt+Pz0aRic4dtX2w1TD0nPxcfjG43RqUfqd9LtbO399LSUlG3VH2EPbcFB54/gACvAPSZ9ahqZ28fSIX1Z7V4Upo7Ql02X96l4kjp97b2gb35SNthCwYjtExjHH/1BH7pPReFvG/udb1vXkmABEiABEiABEiABEiABEiABEggNwkoZY6LC2Pm5CZU9kUCJEAC+ZVAuSB/zBnUHSuGPYnX2zXC5yu3YWfU6UzL/XvHASzYH4khHZpkKstvGf4FA1CtZA3EpF7EE6F9cVE7YH+kVk/tcLsFivgGZWm5AQWDcOrqCdVm+uYpEEVFYe2Q+OSlaDQNbonvdk1SSgQPV3eUL1IBxf1KoKB7QZWWe/3v8wIeXqhcvIpWbt1dW8+yD+NRTRnSvmZnNcb26M0Ox7S3EG/PjDmIlZG/V6AxHzdtnrrk9pgBBTPG8XH3RvFCJdWYpfwzlIcSh0UsdtpWfAAnL59AIa9CqF6wEhZYxO2RvC8fG4+G9zVF/2aDULBAhtu0FpXbomn55ggtXh9NKjSHKB90JYiMK2wL2XCxNrTpMLSq3AaDWg5RFlpRNyxIOtXqhlZV78dxTZmWkJKorLAOxZi7N9NZOXvdErERxd0C8cr9b6BttQfxfP3nzZo+r7nZq1ysiqasO4TS/uVU2THNqkuXisUqIziwvH7r1LVeuYaK5cJd81T937fPRtdSHVGqcGmH7Yv6FVXPSSqW9C+j0sJTxN5+9/Lwxuvt39Geox+OnD2AqkWrQZQyIvb2gargxB/W9oG9+YiyMCruuKaoS4Ovtg9CyzdG80qtnRiJVUiABEiABEiABEiABEiABEiABEgg+wQ0bzmapzXR5eTc00f2Z8GWJEACJEACdwWB4KIBkI9I+WKB2BpxCkt3HkKDCjcPcrdHnMSQX1YopU+xwn53xbqyO0mxzhi/6ktEXTyqDvwnaS7NFhxbjCBNKVNCUzC01qw4siLn48+hdKGMQ/cjsYc0q6dk/B3+l9FF36q9ce16HDw1BVJOpK5mPaRLab/SuHwtVt3mlzFPxB5X6zl87iDkI9KmXBv4eZlbT3St0lWVWf5RQLNw8nTzRAE3b1VU0LUAklOSLKtZvQ8pVVvli5JP5EriFXX9KWw6Bi97CU2CGqBykSq4knIVickJqiy7f2yL3oJGxW4+y6pa7CVTeXPuK5D4TR3LtENRn6Kq6HoOxxSF4ZBGL2Hy1gno02QAxu8Yj8ldvjcdNltpe3vPRVPitP42FDEJ53B/2Ta4kpTBNEWLB+XudlNhmK2BtUbW9oG9+ciznfnILAxb/DLe3TICnYrfjy+7f4cqJapldwpsRwIkQAIkQAIkQAIkQAIkQAIkQAIOCbjLP8rpZs0hJ1YgARIgARKwQsDP2xOx1zLitEjxoVPn0GvyPEzu0xGhFctYaZH/shJTrmNd9Dq0LN4U4Wf3qwUW0yxmktNSsrTYVK3+mhNr8EKDF1W7soXKws3FHWN7TclSP85UFpdu1iSnY7q4uCLNxrrzakw3bS1yqG8qRX0zFBevtH0DlTTLFFsS4J1hFWKrPLfyxU2YKHImdpqAJxr2VTGK/hg11yxWkYwlSqSryXFOD1u9ZC3M3DXDqH/sQoSRPnP5lHKHduTFw7ivaCXNOucwxh8QpYvzv96xNZ9HNKuuF1e/gqnrJ+Ja2nW0q97RGDe7CXt776/dfypFzsE3jynlzc+bZ+D344uQbmJYbm0fyFyKeBTW3KplMD11KUPJZzlHa/vA3nyk/YM1OmFPjcPKzdwrfzyHD5b8Fz8PzLBWsuyf9yRAAiRAAiRAAiRAAiRAAiRAAiSQGwRcU1NT4eZq8q/h3OiVfZAACZAACeRLApsOROFU7BVcT06BpGdtO4DuoRm/Rj954TKenDIPQ1rVRfWyxXDm0hX1yZcgbizK080Dwzv+Tx3Cv3H/O2hWvoWKtSJ57UI6OLX0c3HnVID2Ib8MQlTSKfRv+pxq173mY/gl+k+sPbxaU5Ck4kLcec1N2Fyn+sxupZyOWbtMXfxzfDXk0FxcUTkjOR2zcdmmWHJgISR+jD5mSKmaKO9ZCt+s+kyLdROj+IUdXae56DrkzJRyvY4oucp6l1QWUEmpSZi1aZpyy2c5UKPyTZT7sJ3R/yoLLMtyy/ummiu/w9ePYUX4UsV89u5ZRpW0G0qbSwmXcUmzvBq7+jOjzNmErfkU8yuGXuW644VVL+H5ms9A3KDlVOztgzQtLpfEpIrXlDKRmtu68WFjMw1nbR9IJbHkWbhnroqbM32j84pRe/ORZ7h832KlRKyoKQurBIWgsIXVV6YJMoMESIAESIAESIAESIAESIAESIAEckhAWeakOf8jzRwOx+YkQAIkQAJ3M4FVWhycaTMWGUvoFxqCxpWD1f3OY6dxKSEJ49buVB+90sHRL2o/GtBceuZTkeDqEr8jtFwoZoRNRruqzilxdBy9/+qj4p60KtVSC+5+EBJXRKRXaB8c1Cx92v7cVq+KZyv3Q9c6PYx7W4kXZg/E5EMzjOJpI35Gq4BGWPXyZhVXx/JppN+InZeTMWWwllqsmXbB7VD92xAVL+b0sDMopsXtESvgvBrzqUYD8faiNxD4aYCK5bLnjcPKRdqfff/Ck7Mfw/gvSygOEltmcd+lBhNJuGpKFptyg4lRfuO+1EdFDEXMqmWbMGDZM/iw4Xt456EPVVU3i3aydvl89OAneGHRc8qiRWIhyfOwHF8saMY0HYk2M1opfmdfO2c37pKwfbve6+jwa4ZlTLug5sZ0JYbNew3eQuj0UJUneydDMn7AM3vLD3hqSX+jvtuIjPxLw6/Ar0CGe0R78+nX6BmlbHwi9GYfRmfZSNjbe2IF02BzffWMpevnqw7Epkv/wiX95kDW9oGU9m08CE/88igmfjJdvT+SJ8/DVCyfg5TZm0+K5nKv/7y+xj5o6l8f3/f60bRLpkmABEiABEiABEiABEiABEiABEgg1wm4LF26NP3++x/Qfs1q8i/iXB+GHZIACZAACdwqAuGHo1CneqU8G+5KQiLiNKVNoF9B7Rf5OY9XkZsT3bt3L2rWrJmbXd72viQuT8zl0yjiE4iCBXxvyXzy05jnNYumFC32kCg+rB3a3xKgNwYRV3oX4i+oueTmuFc065t07b/C3uYxgWQMibGUoll2FfIunJtDYvzqrzF12yRsfz08V/u1t/fEOs1XewcKeHhlaUxxw3cl8RICfYKy1E4q25pPuvb/zWJVpwWfzFa/WZ4IG5AACZAACZAACZAACZAACZAACdzzBJRlTqrmvsLyV4r3PBkCIAESIAESsEqgkLeXdjCctcNUqx0x0ykC4sqtbGA5p+rmVqX8NGaQb9YP8HOLo2U/bq7uua7IkTHsKWpyWwEoLvS+/udzFY9nbrffLZeY43t7e69INp+lu5t7thUutuYj/98s7uYoJEACJEACJEACJEACJEACJEACJHCrCLjLLwtdtX+Q0i7nViHnOCRAAiRAAiRAAiRwdxJw1RRSwQHlsbbPajSv1PruXARnTQIkQAIkQAIkQAIkQAIkQAIkQAJ3IQF3Nzc3ZZUjSh0KCZAACZAACZAACZAACdgiUKJQSQxuO9RWMfNJgARIgARIgARIgARIgARIgARIgATyiICrKHFSU1PzqHt2SwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkBMCys2aixa8lUICJEACJEACJEACJEACJEACjggsW7bMZpX27dvbLGMBCZAACZAACZAACZAACZAACZBA9gm4u2qKHAniSjdr2YfIliRAAiRAAiRAAiRAAiRwLxGo36RepuX+G7YjUx4zSIAESIAESIAESIAESIAESIAEcoeAa1paGhU5ucOSvZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBArhNQMXPEModCAiRAAiRAAjklkKbFYbsYl4DEpOScdnXXtpc4dIsXL0Z8fLzZGuTHEzt37lRl58+fNyu7224SExOxfv16tZY7Je6eMF25cuVdg3LTpk2Ijo7ONN9Lly5hxYoV2LhxY6YyZmQmEBcXhyVLlkDer7yUQ4cOqfc3L8fISd/bt2/HvHnz1OfcuXM56SrLbX9fXgAjJhbMcjs2IAESIAESIAESIAESIAESIAESyBoBV1HkuFKXkzVqrE0CJEAC9yiBdeGRqDR8nNknIuaCohGpXRt9OAWNPpqKmv+bhDdmLcGp2Cv3HKnk5GR07twZMTExZmvv2rUrBg4ciIULF+LChQxmZhWs3CQlJeG5557D2bNnrZTeniw5PC9SpAg++eQTtZbcOEQ/cOAA3nzzzRwt6ODBgxDGd4u899572LBhg9l0w8LCEBAQgBkzZkCUPc7KZ599lqX6zvab3XqLFi1Sa8hu+6y0O3XqFB566CHktVJx/vz5mDhxYlamdkvrnjhxArt370aPHj1w+PDhXBvb0XfQ9evA/yZ7oVvbe1eBn2uw2REJkAAJkAAJkAAJkAAJkAAJOCCglDnJKakOqrGYBEiABEiABDIIhAQVRtjbA41PuaAAVeDvWxA/PtMN+z96AZu18muaImLWun+JTSMgypu//voLf//9NyZMmICqVas6xUUOqKdMmYJr1645Vf9WVBIFxH333Qc5sJe1eHh45HhYsar54YcfctzP3d6B7JG33noLs2bNwmuvveb0csQSzJqVj9Md5HLFffv2YfPmzbncK7uzR6Bbt254//33UbBg7lrIOPoOWrCmAIJLpKNuVSpz7D0flpEACZAACZAACZAACZAACZBAbhBwlU7c3N1yoy/2QQIkQAIkcA8QcHd1RYCvN4IK+aiPu5v6qwQBPt4IKVMcntrfKUW0stD7SmHTkZP3ABEo90sNGzaEj48PPvzwQ7M1i9VAs2bNVF7Hjh1Rr1497NjhOEj4Cy+8YLTr0KGDavfNN98YfYvLtrZt20IsbFu1aoU9e/YYZZJo164d5s6dq6wWpM7LL7+sDvxlnjKHmjVrKmuYEiVKQKwOHMnx48dVu/79+0MO66UP+VyXn+ZrIpZIYnkkDERZ9ccffxhdLl26VNWVeUjZ+PHjVbw+cdcm8+nTp49qr/e5du1ao629xJw5cyDzDw4OxuzZs82qfvHFFypfxpQxVq9ercrFjZnci9ssXWQ84ZWX1h2isOrZs6d6Xk8++aSZdZYoY2TtX375JcaOHavS8vwdyfTp01VdWdsrr7yi0k888YTRzN4zkUpy+D9p0iRl/SXPTbiI4lD2m/CQvBEjRhhXo2MbCXH1JeuQd0CUc/rzvHjxotHC1pgjR440s86aOXMmHn/8caefiYypr2HXrl1qPHFVJ+9ISkqKMb68Q2IV5Uikzbvvvmv0KWvTRaxV+vXrp8pkf3Xv3h3Hjh1TxTkZUzr48ccf1fus79uIiAh9WPU9Y++dNypaJBztA5mzfIfo76furtDRd5AMs26HB9o1vMnXYmjekgAJkAAJkAAJkAAJkAAJkAAJ5CIBdQKXnpaei12yKxIgARIggfxMYM/ZWFR9ezxCR0zGxOVhSLWIVfH3zgMYvzQM363dgf+0bZCfURhrE0WJHFyLUkBcHZmKHJbLR0SUD3/++SeqVatmWsVqWg69dQWFWOdIu759+6q6ohiQ8Vq2bIn9+/ejdevW6nDZtCNx0yX127dvr5RHjRs3hhxCb9u2DePGjVNVxUXV559/jnfeece0qdV0yZIl1RyGDx+Opk2bqrTMydPTU8UrESXC1atXleswOVgXxYXMU0Rcsck44grqu+++w+DBg/HPP/+gQIEC+P333yFuwsSiQPqTT2hoqNU5mGZevnwZvXv3VnOXg39xX2cqhQoVUsosOWQXZZEcgsfGxsLf3x9ly5bFL7/8YlQXpUj9+vXh5mb/xy1yaC8KA8uPrMmRiIsu4S3PpUKFCmbxV+QgXdbdpUsXxUbS8vwdySOPPGLw+u9//6vSohASEeb2nonUEWue559/HsJqzZo1eOmllyRbxUN67LHH1J6aNm0aVq1ahQ8++ACOYrFUr15dzeHFF19Ua9GfZ+HChVW/8oetMUVxIAogUQKK270BAwYoKyVHz0TvWJSZ8v7VqlXLWIe8I1u2bMG6detUNVHWvf3225B3wZFIm6+++gq//vorhg4darZfhG3dunXx77//KqWguMaTvSiSkzFFcSNKIlE2nT59GqNGjTL2pDPvvLU1OdoHUVFRaN68uVIcC/epU6dCXCmK2PsO0sfac9QVwSVp4a/z4JUESIAESIAESIAESIAESIAE8pKAu3Quv8RL14JWU0iABEiABEjAHoFyQf6YM6g7gvwKIuxwNN5duB4NK5ZFgwqljWYr90Ziy7HTKKlZ6lQpVdTIz68JsfSQg185iC5fvrw6LBZ3WbqI4kDi6IiIBYmXl5deZPcqFif6IXi5cuVUW72B3n+jRo0QGRmpFBEfffQRwsPDERISoldTh9qvvvqqupfD5yNHjqi0HN6KFYYoZeQjfTgSd3d3NYfixYsrxYusRRexchHrELEqEYWFn58fatSooRQsYq3TqVMnpUgSayKxxqlSpYqK6/HAAw+oPsXqR9qY9qn3beu6detWyFx0BYRcTRUggwYNgih85MBdnoGIKHbk4P3pp5/Gs88+q56VHFxLjBpnrKW+/vprJCQkZJpSUFBQpjzLDLF+ev3119GkSRPUqVNHHdTrdXx9fSEfUTQVLVrUaQ5SXz7SVrdQ0vuUuCn2noleT56TKNpETJVoLVq0UHtVFGCyz0TZJhY2Mj9b4u3treYuPISrredpbUzpXxQ5Mq7sD2HdoIHzymBRZkl9UdZUrlxZPXt5f2RfiLWLKPN0pY7sO0ci7ESxIvGvRESppYu8w8OGDVN7XZS3Mp7sIRFhkN0xVQc3/ggMDFSKWD3P2Xder69fHe0DYS7v0ejRo+GqWV2auoC09x1k9H/IFUUD+W8InQevJEACJEACJEACJEACJEACJJCXBNxFieOijcB/huUlZvZNAiRAAvmDQHDRAMhHpHyxQGyNOIWlOw+ZKXM+e6qTZhWQju+WbsJrP/2NecP65I/F21jF3r17VYkoXEQqVqyornn5h1g3yAHs8uXLjWHEOkgUJaZy//33m96qtB5TQ6xixKpGlDQ5jckjFjcicnCsB1+XA3NR0Ij8/PPPEOWKWBDpB+3WlCKqspN/iNsr3X2dNLG0dhILIlEuSSwRXQGhu4R78MEHlRWRHO6L8kmUC6LsciSyHmvKODnAtyfCVyyiKlWqpKpJfRkzL8XRM9HHFuseayJ7Qz762mTtulLSWv2s5NkaU5SMsm/EzZfsl6yIzlbiOYmIK0DZH+LSTpRnYmUj+1AULfqa7PUvVj6PPvqoUUUUXaK4FREXbGJNdfLkSeWS7sqVKypfLH/Ekii7Y4rFlrgHFGs6EXmnxcpNlFLOvvOqockfjvaBKDjFFaQocrIjlauk4ewF+ZcEhQRIgARIgARIgARIgARIgARIIK8JKGVOOrU5ec2Z/ZMACZBAviTg5+2J2GvmCgRZqKurCxpXLotv1vyLS/GJ8PdxzhrlboSkHyKfPXtWWUeIciC3xTTmh/QtihwROaC2dwgr7rNuhejKEjl8tlRmyQG3HMyLKzOJgSJun8TFmaVFsLhoy4qIBZKptYQes0T6OHPmDMaMGaMsjsRaStxXffvtt8aYosgSywo53JcyOeB3RsR13GrNYsNSxLLltddes8w27kWBJtYmcrAu1iPyPEXZkFsiCgTLPWLvmZiOK5ZKuS1i8W0v/pCtMcV6SdzQieJELM3EWsRZEbZFihRR7smkjf5e1q5dWynqZs2aBXFXKNZhzojMQVyQ6SLWZ8WKFVO3y5YtU4oc2TvCXtwhmu5pR2OuX79euSOUuFW65Y8+juxLiX8UFhamlEmiZBTrNmffeVG66UpL6dPRPhDrG3FT6Egs95dev06lNBw77abf8koCJEACJEACJEACJEACJEACJJCHBFzlH9w0y8lDwuyaBEiABPIRgU0HonAq9gquJ6dA0rO2HUD30Iz4L7uiTmHf8TNISklF9PlLmLNxN/w1ZU+hggXyEYHMS5HDULGyEDdr4tZLd7eUuWbWc8SCQA5z//77b3VAqytAxOJGgprLmGLhIhY5chCeU2uXrM8wo4VYxYhlkihMRKklB/lyGH306FGlbBJrCbFqkJg9P/30k5q76ViimBHrFWljTwlg2kbclckBu1hxiAJN+rUUGVOeiVjoWIpYT8jhvrSXWDjOyIoVK9QaZB2mH92Vnb0+xBpF5iiuyvRYSPbqZ6VMXOUtWbJErVWUZSL2nklW+s5OXbGEWbp0qXou+nwc9SPKOHkOEmdH4ih9/PHHqg9H7fRyUUjIs5Z3Qt4ZXfEi5aJkHDJkiHpPZW7OSJs2bfDbb78p14Tigm/evHlGM1mTKEzElZzMe8KECUaZnrA3piisxHJs8eLFenV1lb527dqlFESyBnFXFx8fr8qcfedln4nrNP19c7QPOnTooN4j/btEYvNs3rzZmJet7yC9QvO6yVi5TXlt1rN4JQESIAESIAESIAESIAESIAESyCMCGcqcPOqc3ZIACZAACeQvAqv2R6LVmB9Q472J6DtjEfqFhmgWOMFqkac1JU+3735H9Xcn4P7PZ6l4bDOe7grtL5r8BcHKasQK5K233lLxS0SBkZvyv//9T1kpiHsviQsiIlYHcrg8ePBgFctEDlzfeecdw/JEH1/9YEO/0a6m95LWPyZVspUUd1wS00MUI2JBIK7b5GBerG1kDLGwkHWIRYwofOSg3HQuYlHx7rvvqvg90laPD2JvMnJYL4Hi27Vrh9KlSxsu3aSNKNhGjBihgtFLTBnd/ZzpmKJAEuuLxx57zLB6sDeelIkVhoeHR6aP5DuSZ555BuK6S9YqVie6Wz5H7Zwp79Onj1qjrFWsQkTsPRPTPk2ZmOZL2rLM8t6yvn4v7tLEdZe41BM2ouAzFct+RIHXu3dvvPHGGxAXeBJrRxQSPXr0UFZWpm0t03pfotiT9ct7IIogUxFXeyLOWmBJXdmjoqSVNdSvXx8tW7aUbCWy50SZKOOV1yy/dOb6XKSSvTH1evo1o1fg3LlzShEl+RIHqXr16hgwYIAqdvadFyWSWCmJ9dPIkSMd7gOxFBOruf79+6vvErHksYyhZe07SJ9zl9bXsT/KBXsOUaGjM+GVBEiABEiABEiABEiABEiABPKKgIv2y8n0tpp/8nQtvgGFBEiABEjg7icQfjgKdapnxObIi9VcSUhEXEISAv0KwsvD/AAvWTuUvRSfAF/t0N67gEdeDG+3T4lfI66LbofIL/XFMsDUIsDePOQAW7e0sawnrtPsuU/T64uFgFjoiDJHDpZzIvbmI4fLzigsZPwLFy4ol19yKGy6BulfynKDj+l8JF6JcJS4IpYi1j7iHsqauzkpkzmK0qBjx46WTfPkXhjIgb0wMGVja7C8fia2xrWVL5xlTrZEFHG5LVkZU94FUWKIIstUxLVavXr11Lui7z97bE3fP1FEybtl2af0L1ZWPj4+SklpOp6krY1pWcfavcxLX4e815aSk3fe1rspY8i44p5Q+OlxtSzHNr0XV3P1m9RTWTPmeyM80hVjXo3Hv2E7jJg/pvWZJgESIAESIAESIAESIAESIAESyDkB7d+r2Qt4mvOh2QMJkAAJkMDdSKCQtxdKBRbKpMiRtXhov8IvWsj3tihybjdLsTrRD4qdmYv80t+alYfkTZo0yZkulEKgZMmSOVbkyGBiPWNrPr169XJqPlJJLE/EOsfy/y9EGZQVPs7ORxQ11hQ5Mhc5lLamyBE3XhKrROLYiJXFrRJhIFZDlmxsje8sA1vt9Xxbz0Qvd/Yq8YJs7RHJzwvJypiy7yyVLqNGjVJWMq+//rrZ/nP2/ZM9a9mnvs7AwECrihxbY+rt7F1lj5QqVUopaK3Vk72T3Xfe3j6QccXCzRlFjuW8BnRLUIocy3zekwAJkAAJkAAJkAAJkAAJkAAJ5C4Bl+XLl6e3atVafGnkbs/sjQRIgARI4LYQyGvLnNuyKCcHvZ2WOU5O0agmMS2Sk5ONe9OE/No/O4eqpn1kNS2xOcRaxZrIYbYthYm1+rmRl5fzWbRokbKi6tSpE+RA/k6VvGSQnTVLnCCxPrMlYumU25LTMSWejShHRHlnajmUl++frTFzm83t7M/UMsd0HrTMMaXBNAmQAAmQAAmQAAmQAAmQAAnkLgF3cavg4uZKN2u5y5W9kQAJkAAJkIBdAjl1i2a382wUigJJPneK5OV8Hn744TtlmXbnkZcM7A5so1CUenmhsLExnMrO6ZgvvPCC1e7z8v2zNabViTCTBEiABEiABEiABEiABEiABEiABJwk4C5uFcB4OU7iYjUSIAESIAESIAESIAESIAGxwqGQAAmQAAmQAAmQAAmQAAmQAAncOgIZkWrFxZoW1JZCAiRAAiRAAiSQNQLjxo3DkCFDstaItUmABEjgLibQvn37u3j2nDoJkAAJkAAJkAAJkAAJkAAJ3J0EXO/OaXPWJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJHBvEMhQ5miGORQSIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIIE7j4BruuZeLZ0xc+68J8MZkQAJkAAJkMAdRmDJkiWYN2+e+qSlpVmd3eGzB9FlxsNaOL6b5ZcPHcSlQwdU/bhjUbiwZ5fVtnd75tltW3Ht9Cm1jAt7d+NqVKTZkr5c/Rl+2DLDLO9OvImPjzee89q1a21O8bedv+LDpR+YlTtiYFaZN04TSNGeScyWMCTHxSM9JVWlEy9eNGv/2I+PYvfJnWZ5t/vmTvk+cPQdtOrwP3h57uDbjYvjkwAJkAAJkAAJkAAJkAAJkIBdAkqZ4yIxcygkQAIkQAIk4IDAuvBIVBo+zuwTEXMhU6sf1/yr6mw7eiJTGTNyh4CPjw/k72/Tz4oVK3Kncxu9hIeHY+XKlejRowdSUlKs1hq3YRy6Vu0CV5ebnlz3TBiL3WO/VvWPzP0NG994TaXl4H9W8eJWPwemTcHSnt2xfdQIYxw5kJX6oiixJ+d37zT6XNiuNbZ/8hGSr14xayL30tfyJx838u3OZ/r3iDt5wujXdN6SL7Ks88M4uWqlSof9900c+W2OSut/dA7pgnHbJiD+erye5dT1Vj/rpKQk7N69G1OnTsWoUaOszjExJRFfh32DLjW6mJXbYrBvykSr7ITj+V07EPXXgkzlfzRuoPo+PHuWUSbPc+fXnxtKsyWPPIxfa1RDamKCqhv992JV9/AvP6v7baM+MNrqz+zkmlXY9N83VL6MrcvWke9jw+uv6LfqKntQ2okSRZeUhGuZ2upljq625iPtVj3bX/Ur61nRrzdOb7ipSIvX9tjyLt0Qd/wYkuKuqPQFbZ+byiPVH8HX6zPeM9P825nOte8D7f27FnNa8dGfo1z/6tJRLc/RO2/rO0hn0/S+Zgg7s+2OU4bp8+OVBEiABEiABEiABEiABEiABISAu6urdtgiupx0AiEBEiABEiABxwRCggpj+nM9jIr+Pt5GWhLHz1/Cj5vsH7abNeBNtghcu3YN06ZNQ6dOnYz2/v7+RjovEsOGDcPhw4fx3XffWe0+4sJRrD25ESM6fmi13DKzSO06eHTvHpV9YMZUnN2+Fa3GTlT3HgV9UKxJMyxuez8q9nwchStXxdaPPkDIyy+iSM3all2Z32tWxyLdNofh+pXL2PXlZ/hnYD+0/3UuXOT/ezSJCdsEz6AAxKxcA7Fw8AoMhKP5JMZmWEJ0XPY3fEqVVv3IHwUCixhpe4mqxauhin9F/L7rV/RvNNBeVbOyW/2sAwIC8P7772PWrFn48ccfzeai3yzaOx9FvYugXpkMhYueb+tapXdfVOie8b2x9oXnULx5c1R9qr+qXsA/AHEnouFdvgweWrTE6MJFVwhqz7NwvVp4cPaviD92DNs+GoGk2EtoNOIjpCQkIul8LE5v2ogybR9A5MI/Vfv01AxlY+1XXkON517E6ueeRqnWbVGlT194FiqMyAVzVb19kyeg9XeTVTpNU2KlJSUb4yecjcG5dRn75Oz2LSittVdyY38ZFbOQsDUfvYsar72Kyr1648zWMKzs8RgemPc7SjZrqRfbvXat0R2fbfoK+07vRY2SNe3WvRWFuf194Orlpb4vzm3fhrX9B6LHzh1wLeCVsRQn3nl7a/Zy98LAOv0wbuM4TH7se3tVWUYCJEACJEACJEACJEACJEACt42Aq/yil27Wbht/DkwCJEACdx0B7VcACPD1RlAhH/Vxd8s4HJeFyHna6Pmr8d+HW9x167obJ1ykSBGUKFHC+Hhph53OyMaNG9GqVStl1VO1alVlbSPtxHXat99+i+DgYIg1yCuvvAJRJDgr245vRbBfafh7BzjVxM3TE95Fi6mPZ2F/uHt5G/fu2viB1Wug+rCXsW3UhxCLi8sHD6HWK8Oc6lsqeRcrhqDaddH048/Uofz5HduNtic0C5qQF19AQKN6mmJno8p3NB+9sVdQUWOeMn9XNze9yOG1eXBzbDi2wWE9ywrZedbyPKdPn46aNWuqZ922bVsc05QhInFxcRgyZIh6zvK8J0yYoL2/zv+yZ0PUBrQKdk7JION5+PoYzNwKesPTr5Bx7+rhIVWU6PtBrl5BQXo2XD3c4RWgKdzq1kPlp/ri0MQpyt2YVKgwoA+ilyzC9UuxOL9tO0rfsNaQMk9fPzWOawFPTYmTMaZbgQJShBId7sfx3+dDLL6syRlNQVS0bXNUefYZnPwnw+LKWr2s5Nmbj/Tjoe173+DyqNTzCVQd8jz2TRzvdPe+Xr6oEVgV26K3ON3myJEj6NChg9of8l0i77y42dNFlHn6d0XDhg0RERGhFzm85vb3gbxnsi8KaIpXEa9ixZUS1nQi9t5503rW0g3LNcLWmB1mLiKt1WMeCZAACZAACZAACZAACZAACdwuAu6pqalwc3VBKuPm3K5nwHFJgARI4K4isOdsLKq+PV47sPfEs81qY9ADjbS/RzIUOst3ZRyKtqpe4a5a0906WVG8LFu2TE3fU1OMfPnllw6XEhUVheaaVcRbb72FKVOm4Ny5c7hwIcNVnrhQk8NcscgorrkweuaZZ1BMU4i88847DvuVCkfPH0XlgIqZ6lbpo1lg3FAUlOvQCcXqN8xUx1ZGzcEv48/GDbFu6T9oM/sndThvq66t/IIlSykrnCvRx1C0QUOkaS7ioucvQJuZmtWJNq/jK5ci+KGHbTXPlL/rq88gyicRF+3/oULf+UClW82cjsJVqqp0vTeGmykjVKb2R/mAYMzak+ECTM9z5pqdZ/3nn3/i6aefVooaseDavHkzrl69qob79NNPsXz5cixatAjR0dEYMGAAQkJC0KZNG2emg4OxR9CsfGalrTMMbA2QEHUC4upMF/9KlVG591P6rbomX43DqXWrlSLGxT1DiVaqVRtsefNNBGmKngqP9sSVyKNmbWzdFCxZEjXfeg3hmlVYk9GfZqp2fMVSlHmgPYrUqIm1g55F6P9GZElxl6nDLGaIIjJyzi+qlbemaGmhuR6UObtrVmuS9q9WLVOPFQMr4uCFQ5nybWUkJydj4MCBmDx5Mi5qFmp9+/ZV3yPvvfeeUtz069dPfcfUqlVLud5zy4LiMi++D2ytwzLf8p135juoTOEyqptTl0+ijH9Zyy55TwIkQAIkQAIkQAIkQAIkQAK3nYC7WOZQj3PbnwMnQAIkQAJ3BYFyQf6YM6g7gvwKIuxwNN5duB4NK5ZFgwqlcelaIt6evwa/v9BT894p/jspeU2gXLlyqHbjQNfDxLrB3rh//PGHUtSMHj0a4mpVLHN0kYP9zp07o0+fPipr8ODBKm6Ks8qc45ejUSEgsyKvWOhN5U1g9ay5f/L08UVgg3o4oylzitSspU81y1fvsmVw/YbSSmKNiGuuIrU0d22aMmfXyI/RdPTn0C02HHXuU7oMCmiuyEQMV2BaulzHh1Se/CEKBmtS1LcYrmnxZlLSUjRft+7WqljNy86znjRpEgYNGoTnn39e9SkWOLrMnDkTQ4cOhVjriIgFxuLFi51W5pyOj0ExbS2W4gwDyzam975lbx6ie2sWULrEbtkBiaEjCp+iLZui+Tfj9CK4exfEfb0ex5ahb6DD0iXYP8l5a5bKTz6FeXXqQZSGpiJxcaJ/nYfqg56HKJVkv8Tu36vtmTqm1fI07eHnp8YV5aO4hivfuasxnmnayNQSxX2LI+xEmGmW3bQo8OQ74NChQzh58iRq166NPXsyXB+aNgzUrGHat29vmuUwnRffBw4HNalg+s478x1UxDfDEuzs1bNU5phwZJIESIAESIAESIAESIAESODOIeAuLjXkyC39zpkTZ0ICJEACJHCHEgguGgD5iJQvFoitEaewdOchpcyZvmorGpctjgQt5kT4yRhVJ/LsBVTQ6gVqyh9K7hPo3r07una9ecDrzAjiZuuhhx5SihzL+nKYW79+fSO7evXq6pDXyHCQKFu4HE5dPe2gVtaKT6xYhovbd6BM94ex44sxaDbmy6x1cKN2wvET8CqaoRw4uXY1fKtWUK7bUq7Fqxrnd/yL4k2aOtV3pcd7w1dT6GRHzsWdRWFPvywpcmSc7DzrXbt2GYo507nK//uJNU6NGjWM7NDQUJVnZDhIlPQpjnNxGe+5g6pOF0vMnJABz1qtL8+r1cTvlUJlk6Z4uXbqlNkzKN+5Cy4fOZxlZYtPiVKorMXTOfjjDLNxJX6TiLhguxoZqeL5nF67Jsv9m3WaxZukq1eURZmru/NKvxjtmZQrdFMh5mjIvXv3onHjxpB3Xa4nTpyAr6+valahQgV88cUXhhLn5ZdfxocffojChQs76laV58X3gVMD36hk+s470+5C3HlVrYRfcWeqsw4JkAAJkAAJkAAJkAAJkAAJ3HICKmZOquZTnUICJEACJEACWSXgp7lai9UsckTk75Loi1fw5pxlGP7LcpU37p/t2HI0WqX5x60l8NNPP2HMmDGZfmUvcTE2bLAes6WopuyQX+jrEqkdYotFiKmIOzeR69evm2ardOWgSoi45HxMjUwdWGQkxV3FxldfQYMRI9Dog5GImPETzv27zaKW49urmns1sazwCy6vKkfN/QO+5csjZvMmXNizWyl2TmkKnlshkRejUCWgktWhJJaRfLIi4i5XnrN8Ll26ZNa0SpUqyjWWWaZ2I1bZ4kZPnq8uBw4cgDx/U5FnrbtlM82XdLXAKjgWe8wyO8/uPTQFgsRQqtizF2q/Mxyb33sbadradRH3ee1+mJ0tN2jVBj6L8K/G4uqxKL07nFqzCoVrVdP223a1T3zvC0bkwgVG+a1InNu2FUGai8GsyJELh1G5SOVMTdavX6/2yF9//WVW9sknnygXe1u3bsW4ceOUUse0wrBhw5CiWQZJ+19++QVz5841Lbabzu3vA7uDWRRavvMWxVZvT1w6rvJLFC6VqXzfvn3qe9PW+5CpATNIgARIgARIgARIgARIgARIIA8IuMqvMzWNTh50zS5JgARIgATyG4FNB6JwKvYKrienQNKzth1A99CMuA2vd2mNha/3VZ/5w55SS//iifboWDdzXIf8xuVOXI8Evh8+fDjCw8PNpifBzkVh88MPPyAhIQHnz59XsVSkkgQ6X7hwIXbs2KGsNGbPno1u3bqZtRfljigCxF2bBEoXZYIu9cs0wLGrJ3EpIVbPytF1z7hv4FelEu57pKcWK6QU6vzvbWx5/10j8L2jzuNPn8ZZ7UB845tDVSD7opo7rSuREYg7GIHGH32i4qRIrJRaL7+KiD9+N+L6OOo34cxpXDt9yvikJiU5amKUb4zeiGblrFsASSwj+WRFJOaJPGf5XL582axpr169VLyctWvXIk1TtsqBdJQWM0lELH0kNpJYY8lB/vz589XzV4U3/mjUqBE2bdoEsfC5du2aaRGaBTfFuuj1Znk5vUmNizeY6nyt9Vm13wBc3rEHp/5ZYa3YLC/p8iXVZ9r1JFy/kU65nqGA1isWrlARwb0eVa78VJ62pyN+noNarw419kiTUZ+qMeNOZBz4S73Es2fN5ivxfByJo/mIAvPy0SOapdB0HJ48DTUGveCoS6M8/noc9sceRoOyoUaenpDnKHtEXOmZSqlSpZTCLknbw1u2bFHu9vRyseKTZy9xcurWrYugoCD1zuvljq65/X0gyjvZFwnnzqqhJZ2oxfwyFWvvvGm5vfTW41sRWqyO9u8i10zVRo4ciRYtWuDo0aOZyphBAiRAAiRAAiRAAiRAAiRAAreKgKv8A01+oUkhARIgARIgAUcEVu2PRKsxP6DGexPRd8Yi9AsNQePKwY6asTwPCBQsmD3XdQ0aNIAoevr37w/pQ6wxdAuNRx99FKIAEFdrenyVt99+22z28v8MU6dOxeeff67cMa1YcfNAvYJmmdO0ZCjm7tIUIzmU2PD9ylqi0Ugtto/2/yoi1fo9g/iIKET86aD/G/9fs7BZc2we/jqK1muAtt/PFJMUnNm0Xlni+JW7uW+LNWqiYrFc0g7R7cqNfpc+9DDm1q1nfC5qsVSckcNnD+LQpaPoWadXpuqiWBMRRZml2HvW9v4f7tlnn8V//vMftG7dWh3Ii3JGH0cC3Eu6TJkykHyJq2OpuCtfvrx6zs2aNYOPjw8uXrxoTO3hGl1xSoubs/vkTiMvZwkXZT1lylXS6SmasvAGd73/Av4BqPnWa5rbvc/0rExXPW7X7nFfq+d0YeNW7P3kc5WOCdukdWl+YF990H+MPi4ePKDmUqxBIyNPFD7iBi4mTLOcujGf1U/1M/aAzDVywR9GfVsJW/PR6+//8lss7fowji9fhnbztPhWTZvpRQ6vi/YtQK2gENQsVTtTXX2f6Fe9wjPPPKOs9woUKKDiJz3++ON6Ec5pihJR4kgbcb0mrtgGDBhglDtK5Ob3gYyVeP6s4r3+6UFq6D8bhGJ5394Z07jxTKy98xkV7P+ZlJqMWXt+xgtNB1utKEpvkYAbsbKsVmImCZAACZAACZAACZAACZAACeQxAZfly5ent2zZCi5aEGQKCZAACZDA3U8g/HAU6lS37sYpN1Z3JSERcQlJKg6Ol4d7bnSZa31I/IeaNWvmWn/OdCSuiYYMGeJM1TuqjljUnDlzRh1OWioLrlzRrK80N2qWbrecWcDe03vwn/nPY91/1ln9hbszfTiso1kVp6fadhHr4p6h/HHYzy2uMHLZCBQpWAQvtsi8X8S9mljliMVU3759c3VmiYmJygJLFEUeHh5mfZ/VrEu8vb3h5+dnlu/MzczN0xB+LhyfPGxbqeJMP/mpjlI+2ViQi5v2/9oWiikbVbOV3WFqe4xsNxKNghtnuX1MTIx6310t/j0g3xNSJkoM2SciYtVvapFnOZi7SYyfW/J9YDmBbNwvO/A3Zm6fgZ/6zMnUWqzSRJk5cOBATJs2LVM5M0iABEiABEiABEiABEiABEjgVhFwWbZsWXrrNm1v1XgchwRIgARIII8J5LUyJ4+nn6PuqczJEb67pnHMpo1Y3v0Rm/N9Sjt8vttk7NixKmbJnj17oMclutvWcK/PN1lzE/dLxQo2MXT+5x8E1Khhdel+IwAAQABJREFUs/xuKVi1ahXuv/9+m9MVZU9+EnFDKNZrhw8fRqVKefdDifzEjGshARIgARIgARIgARIgARLIGwLu8gs8cZ+Q3/7hlTe42CsJkAAJkAAJkMDtJlA0tCF6WsQCut1zyun4L730EuRDuXsJePgUtLsvCxQqfPcuzmTmYkEmFl33ijRs2JD/TrpXHjbXSQIkQAIkQAIkQAIkQAJ3OAF3CYhLRc4d/pQ4PRIgARIgARIgAYOAq+YqzCsw0LhnggTuCALaj6PuhX0plmPZccF4RzwjToIESIAESIAESIAESIAESIAE7mICrqLIsQyGehevh1MnARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIggXxFwFUUOa4u+WpNXAwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5BsCSpmTnJKabxbEhZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBAfiLgLouJjD6FpOSU/LQuroUESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAESIAE8gUBpcypWL5MvlgMF0ECJEACJACEH44iBhLIEwJLlixBYmKi6rtbt25wdXXNNM7hswcxbPFrmN9/gebGNaP88qGDSNf+869SDXHHonD9ymUUqVUnU1tbGSnXE5GWnAxPXz9bVW5Jfkp8PC7s24PA6rXg7uWFs/9uReFKVcyC3j/246N47/73ULt03Vsyp7wYJF5b57Jly1TXRYoUQatWrawO89vOXxEesx//6/CBUX5221b4li6NgiVL4cLe3eqZ+ZW/zyi/FxKOGHy5+jMEFSyKfo0G3As4uEYSIAESIAESIAESIAESIAESIIFcIqBOWSRuDoUESIAESIAEHBFYFx6JSsPHmX0iYi6oZrHxCWb5Uu/PzXsddcnybBLw8fGB/P1t+lmxYkU2e3OuWXh4OFauXIkePXogJcW6Re+4DePQtWoXQ5EjPe+ZMBa7x36tBjky9zdsfOM1lT4673fMKl4c4TOnqnv549jiRfi1RjV1n5aaiu2ffIQ55YLxa8VK+Ofpvki+esWoayuxol9v1a/0bfmRPk3z1rzwrBpT+kpPS8PSnt2xfdQIo2tRREl9UUzEnzyB5V26Ie74MSTFXVHpC7t3GnUl8Uj1R/D1+oy1mhXk4OZWP+ukpCTs3r0bU6dOxahRo6zOPDElEV+HfYMuNbqYlS/r/DBOrlqp8sL++yaO/DZHpTf99w3F8fyuHUb9rSPfx4bXX1H3O7/6zHgufzRugO0fj0TC2Rijrr3ExjeHGm31Z7v7268QeyDcyJc9teX9d3He4nnJfpI2y5983GwImdeOTz828qL/Xmzsy/AZ3xv9LnnkYRycNQOyr3SxxUAv7xzSBeO2TUD89Xg9i1cSIAESIAESIAESIAESIAESIAEScEjANT09HVTlOOTECiRAAiRAAjcIhAQVRtjbA41PuaAAVaL9daJkyctPGGUd61W90YqX3CZw7do1TJs2DadPnzY+LVq0yO1hzPobNmwYXnkl4/DdrODGTcSFo1h7ciMeq2t+MG6trsq7cQC+59PPkJqYoLLS01KQdD5WpU+tWYXwr8ai6+ZN6HXkMBLOncO+7yfZ7E4vaPnNeDy6dw+6bd2istrM+kHdS56rm5vKazFtMh7ZsQMlmrfAuoHPIE5T1LholkYNPxyF8G/H49LBcKXc2frRBwh5+UUUqVlb797utWuN7thxbg/2nc49ReatftYBAQF4//338cQTT9hc66K981HUuwjqlWlgs45pQWpShkXXvskTjOw0TWmUlpRs3Jfu0hE9NQXMAz/MQmz4fhyYMc0os5cQJVylQQONZyzPOWTgIE07l/Gl1DVsEzosWKQ9z1SsH/ICYKJ4idHKPLXvsJiVa5B48aIxTHp6mtY8zbg3Tbho3RZp1hA9du5AnaGvY+/Ysdj73bemVeymqxavhir+FfH7rl/t1mMhCZAACZAACZAACZAACZAACZAACZgSUMqcdGpzTJkwTQIkQAIkYIeAu3bgHeDrjaBCPurj7mbuaitQKwv0K6jKvDw97PTEopwSEBdYJUqUMD5emusvZ2Tjxo3KdZZY9VStWlVZ20i7NO1Q/Ntvv0VwcDDEGkQUN6JIcFa2Hd+KYL/S8PfOUPA5004O0gvXqo7IRfMzVY9euhgVBvRBofIV4OFXCFX7D8DRORmWHpkqm2QU0JQR3kWLwVuzuBApoHFS91qeLp5+heFTqhSq9umvDvNP/rNcFQVWr4Hqw17GtlEfQqwxLh88hFqvDNObObz6evmiRmBVbIvOUCQ5bOBkhew8a3me06dPR82aNZUFV9u2bXHs2DE1YlxcHIYMGaKeszzvCRMmaMqLGxpZJ+a0IWoDWgW3dKLmzSolOtyP47/Ph1g7WRM3b294BQTCv2oIijVsjDObNlirZjXPw9fXeMbyrD38fI16sh8Ka5ZdIc8MQtzBCFzUFHW6nNCsiEJefAEBjeohJmyjnu3w6lrAU7mSK9WqDRqOGIndoz5ByjXnLW2aBzfHhmPOr8/hhFiBBEiABEiABEiABEiABEiABEgg3xNwVy7WnP+3e74HwgWSAAmQAAnYJ7DnbCyqvj1eO7D3xLPNamPQA43gZhI7pfHo6aqDx2pXxFvd2sLfxzkFg/1RWWqNgChe9Ngmnp6e+PLLL61VM8uLiopC8+bN8dZbb2HKlCk4p1m7XLiQ4SpPXKiJAmfWrFkorilCnnnmGRQrVgzvvPOOWR+2bo6eP4rKARUzFVfRFCa6lUS5Dp1QrH5Dszq1XngZm958DRW69zTLjz9+AiVbtTbyfEqVRkLUCaRpLt5c3VXYP6MsWwlNeXF+57/KEiigWg2ji5qDX8afjRti3dJ/0Gb2T0asHm9NcdZi2hTtEL8k3Av6qLR/tWpGOz1RMbAiDl44pN/myjU7z/rPP//E008/rRQ1nTp1wubNm3H16lU1n08//RTLly/HokWLEB0djQEDBiAkJARt2rRxar4HY4+gWfnMlmCtZk5H4SoZFnn13hgOr6Agoz/hVvOt1xA+YyqajP7UyNcT57ZsVW71rmhWWOc2bUbLiRP1IofXUyuWIzUhw/pHKtd8cbBZG9kzp9asVnl+5e5TV8mLnr8AbWb+qPbn8ZVLEfzQw2btnLkJqBaiql2LiUGh+yrAHgO9v/IBwZi152f9llcSIAESIAESIAESIAESIAESIAEScEggQ5njsBorkAAJkAAJkABQLsgfcwZ1R5BmeRN2OBrvLlyPhhXLokEFLeC5pzumPNURFUsE4cCJGHz+9ybM3bIHT7c1P7gnx9wjUK5cOVS7oUzw8HDOCuqPP/5QiprRo0fDVVPCiWWOLnKw37lzZ/Tp00dlDR48WMVNcVaZc/xyNCoEVNC7M67FQm/ugcDqNY18PVGqRUt4apYUx5f9rWepa6IWM8XN+6Yy0M0zIy0WEJ6FCpvVzerN+heeV03EpVv9j0YgqP5Nd2GePr4IbFAPZzRlTpGatYyuZczynbsa96ZpI1NLFPctjrATYaZZOU5n51lPmjQJgwYNwvPPZ6xVLHB0mTlzJoYOHQqx1hH58ccfsXjxYqeVOafjY1DM96alk95vuY4P6UmI1YqlVH7yKcyrUw+iMLMU2QOisEtLTsbFPXs113cnLavYvPcMKoJCFW8qEl09Chh1F3Vop5SAYgXWUbO28vD1UWUS70ief5FatZUyZ9fIj9F09OdwK3CzrdGJnYSHr58qTbqU4R7QEQOpXFRjd02LO5SiuRV0d80FxaSd+bGIBEiABEiABEiABEiABEiABEggfxBwFxccKmhOev5YEFdBAiRAAiSQdwSCiwZAPiLliwVia8QpLN15SClzxKVa25qVVJkofS5dS8T3a3dgQJtQuGruvCi5T6B79+7o2vWmcsGZEcTN1kMPPaQUOZb1T2qH5/Xr1zeyq1evjkOHnLcwKVu4HE5dPW20dzqhxbGpNXQYdn/7NWq+cNOiwqtYcaTG33Tzpsdd8Sh404WW02NYVKytWSYFhtTA3gljcXrDOlR/9j9GjRMrluHi9h0o0/1h7PhiDJqN+dIocyYRExeDcoXKOlPV6TrZeda7du0yFHOmA4k7NbHGqVHjpjVSaGioyjOtZy9d0qc4zmnrzKr4lCiFys89jYM/zsjUtLBmGVSt30CVX7JJM6x+qh8q9XwCLu5umepaZgTVrW+01csSYs6oZItvxiHleiLC3nwdMdu2IqhehuLu5NrV8K1aQbnT012knd/xL4o3aarFVsqsYHG7oQTS+9evyXFXVFLcuTkr5+LOorCnHxU5zgJjPRIgARIgARIgARIgARIgARIgATnLMY91QCYkQAIkQAIk4CwBP83VWqymtLEmPl4FEHEpTvvlOX8tYI1PXuf99NNPGDNmDPbs2WM2lMTY2bDBeqyOokWLmilvIiMjIRYhpiLu3ESuX79umq3SlYMqac88IlO+MxllH+yEpNhYRC3806juU7YMrkTd7C9OU0B4ly/j1OG+0YmNRKHy92lxWRopRc3pJSsgChyRpLir2PjqK2gwYgQafTASETN+wrl/t9noxXr2kQuHUblI5UyFEqdG2O/bty9TWXYzUlNT1XOWZ33p0iWzbqpUqYLdu3eb5cmNuNgVN3ryfHU5cOAA5Pmbijxr3S2bab6kqwVWwbHYY5bZTt1XG/gswr8ai6vHomzW9wsur8quHLs5R5uVHRSIK7zSrdui2VdfY8e77yP+1CnVImruH/AtXx4xmzfhwp7dSrFzSlPwiBTQYvekJiWptPyRlpoMr2LmfPTCC/sy3jHv4iX0LIfXyItRqBKQofy2rCwxreRDIQESIAESIAESIAESIAESIAESIAFTAkqTk56aZprHNAmQAAmQAAlYJbDpQBROxV7B9eQUSHrWtgPoHlpN1Q3XXKsdOnUOySmpkPSPG3bhwcpl4OnGHw1YhZnHmRL4fvjw4QgPvxnsXYbs0KGDUtj88MMPSEhIwPnz51UsFSlr1aoVFi5ciB07digrjdmzZ6Nbt25SZIgod0QRIO7a4uPjIcoEXeqXaYBjV0/iUkKGuyk935mrm6Y4qP3qUJxceNPVWrkODyFi5s+4fPQIkq5cxqGffkTF3r2d6c7pOl6aAqPO/97WLHA+0w7sU7Fn3Dfwq1IJ9z3SUwW4l7It77+LdG1fOyPx1+OwP/YwGpQNzVQ9IiICLVq0wAhNUZRbkqy5JJPnLJ/Lly+bddurVy8VL2ft2rUQS2xRIkVFRak6YukjsZHEGmvr1q2YP3++ev6mHTRq1AibNm2CWPhcu3bTQkrqNAtuinXR602rO50uXKEigns9qtzYmTZK1fZjosRw2rsb+6ZOUoo7nzJlTKvkKF2yWUsUbdscB2ZOxZXICMQdjEDjjz5R8Xskhk+tl19FxB+/K5drhTRl0pk1q9V8xKrn+NKl8DdxSZh2PQlxJ47jxPKl2P7hh2oPuXsXdHp+G6M3olm5plbrS0wr+VBIgARIgARIgARIgARIgARIgARIwJSAqxzCuPCgzZQJ0yRAAiRAAjYIrNr/f/auBK6K6gt/IiDIJqCIikBuiLim4r5mau5bZq6Ze6WW2b80M/c2KzNTs9zK1Nx3c99XNFxQVBBxAQQFREAREf/33McMw+M9eBgi6jm/3zB37j13mW/mDnC/e865gsbf/AGfL+aiz6JN6FvLG3XKe0jtq7di0Wbm3/AeNwftZ61EIeEa6YsuzY20xNn/FYHChU1fONb2VbNmTRDR069fP1AbZI2hWGh07doVRACQqzUlvsrYsWO11aVVx/z58zF9+nTY2tpi586dankZYZlTr0QtrDktFsSfQF7p0BkU10SRksKawnvEe9hYvwFWlK8AK2dn+AwYrBSbfCZLlKyk/Fu9EOd/FkFL/5AWI76TRTwh4fqNpGLfAUgMCUXIOtPuadO5DahS1BuVS4o4LHpy967OHZeLS+ZYM3qqGS6zetZZ3dvAgQMxZMgQNGnSBAXF/RA5QwQeyRdffCHTboIsoXyKq6NP3HkKqxV6zvXr14eNjQ1iYmLUcbXz6YBwETfnTNgpNS+rRIECGUndSoPS3dop9YjIW1W5MvYO6C/i2tih2cLFMC9kpRQbPRcwZmVu4LlXGTYCgTNmyfhM5GLNzl33/aLGXXzrytg6dwR5WKZLN9iXLy/Hs1zo3BHuBquOGCXH8Fi8TtGH/bCuZi2cnf0zqowcCZ+hHxgdn35BUNRFXLpzGd2qvaVfpD4fIkxZGAFGgBFgBBgBRoARYAQYAUaAEWAEGAEtAgV27NjxuEmTpniszeU0I8AIMAKMQJ4gcOFiMFas2Sz7Oh0QiGqVvUUciwrw8SqPil6GXfBkN7DAoFBUq/RkdbNrm8rv3k9Cwv1kONkVhpWFeYYqScJi546IcVK4kCXsNYHrMyg9xYuAgABUFovBeSmzZs3CBx+YvpCbl2PLqi/azHHz5k04ijgf+mQBkQ7kRk3f7VZW7SllARFnMWT9UBwYckDESsq4gK/o5PRM8UzI5VWhImlEj4j5kpVVsSkxVnI6BlP1W81vicktJsPXo06mKkSMfPLJJyCXZl4aK49MirmckZSUJC2wiCCwsLDI0HpUVBSsra1hZ2eXId+Ui8XHFiDwViC+bvedKepPpvOMnzVZhKUmCxdrgkgUTOaT3YNercnbJ8K5sDPea5j5u0Hu1cgqhyzn+vTpo1eTLxkBRoARYAQYAUaAEWAEGAFGgBFgBF5mBHRkTtNmoGC4LIwAI8AIMAJ5h8DqDVux9O/1Rjvs+VZHdO3whtFyYwVPm8wx1m9+yGcyJz88hac/hsgjh7GjU2ejHfWOjDRa9iwLunTpgpIlS4IIQBbTEHhen7Vpd5dZ6+eff5bvB8W6UuJTZdbiHEaAEWAEGAFGgBFgBBgBRoARYAQYgZcRgYxbql9GBPieGQFGgBF4BghoiRwibRRLHLLUOXcxSJI8CtHzJITOM7gl7pIRyDMEitWqjW56sYDyrPP/0NGaNWv+Q+2Xs+rz+qyf9GkNHz4cdLAwAowAI8AIMAKMACPACDACjAAjwAgwAvoI6Mgc8hqRjwxzyEro0aNUmIt4CxSwN1m4tzA3N5fX+jeQ19fkdsZM+GbXd1OS1+Pg/hgBRuD5RYAIG4WomTp+dAZ3auRajQ4idz6fNF3qKUTP83vHPHJGIHcRMBOuwqycnHK3UW4tXyLAzzpfPhYeFCPACDACjAAjwAgwAowAI8AIMAKMwDNAwIyIk8epec/kHPM7iUOHj2U4zp2/ICF4u/cg+NZ/HUlJD3Dc7194VqiJVauNuyLKK9zuizgRHuVrYtQnX+RVl9wPI8AIvIAIkOUNCVnkGIuLQ/lUTqLE1JEX/IMRYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEXjoEzInMKSACuuZ1zJxh73+C8JtRGQBv8VpDLFk4FxXKl4W5pc4Shyxz8ovkp7HkF0x4HIwAI5BzBM6duyQrkcVNVpJdeVZ1uYwRYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEXhwEzMllGJ6Rm7WSri6YP2+GiqatjY1MT5owRs3LKqEQUVnpUJmpevrt5KSeKbr6OvrX/6V//bp8zQgwAvkXgdMBgXJwxqxylJEr5Yq+ks9nRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEXi5EDCXVjk5cLM26aufkN3CIrkGMiVgt52dDWpUr5oJ8f999iWuXQ/D8r9+z1RGGZu3bMcvvy5ASMhVtG7ZHBO++B+KFHHIpGtIj8ir/gM/QNGiRfHLzG+RmJiIvv3fQ2Wfipg6eRyobxJ7e3ssWbZKtjvmfyPRsf0bmdqnjPOBFzFj5lxs2LwDTRvVxZDB/dCsSSOpu2z5aqxaswEff/Q+xoybDK8K5TBvzo9Gx3/6TADGfDEFYz4ZiZm/zMOBQ364HuIPC3MLg31zJiPACDyfCFSr7C2/oxQ7RyFsDN0JlZOQPgsjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIvLwImD169AgFzcg0J+/lQfJDXLwUpB4PHjyQg7gcEoq9B44aHNC27bswYOgouJUsgVEjhuCf7bsx+tPxmXSN6dnb26FjhzZYv2mbjMPzx19/49iJU3ire2e17z+WrsamrTvQt9ebuHMnDkOESzg660vo1Wvo0v0d7D94FCPfH4BLQSF4u88wHDx0RKreunULh46eRJe33kX9OrXRtXM7GBsXVUhMvId//QPwZs9BsLayxqTxnzCRow86XzMCLxACSuwcY7eklPv4VDCmkm/z4+4l4a6IM8by8iEQFHUR7Re1Q+rjZ+sm9eTJk1i7dq086PexIUlJfoBZ77REbMQNtfheZASi/I7L66TYGEQeP4rUlBS1/GVIZIdBQsxtzOzdDMn3Eg3C8eafXXEm7JTBsvya+dmmT7D53MYcD4/es7CwsBzXM6XCpUuXcOqUaTia8r6b0qe+zq34KLSa3xKJDxL0i57p9cpTKzBp24QMY4g64Yd7EeEyLzrgDOJDr2Qo54v8hUB235k9QbsxYs37+WvQPBpGgBFgBBgBRoARYAQYAUbgGSNgRpY5OTDMwfgxI7PcJU47yE2xyqH7Dr16A01adFaP68IaJzv5a9lqqTLm0w/Rrl1rvNmlvSBediEpSUcEKfWz0uvZoxvq1KqOCVO+w9Svf8Lgd3uhahUfpao8H9izEWM/G4WpE3Uu3477ncxQThc7du3Dnbh4zPrpa4z59COsXrFQ6qxasymD7pSJn+GraePRquVryGpcSqV2b7yGRfNnYfDAfkoWnxkBRuAFQqB7l7bybpb+vR6K9Y3+7VE+lZOY+k3Vb+NpXB8IvIJyn83KcIRERqtdhUbFoPMPf6HmpN/x6sTfMW/HMbWME7mLgI1wTUq/w7XHzp07c7eTJ2ht1qFZ6ODVHmYFhBvXNFm0aFGGcdKYa9eurRQ/lfONGzdw5swZdOnSBUFBQQb7OLVjPRxcSsKxhJtaHr5/H7a3ay+vY86ewY72HZF89y7iLgdjSfHi2DdsoKqbEHZD5t25dAEP7sTKNOnQsXfIAFzdkvHvAbWiXkJpW6mrnB/G30XQsiVquxtbNMGpGdPVBWulmZuHD0qdgF9nK1nqeJNu31bz1jWuh9CN65AqNvIofayuUxMHP/oAd0NDVD1jGCgKtk5FUbycD05uXqFkZTh3rtQZMw6mu9HNUJgPL4iA3H1tP5qWa57j0X366afYu3dvjuuZUmH9+vWYO3euKaow5X03qSE9pWJ2LijnWAZ/+y/TK3l2l0kpSZhx9Ce099HNU2Uk29u2Q9ieXfLy6Jj/IXjlcpk+MuYT+b7fPu2vqMJv8pc4NHqkvD7143cZ5sPJrybjflSkqptV4vD/PlLrKnPqzMwfZRXlms703dD/HtD8prIdPbtn6ILG5f/tV2retX+2YIXwIEASuOh3tb+tYpPYxSWL5HxWlY0kspvzoZs3qO0q46ZvA0nK/XuyTIuffjeGvkHXd/wj6yXFxKjqYXt3y7x7UTeR3Xem3iv1cfTmieeOGFZvlhOMACPACDACjAAjwAgwAozAU0DATMZtyWHDxggdInKozFShmDlb1v+lHqVLl8q26vZd+6VOvcZt8WqdFvht4VJ5HXvnToa6WemZmxfEu/17SSKGKg0Z/E6GunShuDZzd9ct8ASc08W40CqeOXNOXnpX1O2a9/Rwl9f7D+gscxTdRg3qKElkNS5FqUXzJpCxjJQMPjMCjMALhQC5ViN3lCSfT5qO1Ru2qqQOkTh0Tfkk+dHFmndRBxwd21893Is6yrE+Sk3F4AUb0NjLHacmDJLH61XLyTL+kfsI3Lt3DwsWLEBERIR6NGzYMPc7ykGLIdGXsT/sMN6snnFxkv7WcHd3V8dJY966dWsOWs65aseOHfHll1+icOHCBiunPkrBrl+noV73QQbL9TPpHkiur9mI2HO63/+PBSlC8lizK+b1dWvR5expeLRphwP9B+D+rSipY8qPNnt2o2vAWfUwt7GlwH9wqFEF3S4Eov70GYg8eBABc9NJG2o3bN8eWIp5eGXtGrUbZbxqRloi7TbkVePFC9Hiz6WwLu6KDXXq4UF0OjGrX0//um7X/tg1bxoePshsgdfBpxP8b53FuYgA/Wr58nrOkTnoUakbbArZ5Hh8f/31Fzp16pTjerldIbv3/b/017/2AMz993ckPbz/X5rJtbqbAtajmLUzarjpyIbsGn6UrHtHz82bo6qmJicjVXgIUKRU+9Zyjr32xxLEBp7HhUULlKIsz4/F771yg/qrc5bmr3f/9G9KwwXz0NnfH64NGsrvARHAikQePSLnbaTYHKYlPB4Lq0Y6DEkB8Rlyrl8bXU75o9pHoxHw888I+GWmIVWDecbn/GNYe7pluI+2m7fp2tB+NAy2avgb5PZaSxRr1gDn5um+V2Th+O+UiaghjsIurkZaSs+2MrdC/2p9MevwrPRMTjECjAAjwAgwAowAI8AIMAIvOQLSMocW4HIq+oROTokc6o9i5rxao5p6FCpUKNthNGqg28l72m83ggOPqodrcZcMdbPSIyueH2bMBpFJJH+vSF/8yNCIuDibRuKULVtGvwheYkGW5MqVUHkOj7gpz7Vr1ZBnQz+yGpchfc5jBBiBFxMBsrZRCB2ywCHypmuvofKsWOTQnVOMMopVlp/EXMQec7S1RlF7G3mYF9RZYPhfCUfMg2S836o+CltawtaqEF4p7pyfhv7CjcXZ2Rmurq7qYWVlle09ksew8d8APr6Ai/Cy2q4noPwZIAxdMVxnkCrb+XsdMC5tg/hkwS+26ga4in0XYybr6nd/F4i7m97liet+8LArhSLWOoIvvQSgsWnHSrHrTJFr166hZ8+eIEskOn76KX0+7Nq1CzVq1JBWP7SgfvXqVVOalDrRYdcQf/sG3LyrmVyHFN06tcO5BXON1rEsUkQuVLo1f03qxF4MNKqrX1C4mAusNUcBMddIzCzMYeXoBOfqNVC+dx9cmvsbHqcoRFIqQtetg++33yLO/ywSc+Dyq1ARRzhU8ELNT8bAoUpFXF6zUn9IRq/dKlZFUmIsbl0NzqRja2ULHycvnLimc1eXScFARqp4CWfOnAkPDw/5nEeOHAkiLEl++OEHTJ06Va1Fuq1atcJBQWyRREZGon///rKel5cXVq9erepSgki9X3/9FYMHD5Y6ZBWmtE3lB8OOoHZpMSHS5O+//8aYMZqJkJa/fPlyNZ+sZho3bow333wTBw4cUKrKc5s2beR7Su9m5cqVsWHDhgzlxi5SxOQcN26cOkZynaYVcrnWrFkz+b5T32fPntUWG01v27ZNnSeEz+zZswVZoCMne/funQGvGGFFQfhcvnxZba9qyep4mJqC4NuZn7WqpJf4/vvv5bNUrPC01kt0n+PHjxd/R3vJe2nXTrhlVD5Ceu0YujwUegiNPRoZKjKa59qqOa6vWo+4SxcN6hS0tpZzrIiXN1xq18HNI4cM6hnKtLC1zTBvLewECZsmlnYOsClZEl69+kniJmz3DqUIN4QVkfd7w+DoWwORRw+r+dklzApZonCJkijZuClqT5yMM1O/RooRl4f6bWU357XfHysTv9FEaBn6BtH3q/b4SQj88Wfp8u7KutVIjk+AV++++sMyel3b3Rd+kf7P3G2n0QFyASPACDACjAAjwAgwAowAI5DHCEjLHMHoPFG3ROjQYuSTEDmmduhgr/uH6F//03j48CE6CtdqJF9M+ArH/fyxffse7N9/RP4zqG0zK73fF/6Ji0FXsPD3mejxZkd8+8McBASc11bHjz/NxvxFS/DtdN1usFo1q0Mhmy4FXcbt29Fo1qShrDP6s4lY/OdyjPjwM3ndvl3LDG1pL7Ial1aP04wAI/DiI0CEztTxo9XvKN0xfU/poPzVf82V6fxG6JyNioXX2NmoNXEe5u44CmVDQHjMXVQU1gHj/t6GCmN/wYRVOxEccfvFf5DP8A5p8fuDDz6Qx6hRo0wayepNwGKx6XzVEsA/HOgujAqUjdcxscCFS+nN3BbecYLT1nSvhQFiTRJfCVJn/nhg9gxRFiIWwjWe9C7fvozyjmXTG9CkKP6HMlY679+/X1NqOEm/92lhnBbeibg5ceIEzM3NpXJUVBRatGghXK62g5+fH5LFTvs+ffoYbshAbkxYKKxsHMWRvvBKai61fdEobVd+EbHY3HDBb7AQJJIi3v0HInTJCrE4KW7egJz7fQ6Oj/8cG1o0Q7kB/eTCsAE1g1knv5mC41+Ok0fQ30sz6TwUC6HhB/aCFqYLCCtjkjsXL+B+qCClmrdAsUb1xCK0juDIVDmrjIIFUcy3Du4E6x5+dhhQUwUtLFCkRBlE3wg12HJZp7K4GK15mQxqpWfS8yUCZ9q0aSCiZJ0gqH788UepQKQI5dMzJvEXlg7bt29HtWrVJAnQo0cPxMfH49ChQ5g0aRK6desm/k5L//YQITh06FDY29tj3759GD58uGyHfsTci5ZEhVuR0mpeqVKlsHDhQvVaSVCfxYVbLJImTZpIy7j79+8jWs+iifogwmTWrFl455138Pbbb6vkidKWoTORQnTPK1aswEcffQQilRSh+yEcGjVqhPPnz8v++/btqxRneSaiZPr06dIV2y+//IL3338fu3fvlnXq1asHIl4U2bhxI+ieypQpo2TBsqAFHCztcEVY3pkqhPWaNWskwdqrVy9JQsXGig+MEMqfN2+efM7kHu6tt94yCR+l74uxwShdxEO5VM9kdeJSt768rvHJZ/Bo214tK1yiBCp/+rFwUzZfzdMmbh33w8mvp2CPcHF8Qbi2qz5qtLY4y3T4zh3qvKX5S7FgMoj4wN4+9S+Sb8fCsaKPLCIrlWvrN6B4nfpwb9Ua13elWcFkqJj9hWNFb6l0TxCaORK9OU916TtC7ueUg1w8miJZfYOcKlVG+cHv4sSUCTgpSFXfKVNhbq2zljTlO+Pm4CaHEB4nfgGxMAKMACPACDACjAAjwAgwAowAzAqKP+Zp19yTCi1G5sS1mrafgmkLMto8/XQFr/LCcqcy/li6GqGh19C711uY8Pko7D94FD37DsN7I8eI3YOZF1SM6V29eh1TvpqBzh1ao1rVyhjzv5GyyxEffw7aKajIP4Ik+nz81ygsduqtWvYbSpUsIRaQCmLEe+/i9NlA7Nq9Dz6VKmL5Et3u3E8/n4JzgZfw7bQv0K5NK6WZTGdj48qkyBmMACPwUiBALteU7yiRN/Q9pYPySShN5E5+IXTcixbB8kGdsHNUT4xu4Yvpu07gVKhu4erOvfs4ej0SpRztseOjt2GGApi6Yd9L8Ryf1U2S67KKFSvKg3a5myLaDfAlxLp03+5iYV7HC2RbvVFdoF4tnVoTsWZaUxiiRuvWZ2Xm9bhrKG7rarAdcnemjJXODg4OBvW0mUTenBMuzWixuW7duvD29pYL0aSjWGWQJUOtWrUwduxYaSFBVhqmSFxUBJzcdfNMq2/vWQYeb7SVWYWLl4Bn2w4oqLEctnYtDu8R7yFw4QJtNTVN7oNsS5eGg1cFxIUEIznujlqWXcL+lTKwL1tWHoWF6zNFYo/7g+JX/F2uLBLF3zF1v/pOKULEoQMgF1G0QOrWshWu79iuluUkQTv276dhlx0GSrtOpcsiLlIwggakuG1x3Lh7w0CJ4axNmzahbdu2oIV/IumIcPjjjz+ksuI+kMgaEiJ6yBLHzs5OxkMiq4+mTZsiPDxc5vn4+IBICa1QHhEa9K4QCaK434uM170vzjbpVoRVq1aV1j7kDpBIh2HDhsmmtmzZosZ6KiIssMqVK2f0Pf7444/RoEEDDBo0SJKRpliN0X3Q2AgHskZ77bXX1FvYvHmzTPv6+gqL8Ct49dVXQZY6gYHZW3698cYbkgQKE1ZbSUlJqFChghpHqmvXrjhy5AiIbCWZP3++xF7/f4NSNq6IuKtHUsgahn/QfRM+ZOFTWswHEgUDrRVOCUGyEAlL/4+YKhGJkXCxdcmk7t66DRzKlJX5ZLVCRIJWyvfsjeD5i6F1daaUWwprGpuSpWDr4YmCtjZCx3TywLKoszpvaf6aWRRSmsXBYUOxQvwO/0eM7VXhXqzoqzVlWfSZU5Lcca5SVRI6RBA/evBArWdqwsLWTqom39F8iE2srJ3zShX6dimHddFiSnaW5+y+QVVHfISwjf/AsVpVkOs1RUz5zjjbFpXqUfGmu6tU2uczI8AIMAKMACPACDACjAAj8CIiYE5uFh4Jn++KK4+8usl/j+t2BBrqb/WKxWo2xa7ZvG4ZoqJugdzJkAwd8i4GD3pHWsc4OTmqu3TVSmkJY3o3rwWoqsWFezbttVLwz6YVYoEqFk7in3Vt/Jqxn40SMXb6S5KHdJs2boijB/6RuzLpH3vtP6Mjhg8FHfpibFz16/kaHIt+fb5mBBiBlwsBInTI1ZpC6ND1sxKPYo6gg8TTxQl+IeHYduoSapYpBXvhVo3k3Wa1YGdthT6NquP1H5chJv4enOx0O3GlAv/INQTItViHDh1y1B4Zj+4Va+JNBPdjVlK4TPsSGDnYtCZoD4alha4e1bC0BLTrj6Ud3BEeb3jB183NTVrmmNaTTosW52nRvaxYINWXmzdvyoV5xWq2fPnyUoUsGBTrCf062msHlxKIuRaszTI5XaHPO1gvLHg8RMB1fXmlQ2c4eldCpUFDsbFFE9zYuR0VevbVVzN4Xb57T1gVy7yAautVBo3n/o7Y8wE48v4I3BO42JbS7Vi/unkjCgtXe1fWr0VS9G3cWLcJyd/HG/27roCZwa6RFBsjXTcZLjWcG3P9Mhw69DZYGJkQCXf7dGsXg0qaTCIaiKBQpFKlSirBYCGsgIjcIfdp5F7st99+w+LFur8VybKDJCgoSCUoiAQhokcrnTt31l6q6eJ2Okub24m3xTdMRzCSVQmRPgEBAVi2bBmOHz+Ozz77TBI8RPSYIjR+EoW0vHtX44/QSANkrUbkiiI0hjtpMSHJuoje6x070t10jRgxQpIzir6x89KlSyWpRNZENE/i4uKk9Q3pk+tDsoxZuXIlyMKJrIMorS9hiTdR0l58MEwUwutnEc+FYvkUS3unH6R9LIisIuKKyFma31999RXoXkyVEjbFcUu8XzkVG9eS0krk4p+LMlV1EGOp2Le/zC8hrHv2Cldg5br1UC3gMlXQZBSt/qpaV5Mtk1U//RRO3j4ImPOzJF4rDRwi88P27wXN62v/bFFdpN32/xfF69YTO+3Eh1ZPiGAyJA8TdO9VIUfd72VDOsby9Oc8xczxfmegMXWj+ca+QZZpRBO5bqPYOW4tXjf6XTLWeHSCzsLONW2eGtPjfEaAEWAEGAFGgBFgBBgBRuBlQUCSOXlN5OQUXNodSKSLVohgcXHJvOCh1aG0qXr69ajPok5O+tny2lkQSPqiEE36+caun3RcxtrjfEaAEXixESACZ/WGrfnuJu2sLRF7L0mOy1nE0CGxSLO6NE/baZ0sAs2z5D0CFJidFrrJTVmVKlXUAVA4h1+/F3FIJgPrxSv1YTfg9aZApQoU10ZY2kSrqtA3fM3OkLd80XI4FnYsvQETU7Rjn+KR2IrYE7RorwgtApOLNbKQoB38WqHfu2S5QxtSaCOFsqivLJ4rurSorywiK3l0dnbzlDFfkhLjhau1jAv/Wj1DaTt3D5Tp1xPnNQHVDek5CtxjTbCcMFRXm2chrJicKvnII1EQOce+GAsKTp50OwrRh/1g17s7Io8dUatEHT8G2vFP8iglWc1/9CAZlnZF1GslkSowjDx0EF79dIvZSn5W50fCBd6diBCBY2Z3V1QvODoILcu1zNQEWVSRhQ3FkqFFfUXoWSvWIZRH1idkeaYIkRxknUUu1Mj6iogJEoUoIDLAEOmn1Hc0stjtVNgZFmbmuHHnOso4p5OGZB1EsWYSEhKkZc6cOXMkwaNPEint65/1LVv0yw1dE3kTGhqqFhEeLi66v38VgpLcsGk3GanKaQn9953mB1nJkNu47t27S7d05L5NiZlD1cjKqV+/frIFigGk9JXWJJIfPURccjw8ndNdryllhr4zRLR+88038hl6enoiJCRExkNS+qQxzhWuzCgWErnUIyuk119/XZI7SrtZnSs6VcDV2KtZqRgtqyjcJG6sV1+6KiTLFENi5+Eps+9evQKHsuUMqZicZ+/5inTdWN/zB6wS7zyRu26vt0LomtWwFdgo85aInXBB8BCZU0jEx3qU5lKQOkoV+FsZ+Z8n+txZORZrjSWfKYN7kjlvqF1yKWfsG0SuH/+r0LwkcXXITCSS1SaRnUSwmjov/+t4uD4jwAgwAowAI8AIMAKMACPwrBEQ/w8KRzjZrc4861HmYf8N6vvibQogwMIIMAKMQD5DgNyx0fEs5ciFUITH3sWDhymg9JITF9CpVkU5pFdfKSXP64+fw/0HD7HZ/wJqlSoG1yL2z3LIL23ftHhLu+P13TCdOAWERQA2wljKN80QIi3OPKoLr0Q39gGXLgtLhxBg9cqcwfeqW01cjQ/Dnfs5c/lDRAyNdfJkwTBphGKE0M59crN269YtScpQ3BISWvgmIcsJsjSg+yX3UfqkD1lkkEUHLfopMVeonlNJd9gVdcONwDN0mWPxfnewdB2kXzEpNlq6cbqxYxtCl66E+xtt9FX+07VX33cQ538W4bt3IuLwIdBu+obTZ6LutG/l8UqfHgjbswu0UG0pYliFCT1auL3tf1LGxLARFlKKJMVEI+b8OZyYOB4JF0PwShfB7JkoNy6ckTGHinlkXuxOfJCA87FBqFla94y0TZJLL3rW5LJMK2RxQ67RKB4OWaHQcyWrDkXoeRPJQKQDxbyxIuZRCLnsI9KH4kdRHCUiL44ePSrdeyl1szs3LFUPJ677ZVAj4ojeOxpDy5YtJTlBhMPTFHIVR1YxwcHBEoe1a9eq3TVv3lySWOR6jmLakLs0IkIorRX9953+zn/llVfU95/IF31XhNQ2xRwil4XvvPOOtjmZPhN+ShJe5QRZqy/GvjOkR3OO5iZZ6Gjl5MmTIEssmtu1a9eWRUTamir1PerhwLWDpqpn0CM3bB5vdcXNbbsz5D8iTMU3JjrgDM7N/1XOK+1cyaD8BBdkcVdt/Fj4f/+djE1F863OlK/VeVtlxIcIWb1KBjCzF2TSzX175XhSHiThuiAVKX6XIqmClE24cR30jTkpYkRRu0ocGkXH2DmrOf8oIRH3IsIzHNp2ksT80pZTDK+svkHauk+a9hPzspZLNZgZMCmk3xfkgpFc+bEwAowAI8AIMAKMACPACDACLwsCZuS3Wtkp97LcdFb3OerD9/Hj9ClZqXAZI8AIMAIvLQJ7zl9B42/+gM8Xc9Fn0Sb0reWNOuU9JB42Vpb4rfcb+HzjAVT58lccCwnDJ20bvrRYPe0bp4XQJ5GTp4EaYpOzq+DexDoYhn0liJHqupbKiEfZdrjIF2u2Is466okjKxHrxMJKIF2jjFjsrVeiFtacFouSGslu04ixctptTYHaaYGbLBRoAX/Dhg2yZbLCIGsJirdBbk5pUZkWurXuTkmRLDaILCLLDC1ZRK6Mmg/8FEdWzdeM1HhSf4wUeNytU7tMFXZ17oZ1r9bEpWVLUPPbaTIeRialnGTobbghkoYCudOiMBE17u3EGDQ6pZo0w9U1ggQQD6bBL7Nxauo0LC1ZUo3ZobU0ONB/APb074vk+Dh0PHYUVsIiwFTxW/cnmr77CSwK6UgVbb1N5zagSlFvVC6Z2SWZgqNyVuqR5Q25+yJXax4eum8KxUFShJ7re++9J4kesjBRxFL4+qN4Mrt27ZJkj7mwDCT3g0ROaEW/P23Z4DpDsPz8KiQ9TCdGiEgkIZdt9erVk2kieBQh92TUJvXbu3dvmZ42bZpSnGmjVFb9K5WaCjKHYvuQKzTCoRFNwjSh+DNE7pDlGs19axHT8fPPP8/0N7z++0790rjGjx8PcklIpBf1ox0PubEbNWqUbFcbp0fp+88Tf2Bg9XdgZWGtZGV5JmwmTpwIwpDmJhFPJEqfROaQ20UbGxtUq1ZNjq1mzZpZtqktbOfTAeEibs6ZMMFMmyAF9IiASoOGZKpFMV3IcmbvgP6gODTNFi6GuYF3W79iTrwblH+rlyRiL/65WLpYIws/RVx860qy9c7lYJQRpKq9eAdoPMuFzh1hoVV1xCip+riAsJ4U1njratbC2dk/o8rIkfAZ+oHSTLZn43O+gIzhs6Z6DWiPxymP1O8LuZ7Tll3ZsDrLbxCRyFpRnr82L6s0WYQtObsUw+qlW2tq9cmlJokxqzutLqcZAUaAEWAEGAFGgBFgBBiBFwWBAsKFxONmzV/L9M/gi3KDfB+MACPACLxsCAQGhaJapcw7qHMLh7v3k5BwP1nGwbGyMM/U7COxSSAuMemZxMmhGBfkvikvZdasWTmOBZOX4zPUl3iEiI4BShSHID8ya8TcEbE+hOcxQ2WZtTPmBEScxZD1Q3FgyAGDu6kzapt+RdYEtOjspOcClVyoxcTEyIX8rNxPGeopOek+vm1fFe8t3i0sdUobUsmVPFrULPDYSFNmBXIcR8JISwazaTH2fnQULAUJZMritMFG9DLvivZm9miA0ev+NeiirtX8lpjcYjJ8Pero1cz+kmLL0DNV3KdlXyNdI1r4CExJSZF1c/ouDF45EG283kCnql3TG8zlFFkNGdtAReNVxkwWRkSCEFGlL7QJi+YCkTmkY6pQ34SP4rZNvx4RZGTZNmVKxg1NkfGRaP9nB+x8d7saU0i/rrFrsrah50ExiPSFLIpoPGRJpxCwWeFDRICiR20tPrYAgbcC8XW77/Sbzr1rEVf08aNUo+0VMDfw8TSqnfOC5LtxSE0WLtaES0nBhGXbgCRejGgVKChYdxPaMFL9mWRvv/APFp9chL96Lc/UP71bRAaSi8AFCxZkKucMRoARYAQYAUaAEWAEGAFG4EVFoIBwV/KY3Cs8SjW2yvCi3jrfFyPACDACLyYCT5vMyc+oMZmTn5/Oyzu2bd064daBIwYB8P3hW1To1c9gGWe+WAjUr18f5GbOkMyePVvG5jFU9jTzjh8/LuPXkGVbaGioahX1NPs01jZZzpEFkSEhy61Vq1YZKnpqeZFHDmNHp85G2+8tSLX8Ig+Fi7S/y5YxOpy2wsLRUVh9vSji5+cHX19fBAUFgazWWBgBRoARYAQYAUaAEWAEGIGXBQFz2un2UOzaVHYDviw3zvfJCDACjAAjwAgwAoxAXiDQbMFipJK7IgNiUdg011UGqnLWc4YAxQl6+PChwVGTlcGzELL+obgj5NJOcW/3LMZBfZKrt6FDhxrs3pCVkkHFXMwsVqs2ugUG5mKLT68pCxEELauxFrJ3eHqdP4OWKdaSMSu3ZzAc7pIRYAQYAUaAEWAEGAFGgBHIMwSkf5yCwk3AY7bMyTPQuSNGgBFgBBgBRoAReHkQsHzBFlJfnieXu3eaE7douduz8daqV68OOvKDEKH1rEgtQ/dvJtw6Wum5dTSkly/yxOa852as+QIwHgQjwAgwAowAI8AIMAKMACPwfCIgHCiDiZzn89nxqBkBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFG4CVAQJI55GqNhRFgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGAFGIP8hYEb+hpnKyX8PhkfECDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACEgyZzHzObw28AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAoxAvkTATLpYe5wvx8aDYgQYAUaAEWAEGIHnDIGgqItov6gdUh+nPtORnzx5EmvXrpXHrVu3DI4lJfkBZr3TErERN9Tye5ERiPI7Lq+TYmMQefwoUlNS1HJTEkkxMUh99MgU1aeqE3XCD/ciwmUf0QFnEB96JUN/uxb8iGNr/8yQp1zsCdqNEWveVy6fi/OTvnupqanYtWsX7t27l+v3+Ui8B1u2bEFiYmK2bZOO8s7u378/W/2cKPyw9zv8cXxRTqo8dd2klCS0WdgG12OuqX3lxvxTG+NEBgTiLl3EnUsXZF7C1VBEnz2dofx5nPMZboAvGAFGgBFgBBgBRoARYAQYgZcAAR2Z8xLcKN8iI8AIMAKMwH9H4EDgFZT7bFaGIyQyWja89MCpDPmKXkx87i+Q/vc7ef5bsLGxAW3I0B47d+585jc269AsdPBqD7MCMiyfHM+iRYsyjJPGXLt27ac61hs3buDMmTPo0qULgoKCDPZ1asd6OLiUhGMJN7U8fP8+bG/XXl7HnD2DHe07IvnuXcRdDsaS4sWxb9hAVTch7IbMUxZI71wMxOo6NbHK2xtLS5bEtX+2qLrGEkS4ULuGjgsLf0fQsiVq2cYWTXBqxnSVoIk4tF+WJYaFqc0f/Hi4OsbtbdshbM8uWXZ0zP8QvHK5qkeJyk3aYMfsSXhwPzPRUO+V+jh68wTOhJ3KUCc/Xxh690wZ78OHD9GiRQuEh+uIL1PqmKpDbbdt2xaRkZHZVklOTpbv7Pz58zF16tRs9XOi0Na7PWadmIPEB5mfdU7ayU3ddWfXonjhoijt5K42+6Tz78GdWHWe0FzaO2QArm7ZpLZrLJHd/Ds943tsbN0Cj1N05GzK/Xtyjl9YvMBYkzKfyFxlTtM34eBHH+BuaIha5/j4z9VyRY/ySIhAprysCOEzP8+QOgrxTPVOTp2IbT264LEgJxXx/+4rbG7fWuadnfMzqB5J8JqVOPzJx4qaPD+Pcz7DDfAFI8AIMAKMACPACDACjAAj8BIgYEa7ETlozkvwpPkWGQFGgBHIJQS8izrg6Nj+6uFe1FG23NnXR82j8uGNq6Nu6eJwsiucSz1zM1oEyIpgwYIFiIiIUI+GDRtqVfI8HRJ9GfvDDuPN6t0z9E3x+dzd3dVx0pi3bt2aQSe3Lzp27Igvv/wShQsbfv9SH6Vg16/TUK/7IJO6pnsgub5mI2LPnZPpx2nWN49TRZkoPzByODw7d0ZPQSQ1XDAP+/v1B1n3ZCXOVauha8BZefiM/hDFmjVQr8t1f1u261CjCrpdCET96TMQefAgAubOlk2WaNAY7t07w3/6V/KaFoFDl6xAzXETsupSLSte1gtuVerAf+tqNU9JWJlboX+1vph1eJaSla/Pxt49UwZtaWmJq1evwtPT0xT1p6bj6Ogo39kePXrkeh9exSuiQpGyWHV6Ra63/SQNpoj59/OxWRhQK50czaqdbOdfWuXX161FF2Fx4tGmHQ70H4D7t6KyahbZzb9KA4ciOTYWl9eulO1cWDgfVi7FUKFnnyzbVQobL16IFn8uhXVxV2yoUw8PonWbHx4Ly8VX+vRQ5zp9A2p88qmuGn1PspGr69fCUvzuDdu3W9WsPPQD3NpzCGG7daR+/LWrOCe+GbW/nIwCZunkulpBL/G8zXm94fMlI8AIMAKMACPACDACjAAj8FIgYG4m/rgPDrmO5IcpL8UN800yAowAI8AI/DcExC8OONpao6De4pB1IQvQQZIqFqM2nwnG+689XeuL/3Ynz39tZ2dnuLq65uhGyGPYpO+B1WL9/pYf4Cv4gg1LRBA9sda3VRhxbBHrgD/ruAH8vQ44GwhMGQNMng4cPAqcPgL0HyrqbAR8KgO/iY3eDva6IZy47gcPu1IoYq0j+LQDs7KyyvFYqf61a9fw2WefYf369bK5adOmYeTIkTJNrrFGj6AJgFwAAEAASURBVB6NU6dOgcibn376CR4eHrIsux/RYdcQf/sG3LyrZaeaodytUzucWzAXDb//OUP+XeHCLM7/LJrMnQczCwu4t24nF1tvCusZz3adMuhqLwoKIsG6mIvMsnQoAnMra/Va0TOzMIeVo5M8yvfug8ND3kPtLyaigHlB1BwzHmtr1EDZbt1xYvIk1J7+NWxLuSlVsz2XqdUQIScPoW6Xvpl0a7v7Yp7/AukyT2tplUlRkxESEoIPPvhAknXVq1eXz6Rx48YgV3dt2rTBunXrUKpUKVljw4YNWL58OZYuXSqvV6xYgUmTJuGcIMt69eol69I7ThIaGoo333xTlo8dOxaXLl3C77//jrffFi+wEEPvHr0b9erVQ9euXaWO8oPy69evL622iPDbs2ePLPrrr79QunRpmSbXaGvWrAFZwFE//fv3x4QJE1C0aFGlGaNneh8HDRqE8+fPq++qovzgwQN8++23+OWXXxAfH4///e9/GDduHAoWLKioGDyT1c7AgQPFvF0t3cFp3/fDhw/j888/x44dO2Bubi7r01y4ffs2Jk+erLbXwKMBDl09hH6+/dW8rBJZ9Un1jh8/junTp2PlypWSrJ07dy7eeOONrJpUy67FhuKecLNWza2GmmdKwtj8U+paFimCwi6ucGv+msyKFdZyyvxSdLRnU+Zfna++weHhH6BIBS+cmjgFb+zaIee4th1j6UJFHOEg6tX8ZAzCd+7AZWERU2mQ+IAKsbCxy3Jsxtokd4lxZy+g4fxfcVI83xofCxKoQAEUEnOl9vff4MSkL1GicVOcmfkDPHt3h0st038PP8mcNzZOzmcEGAFGgBFgBBgBRoARYAQYgdxHQP7HV9ZD/FMt/glgYQQYAUaAEXj+EQgMCn2qN3E2KhZeY2eLBXtLDKxfFYNe881E7Jy+GoGQOwloVrnsUx3Ly974zJkzsX37dgkDWRf88MMP2UKyWngeIg9B/wgyxt4O2HVAGn/IejGxwIVL6U3cFkYlwZd119eEJy/hOQw9BKnzaU9g5SHgo7GC4DkGtH1dp3P59mWUdzT8zGnxnRb5FenevTtokT8rIRdVRACUK1dOxjRxcHDA7t26nehRUVHSNRYthP/2228YP348+vTpA1NjjcSEhcLKxlEcthmG4FLbF40WCYCEFPHyEhY2v4lFVxskxeh21Hv3H4gdHTuh2vCPBANWUK2rWADYuJaQeWZicd6uQjncu5m9ey21kWwSD+MTEH5gL1xbNZdEDqnbiIdS89tp2NXlTTj61kCFt/uqrZBVAC0kk9T45DNYGSAinEt54sjyuWodbcLNQUcKhceFwa2IjuTQluunyXrirbfekmTNiRMn5CJ/kyZNEC2sEYoVKwYLQXJt3rwZgwcPllXJsqxBgwYyvXfvXlmXiJ1KlSph4sSJmDFjhkpGEAlCbRKRM2bMGJQpUwYxIjaRIobePRcXF5DrQS2ZQ2OcM2cO6P0jGTp0qExXrlwZ1Icid+7cAbk7+/rrr0Fj6927tySGiGTKTkaMGIEagmAjcoPIIq0Q+bFkyRIsW7ZMEjj0ztatWxetWrXSqmVKkyU9kWNE2tBGLCI1icgiIof6ImLlwIEDaNasGShOD+H0999/Z2jH09EDS87qiLMMBUYusuqTqnz44Yfo1KkT6DsUJlz9afEz0qSafSXmCizMzGFXSHyENPKk809p4tzvc2BpY4/r2/5BuQH94FK7jlL0xGe35i3g0rAB/mnZGj4ffwjnylVz3pb4HhTzrYM7wZfUupGHDsBvcvr74d6iFYrXq6+WG0vcPHxQfgNKNn0NBwcMwZ3LwShSrrxUL9e9Jy4tWohj4z7FlT+Xo9O/J9VmKvTqp37s3Vu9AZdXM5M8OZ3zauOcYAQYAUaAEWAEGAFGgBFgBBiBPEHAjP7hK1Awe9P7PBkNd8IIMAKMACOQrxFwL1oEywd1ws5RPTG6hS+m7zqBU6ERmca88WQgetQoD3trq0xlnJF7CJDrsooVK8rDSxAPpogmnAJKFAf6ijXtbIwC1GYb1QXq1dJdNhFrjjXFpvpoQQApcj3uGorbGrYUIndnyljpTMRMdkKL92Sl8f3338sFb28Ri+b999+X1Q4Kd2MkRObUqlVLLl7TYrYpsUmoXlxUBJzcy1Eyg9h7loHHG21lXuHiJeDZtgMKFiqk6li7Fof3iPcQuFBH+CgFDxMSZNLMMl3Xws4OyQnxisoTn2OP+8s4HX+XK4vEq9dR96vvMrTl7KNbXHZt0FAleUjBvXUbOJTRkWslxU59p0rClEpPbJ2KSgslQ/E5nG11VihR8Vm7qlKapDhFCuFSs2ZNSbBRGREOJGRZQkQGCVmNkLVVhw4d5PXixYvlc6T3gogBsqghcpIIPa1MmTJFki/0zFu2bKkWGXr3KC6TQv6RZQ31QZZe5KKQyBuSEiVKSLJQbUgvQVY81E7Pnj3V+9BTyXBJJBC9h0SmEAZ01gqRMES43L9/HwninWnevDn+/PNPrYrBNFm2jRo1Cnbinbp8WZCm5cvjyJEjUtfa2hrDhw9X26H+SV577TV5Vn4Us3WR1jApqSlKVpbnrPokooessIgco7lN90rWTqZKeFy4iJdTLJP6k84/pSGyyrEV1lUOXhUQFxKM5Lg7StF/OhdLs24p9mrNJ26HrHTua2InmYtnSWNVDgvFxDGbHq5t/welhOWRpa2dJHUodpYiZGlUc/xEhCxeiuoiBo/WSo8sdIgsI6FvQckmTWVa+yOnc15bl9OMACPACDACjAAjwAgwAowAI/D0ETCXbh1M8M389IfCPTACjAAjwAjkdwQ8ijmCDhJPFyf4hYRj26lLqFlGWHimSfz9JPxxIhB/vdteyeLzU0KAdsUri+GmdtFOrH/vFVY1TQT3Y1YSGCM2ho8cbFpt8uBkaaGrRzXEuqHYjZ9et7SDO8LjI9IzNCk3N7cMljmaIqNJCkhPC8Vly+oICa3izZs35eJ/oTSihRa3SYgkKC6Ch2cnDi4lEHMtODs1g+UV+ryD9WJR1KNtO7Xc0s5eph89SIK5tS5Oz0PhRqtQWr6q+AQJW68yaDz3d8SeD8CR90fgnsBFWaRNFX7zjo0bA8+ebyLwx59BcXYUAseUrhJibqNIiTLCyKhgJvXohNsyz9UuezxJkbAnqVChgjzTs/Px8QE9KxKyshowQASmF/FpiIwjSxOFhLx48SJSxL1s27ZN6tIPIn+IeNESf4olj6qUljD07pHFClmEEYFDLtzI1Ru5bWvUqJHRWEradokMUdyfkWVRYGCgtthgOiAgQOYT0UqifXfv3r0r74esypT7tLe3l1ZLUjmLH4QNWbIR0UVWPNQWCW3KojES2VStWjX8+OOP0m0dkTtE8mjlVkIUHCztYC4sYkyR7PokYo6sc8gNYtu2bSX5pjz77Nov6VASkfduZadmsNzQ/FMUX+nQGY7elaQrs40tmuDGzu0ivk26tZqil5NzQtgN+I/7UrosIxdmro0aw7xQzjcqUPyswiXERzdNnKtWh/c7A5VLk84P7sQiYutOOPlUxhURN4fIm2tbN8O73wC1vkLYlGjQSM0zNZHTOW9qu6zHCDACjAAjwAgwAowAI8AIMAK5g4DuvzlysSZ21rEwAowAI8AIMAI5QcBOuFqLvZeUocrugMvSBVvNstm7ZcpQkS9yFQGK/0GWErSAXqVKFbVtO1vg1++BHyYD67cKV0ndgNebApXE+rvY/C9cYqmquBySnqZUdh5Zyxcth2Nhwu9aDoUW9yl2iq2trWp5Q03QAjot5kdEREgLCm2ztChPViDKYjbdK4l24Z+uyZLBkPsnZzdPJCXGiiNeuFqzI1WTxc7dA2X69cT5eXPUOlbFdFYsiWKsRKaQpUv8pWBY5zCmkdqgJmEhrFWcKvnII1EQOce+GIu2m7dJAubS0j9lgPa6076VQdZPTpmA5vP/yP5hpbUfHXYFJSsajlty4851qeUqFt61QpiTuzCSIUOGoIiIU0Li6Kgjeok8oTyyqiHLKicnJ1lO8Z0opgq5Wtu0aZMka2SB+EHkB8V7oVgvWQm9I4bE0LtHYyAyadasWfjoo49kvJ69e/dKyxhDbeRGHrkEJCHChu6XCElFlLG3b99exuBR8vXP5DKR4ulohdwpEpFD1jBE3pCbNnKjRpYxJFWrVpXkGBEs5HaQ4vboy5WYUFRw1I1PW2Zs/mXXZ4sWLUDkFRFx5FqO4h0pllfa9g2lX3Eug4fCQuhu0l3YW+mIUEN6hvIMzT9Deo7iuxdrAgFnqK42j+YUxZ6p/+0MbG7bCpf+XIxKA4doVbJN0/cg8tBBePUzLV6RsQYjjx2VsbgexMYi8tgRmBe2QdjGf5AkiFRDbhSNtWMs39icJ32ay2R5Ru8afVdZGAFGgBFgBBgBRoARYAQYAUYg7xFg/2p5jzn3yAgwAozAc4vAkQuhCI+9iwcPU0DpJScuoFOtihnuZ9nRAAyoVxXm7MIzAy55fbFw4UK5Y17fmuCEWOMNE8YzNsJ4xPdV3agEXyKlemXgxj7g0mUgSBA5q1fmbNSvutXE1fgw3Lmv8b1mQhNExNDufm2wdqpGlhVk3UFu1siqgkgZJUYQudkioUXtuLg40P2SVQC5zdJK586dZdB4WoSkgO6KOJV0h11RN9wIPKNk5ejs/e5guYiqVLL3eAUONaogaNmfeCT6ubppA5Jvx6JE/ZzvjlfaNHT26vsO4vzPInz3ThCxc0LEwqn7zXfSGshn8HsI37xdWiMYqmsoL+TEIbzyaj1DRfC77odaLtVgViDjn4tE0tDzooOwV4Ssr8gqip4F5SsL++SCSxGKEUOL/lu3bgWRGorQcyIC8tChQ5Kgo3g4RPiYKsbevdatW+O7776TLseoD8Vln6nt5lSPCBwikP744w+JwaJFi9QmKNYNxeghfIgAISFyRnFDpyj6+vpKF2qnT5+WZCblk1szev/JNRuRLxT3R1+IUKG4VNQ/Wenoy+Frh1HfPfOzNjb/suqT5hLFIyJij6yPTHWdqIzJvYgHCptb4UxYZtJJ0cnqrD//FN2k2GiQJc2NHdsQunQl3N9ooxQ90Zkse66v2YhX/zdWkqe+X07Cv5+Pl3PPlAYp1lbM+XM4MXE8Ei6G4JUugj1Pk+SEONyLCFePB1omXehoyyidKubdjd074NGlM4i8paOBsMazLOqIm8eEuWUuiLE5T03T97lhw4bSzV8udMVNMAKMACPACDACjAAjwAgwAozAEyCg++9cGOawMAKMACPACDAC2SGw5/wVNP7mD/h8MRd9Fm1C31reqFPeQ60WHHEbJ8JuoXU1ncsrtYATuY4AkRxPIidPC5JEGFq4Cs94Yl0Ow74CalXXtVRGPMq2w0W+2LwvPFGhXjY8hFibFsHY00dRRljm1CtRC2tOr0rPFKkC2Zj0GCun3d8U82TlypWgYPYUw2PDhg2ybVpApgVtIgfIAoMWyGkBXXGLpQyAFrhpsZqsRrRkkVlBczQf+CmOrJqvqGZ51h+jY0VvuHVql15H3GPDH2fi6oaNWCbiYBwaPBSNFy9EoTRrlXTFHKb0sKO4G5U//Rj+33+Hf7+egtJd2qNU0+ayUSthAVPr26+E27WxSBHu3rKTqNBg3Dh7DK+2Tl9gVuokP3qIJWeXYli995Us9ayPhVJAljVr1qzBvHnz5DN59913sWDBAnh4pH8jiFyhuEZNmzaV1jhK3W7dumHixIlysZjaIcsrsuDRF2N9G3v3KPYOSZ06dfD666/LNJGEJESkUHv0XpGQqz66JusdY/1IxWx+fPPNN/j0008lBhTfRitTp06VFjtEflAf9B4HB2d09+fp6SktnygGjY2NDYjYIiuYunXryjapnKwjSLTj7Nixo8wjF2v6EhR1EZfuXEa3am/pF2VoQ1uYVZ/kgq13797SmsrCwgL+/v7SOkdbP6u0uZh/79UaigUnFmSlppZp75MyM82/NM1dnbthnYhrc2nZEtT8dhqK16mvtpHTRMq9RBz7fIycUxQ/i6R4vfpy3vt/Lz6cJsiB/gOwp39fJMfHoaOwqrFy1FmpFRAEaeiSFVhTvYZ6HPrkQ12LZrp/zNbVFN9STXnshfMIWfQXtO7TyD2ie+dOguTZmWk0j3P4/11Wc54aV9woKhZ4mTrkDEaAEWAEGAFGgBFgBBgBRoAReOoIFBA7XB83adrsqXfEHTACjAAjwAjkDQKBQaGoVimzK53c6v2uiImTcD8ZTnaFYWVhnlvN5ko75PJHCWyeKw2a0Ai5cKLd8M+TiEeI6BgR/L04BPmReeQxd4S7MuFFx1BZZu2MOQERZzFk/VAcGHIgk0VHRs2cXREBQIvGissupTZZK9BiN1mEkOVDTiQ56T6+bV8V7y3eDaeSpXNS1biucHt1//YtFHJyVuPQkIulAo+NVBELtwVyOG4jLeU4e+svU2EjFpcb9xyWqe72C/9g8clF+KvX8kxl2WWQtQY9r6JFi4q4SpbZqWcoJ6sfqkvPOaeE5dN697QDJLdmdH/GhIgoEnovyTqJSEhDkpiYKF1WUTm916YKvetE8CixorT1yLUaEVWEn36/k7dPhHNhZ7zXMOffKmN9Eha0wE/3rF3gJ6LHmBDZqhAzSQ/vo/FvTbGqxwq4O6UTfsbqPmn+05p/j1OMvwcFyDJVkHXPk2Q158ndJb13/fv3lwTt83RfPFZGgBFgBBgBRoARYAQYAUbgRUKggAjA+rhZ89dUn9sv0s3xvTACjAAj8DIi8LTJnPyMKZM5+fnpvLxj29atE24dOGIQAN8fvkWFXv0MlnFm/kNgz549aN5cZwllaHRKDBtDZU8zjyx+yCKqe/fu0q3c0+wrq7Yp1o+9vfEYOGTBU716milgVg3lYtnTmH8PExLxd9kyRkfZVlgUOgp3dy+K+Pn5gdz/BQUFQYkL9aLcG98HI8AIMAKMACPACDACjAAj8DwhYC53sdLGMWM7Rp+nu+GxMgKMACPACDACjAAjkM8QaLZgMVKN7OK3KGydz0bLw8kKgQYNGiAqKiorlWdSRpZMM2fORNu2bZ9J/0qntra2WeKjteBR6jzt89OYfxYi6Fi3wECjQy9k72C07HksqF27Nm/8ex4fHI+ZEWAEGAFGgBFgBBgBRuCFQ8CcXB08TmUm54V7snxDjAAjwAgwAowAI5AvELB8wRZ28wWoz2gQ5DauWLFiz6h3490OG5bZVZ5x7adXQv9X5Dd8nsr8E/dJMapYGAFGgBFgBBgBRoARYAQYAUaAEchLBMzI73fBtECbedkx98UIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAowAI5A9AtIy51kZ5ly4FKyOsGKFpxesW+2EE4wAI8AIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAg8ZwiYU6DWvA6ZQyTO5xOnZ4Kq11ud0KVD60z5nMEIMAKMACPACDACjAAjwAgwAowAI8AIMAKMACPACDACjAAjwAgwAozAy4qAtMx5lJoK8nGdV7Ji9WaDXf319zoEnLuIyj5eanmliuXAVjsqHJxgBBgBRoARYAQYAUaAEWAEGAFGgBFgBBgBRoARYAQYAUaAEWAEGIGXDAEzsswxy0Mih/A9HRBoFGYqI1JHOciCp2uvoUb1uYARYAQYAUYgfyEgfq3g7v2k/DUoHk2eIRAUdRHtF7VD6uPUPOvTUEcnT57E2rVr5XHr1i1DKkhJfoBZ77REbMQNtfxeZASi/I7L66TYGEQeP4rUlBS13JREUkwMUkVMwmctUSf8cC8iXA4jOuAM4kOvZBjSrgU/4tjaPzPkKRd7gnZjxJr3lcvn4vyk716q2NS0a9cu3Lt3L8/v88iRI7h27Vqe92tqh7fio9BqfkskPkgwtUqe6K08tQKTtk3I0Fd273sGZb547hGgbyx9a/NCUhIT5e+ChwmJeJzySKb1+37zz644E3YqL4bDfTACjAAjwAgwAowAI8AIvMQImBUsWDBPrXKeFGttfJ2ctpGUlIT4+PicVnvu9em+6WBhBBgBRiC3EDgQeAXlPpuV4QiJjFabX3nkNFp9swivTvwd/easwqkruoVkVYETuYaAjY2N/P1NlrXKsXPnzlxr/0kbmnVoFjp4tRcbRczUJhYtWqSOURlr7dq11fKnkbhx4wbOnDmDLl26ICgoyGAXp3ash4NLSTiWcFPLw/fvw/Z27eV1zNkz2NG+I5Lv3kXc5WAsKV4c+4YNVHUTwm7IvDuXLsi8OxcDsbpOTazy9sbSkiVx7Z8tqq6xBC1AU7uGjgsLf0fQsiVq2cYWTXBqxnSVoIk4tF+WJYaFqc0f/Hi4OsbtbdshbM8uWXZ0zP8QvHK5qkeJyk3aYMfsSXhwPzFDPl3Ue6U+jt488VwtThp69zLdmIGMhw8fokWLFggPz53vVWRkJCZPngyaoyNHjjTQY3rWF198gUOHDqVnZJP67rvvQARQXkkxOxeUcyyDv/2X5VWX2faTlJKEGUd/Qnsf3TxVKhh734+M+UTOk9un/RVV+E3+EodG657NqR+/U+cYzd+TX03G/ahIVddYYmfft9V6+vP3XtRNWXZ9xz9q9eBVy7HCpyKSE7L+n2TPwH6yLulSHzTPFVG+Ofr9UT7Jth5dQN8NY/Iw/q5se0fP7qpKonjvqb2bhw+qecr4w/buVvP0E0SmUL1b/57IUJRyL1Hmx5w/hxNTJ8i0drxh+/bg8tpVMj9w8Xy17tUtmyQ+lJEVBlQeunm9/MbSt3Zd43q4ExwkCfTsxkN1jcljQeqGH9wHwoba0X5XEwW+9Lsg4fpV8fzuynT0mYzETedKnTHj4AxjzXM+I8AIMAKMACPACDACjAAjkCsISMucR89w9yjFyZn65ehsj+xcrbm6V4b2GDtuMlLEzqmJ076DZ4VaKO9TD12790Po1ax3PyptVKxSD337v4czAedVoBf/uUz2QWV0jPr4c0RHR2PJ0hUZ+lba2Lxlu1pXP3H23Hm1TvU6zfG/sRNx69ZtVU1pQznT/ZAoY0hMTN89eujIcdnWxYvBUidOLDoNeW8UqtduJo9hH4xGQnz+2lEpB8o/GAFG4LlEwLuoA46O7a8e7kUd5X3ExN/DmPUHML5TEwROHYZaniUxfYvpi5TPJRjPcNBkRbBgwQJERESoR8OGDZ/hiICQ6MvYH3YYb1ZPXyikAZEVsLu7uzpOGvPWrVuf6lg7duyIL7/8EoULFzbYT+qjFOz6dRrqdR9ksFw/k+6B5PqajYg9d06mH6f9/fQ4VZSJ8gMjh8Ozc2f0FERSwwXzsL9ff5B1T1biXLUaugaclYfP6A9RrFkD9bpc97dluw41qqDbhUDUnz4DkQcPImDubNlkiQaN4d69M/ynfyWvyYoodMkK1Bw3Iasu1bLiZb3gVqUO/LeuVvOUhJW5FfpX64tZh2cpWfn6bOzdM2XQlpaWuHr1Kjw9PU1Rz1andevW8Pf3R82aNcXfoinZ6udEYcuWLXluydO/9gDM/fd3JD28n5OhPjXdTQHrUczaGTXcaprUx6Nk3camc/PmqPqpyclITX6oXpdq31rOsdf+WILYwPO4sGiBWmYs0ein2XKudkyz5Gu65A917hZ2cUWdH6fj+LjPkXL/nvwO/PvlBNSbMQOWtnbGmlTzfT7+EG22/APPDh2xq8ubiDh8QFeW9h1qvf0ftS/6fhR2LaHWzSoRefQILMXv7Mhd+1SrFhtBPFf7Ygz8Jk1QLQoDfpkF11bNUapJM6PNiR2BcKhSEfcEeamV+7d1/8/YliqFqiM/luN0rl8bVQShTGN1rVsfSPt2nv32OzxK0r1Xj1NTkHw7Vm3KGAZJwtLy4LuD0XjxQvmtLfV6Sxz6aDhMGY/auIFExMH9ODhkCJyqVpWlj6H75htQNZjVwacT/G+dxbmIAIPlnMkIMAKMACPACDACjAAjwAjkBgKSzClglr57NjcaNbUNInFIyJVadge5WqNjzYb0HW76/Zw8ugM3rwXIY9qUL3Dq1BksW7YGF04fRHjoGfTr2wMW5ub61TJdUzsnj+7CG61fQ8s23XH12nVVZ/C7vXDh7BEc2bcF4eKflxUr16G32MFF/Z47tU/qXQ06Ka/btmmp1jOU8HQvJfV2bV0pdyx37fEOklPS/7HUvx9tGwcOpu/K3Lx5m1pErkI+/mQ8ijgWwdl/9+P0ib2wLlQIn4yZoOpwghFgBBiB/4KAufid4WhrjaL2NvIwL6j7HRIZp9ttXLl0CViIRZ7KpV1wQSzMUFw2lqeDgLOzM1xdXdXDysoq245obXn8N4CPL+BSAGjXE1Ae0VZhxDF8THoTwuspxul4AkyeDrTqBriWAsaI/QVUv/u7QNzddP0T1/3gYVcKRax1BF96CUBj0461aNGi2mKjaXJB1bNnT2nlQJYOP/30k6pLrrFq1Kghf4d26tRJLsirhdkkosOuIf72Dbh5V8tGM2OxW6d2OLdgbsZMcXVXuDCL8z+L8j16wszCAu6t28lF05uaXfWZKomMgoJIsC7mIg9LhyIwt7JWr83F/ZKYWZjDytEJztVroHzvPrg09zfp6ofKao4Zj9ClK+Xu/ePjx6H29K9hW8qNikySMrUaIuSkYdK1trsv/CL9c+QyLyQkBG3atJHPhJ7N/v375TjI1R1ZY4VprIg2bNggn60y0BUrVqBy5cqybu/eveWGGaUsNDRU1icSkNqld2HZsmVKMQy9e6NHj8bq1ZmJKspfs2aNrEuEX5MmTUD9EcmoCJEmAwcOlJY11NcHH3yA22mL1IqOsfO6detk+zROfaE2unXrJu+R3mvaFGSKLFy4UN733r175Zio7R49eqhVyRqof//+EhcvL69M9033+euvv2Lw4MFSh54FEcKtWrWSVkl0jxMnTpRldNZK1ZLV8VAstAffDtZmZ5n+/vvv4eHhIe+T+qJxK0IE1/jx40HjJEu9du2EW0blI6QoZXE+FHoIjT0aZaGRuYiIieur1iPu0sXMhSKnoLW1nGNFvLzhUrsObh4xPCe0lQs5OurmqrDiICkkvsfKXKbrct17wsqlGC4I0uHsrJ9QvHFDlH69NRVlKxbiedh6eKJctx7w+mAozqURuEpFq6LF1L6oTyIyTJEbe3bB+71hcPStgcijh9UqFd8ZhPvXb+Dalo3SyoW+MbXHTYB4QKqOoYRjlSqCzIlActwd/PvNVJCV4v2oKPnto+8ZEVdyfIUsYWlvL9MFxf8lJEQqOVSphCub1htqGsYwCBPWM1S3dMvW8ltb4a2eiD3uj/hrV5HdeAx2lJbpXEUQ6yf94d1P/GJ7ArG1soWPkxdOXNO56XyCJrgKI8AIMAKMACPACDACjAAjkC0CZkLkP1LZauayQrXK3rJFio2TEwk4Z/ifMENtxAv/xkUc7GEuCBy6zw7t3kCpUiUNqWbKs7EpjLff6oo6tapj6dJVmcodnRzh410RCQn3MpXlNMPZyRnjPvsIl4JCxaLHkWyrN21cF2vWbpJ65EZty449qCZ2xpGEh9/Epq078cHQAbAQi0mFxD9Mw94biLWCBIuMMhwzQFbkH4wAI8AImIjA2ahYeI2djVoT52HujqMqWeNV0gWvl3fDtHW7se74Ofyyyw8fNquFguL7y/J0EJg5c6ZcZKaF5lGjRpnUyWrx62Ox2HS+agngHy4ImU7S+EPWjRGboi9cSm/mtjAqCb6su74WBogN3PhKkDrzxwOzhTeZ4BDg4LF0/cu3L6O8Y9n0DE3q0qVL6lhpvMoiv0YlU5LcXxExQIvORNycOHFC/k4nxSixYEiusWgh2M/PD8lip32fPn0ytWEsIyYsFFY2juKwzaDiUtsXjdJ25RcRi80NF/wmFxUVJe/+A6X1S3youHmN3L8VJa9s0nbI0+KqXYVyuHcz4651TZUcJx8KK9vwA3vljvkC5rrFW9pVX/PbaXL3PpE+Fd7uq7ZLO9ddaBe8kBqffAaPtu3VMiXhXMoT189qHqJSIM5uDjpSKDxOPHwThKyX3nrrLZClCz0rIgqIKIkRcS2KFSsm/y7ZvHmz2hJZlimEBy32U93PP/9cbMY5JZ/5DGHFoMiDBw9km2PHjsWYMWOwb98+EJmpiKF3z8XFBfquB2mMc+bMgZub7t6GDh0qrw8cOADqQ5E7d+5g/vz54p0vKYmIHTt2YNu2bUpxlmciMYzJ3LlzpTs3cpVWpkwZea/GdLX5nYXFF5FEtWrVkvdP6R9++EGqEBFCxA65FCaXbZMmTZKEkZZ8IlKU7tVeLKgTdsOHD5d1DwpLrzfffBN9+/aVln579uzBhAkThLV4+t+MlgUt4GBphyvC8s5UoX6IMCOLp169eqFZs2aIjdVZXVD+vHnzsH79epA7RHruiuWbKe1fjA1G6SKZMc7qfS9cogQqf/oxAhfNN9jFreN+OPn1FOne64J4RtVHjTaol5NMmqN1p32DU19OwsVZc1F7/KScVFd1i1atjhhBMmjl9I/fSVdx5C6OXJmZIhT769r6DShepz7cW7XG9V3p77OFrQ18v/kaJ6dMFscEeI94Dw4VvLJt1qGs+MYJEjT2/Hmc/2EmyE0lkTuO1XTWLdk1UGXYCJwWrgOzi0umxeC+IC6pfWUzojX9YhLyIPo2/st4iJwrKMh0Q2ItNk3Q7wJ6j8wL28h0kYq6/720+mWdyuJi9CVtFqcZAUaAEWAEGAFGgBFgBBiBXEXAjP4BzMk/ULnVe/eubbFidfo/9Ka2S/WMySbh1mzNuk3yIDdk9erUQiVvL9Sq/zrmzFuI2GixKpVDadv2dZy7mE4gHRQuzb6b/jN69x+K1Ru2oDutguWC2NnZoeVrjXE55Ira2sxffsO0r36UB7lOU6R+ndo47n9a3s+Bw8fQueMbeChcypFcDLoMsvgpXVpsnU6TcmU84VrCBRcvBilZfGYEGAFG4IkQcC9aBMsHdcLOUT0xuoUvpu86gVOhabvZxQbeNtUqYM3ZEMze7YdbCfdRXbhaY3l6CJDrsopiQYkO2uVuimg3wJcQG8r7dhe70k3b1I1GdUUslVq6XprUF1YhwvAgWrc+KzOvx11DcVtXg8Mgd2fKWOns4OBgUE+bSYTAOeHSjHb5161bF94iPsL7778vVWgRmmTcuHFygZsW+WlBniwUTJG4qAg4uZfLpGrvWQYeb+j+1ihcvAQ823aAspOclK1di8uFzsCFCzLUfZiQIK/NLAup+Rbid3t28TFU5SwStOucYnn8Xa4sEq9eR92vvsug7eyjWzh1bdAQCslDCu6t28ChjI5cK9m4KZwqVc5Qjy5snYpKCyWKf6EvzrZFZVZUvI6o0i/Xv6aFeXpm9CzIxRhZX5AcPqyzACBLlyVLBIsohIgGWszv0KGDvF68eLF8jvRekPVOvXr1JFlBhJ5WpkyZIv726i51W7ZsqRYZevfIImT37t1Sh6xWqA8iNYgcJAsgkhJicbZcuczvgSwUP8iKh9ohKxrlPpSyJznTPVMcHXqfibgyVYoUKSItXWxtbaWFGxFGRDSRUEwoIsOaNm0qiSL6m9LHxwcbN27M0DzlTZ8+XWJH5I3igpDcM9J4CHNfX1+ZTwScVkrZuCLibtq3XltgJD1o0CCJ6+XLl8XfpKWlFhE7JForHMKfSFiK4WmqRCRGwsXWJZN6du97+Z69ETx/MZT4MtoGLO1sYVOylLSGKSiIjQSNBZlWL6dpe89XZBVylWjlorPgyWkb8jsirFy1hIeNsL6zFbjKw83dpCYpxgu5MXOuUlUSOuSS8ZGGwHR/oz0KlyyBCLEpzOc9HdmXXcO27p5IEBYxMYHnUOKNFqC4RES2GCI6DLVVsmEjEPbXhdu4rESLAVkB0bUiBdO+ucmJCfiv41Ha1D9b2jvI3wWFigjCx9JSpm1cM/99U9y2OG7cvaFfna8ZAUaAEWAEGAFGgBFgBBiBXEPAnIgccnGQl4QOxck5fyEYpwMCc3QjVC+r2DlxsXHqP4iPH6cKly6FMX/eTzh6/ATmL/gLE6d8j20bl6NatcyLGcYGQtYtj1JS1WJP99JoKFazypTR7Qic/etCfDNVt1ihKj1hgnayav/BrVW9KpyK6nadFhJlipiLnX7v9n4LO3fvx/5DRzCwfx+xy1K3UPIo9RGKC5cOWqHn61TEQbhJeazN5jQjwAgwAjlGwKOYI+gg8XRxgl9IOLaduoSaZUrh/I1IfLRqN/aM7o3SgvRZ73cOnWavkvFzyO0aS+4jQK7FlMVwU1tvJ9a/9woPQk0E92Mm1qLGfAmMHGxabWHoCksLXT2qQb+aNGuBKO3gjvB4wwu+ZAlBFjk5EQpITwvOZcvqCAlt3Zs3b8pFabJAJSlfvrw8E0lQPM3tkcww8sPBpQRirgUbKc06u0Kfd7BeWPB4tG2nKlra2cv0owdJMLcuLNMPhaVEobR8VfEJErZeZdB47u9i93sAjrw/AvcELoorNVrgPTZuDDx7vonAH38Wrp3eVgkcU7pKiLmNIiXKGHTTFJ1wWzbhamfaIrRiCVKhQgVZj54dEQj0rEjIymrAgAHSWoPIuOrVq6sk5EWxcYbcb2mtX4j8IeJFS/w1aNBAtqX/w9C7R1Y/ZBFGBA65cCNrE7LmadSokUpk6LejvX7t/+xdB3hURRc9hAAJCQm9hAChl9B7b9IUUEAsPygKAoIdRQULCqhUFREVCx1BqdJ7kV4FaaETSkINIT2E9s+ZzdvsbnY3mxAi5d7ve/vmTbkz77yyu3Pm3vvYY2aSgZZFQUGp+91qqYtpngvJLoM88lSuvYjP3QpJNApJHW4Ujp2kjqXQusee8PcnN46Hwna2JFpIzAX4+SSfvLanj3kDBgzA999/D8auInYUw/Kpbdu2WL9+vSZneY8MGzYMb731lq7jykchrwJqsYBrpK2lPk6+l+7dA0emTbbM1mlfRRSX69Zdpwspa7b1L3TTLs4sydFkjVzI2KfcqzEOVlzoeQQv+gslOjztQivrKglRkdqtmBtfwInC59x4Bxh5Ke1DNqwH3yVnli/FzdgYXf3Knn9QoG49naY1YZGWrUELFbp1dEVyKEIp8lSwcneWFRVe6YWNyvrLU5FWORJJrBR1qD4r9XsX+8aOQcW+JqLeXhtLDLIqQuV6RNIqglsJ13WTLMqlW1ZlaXlX47HXeSryLqr7sqiPibxMRTOpKggIAoKAICAICAKCgCAgCLiMgDsn+t3UaupbGTjP3+nJNjr+jcujTKzIds6ka9dnUFitKLMUnl89ZcnCbdjwbzF12h/4usoXllWcppeq1WlVKib90fYvXEjrYqO6dWuhRt2W2kWa7R9mp0rtFEarFb10j2Zp6VO/QZ1k52M0bdeuDfq+8Z62yKlcOWl85cuUxvZddE8SpyYqTH/Ko5VblkNBx1CmdPLJMEOf7AUBQUAQSAsCOTyzIjw2Xjc9eOYiSuT01kQOM2qWMLkxOq3cspUqZFrhn5Y+pE3aEPj999+1CyNOoFdScQ0MUYug8fPXwDdDgQXLgHc6Ay2bAhXU/DtD7liG8Dhx0mhl2quvVKdSOm8pbA/Z7rSOvUKu2P/jjz9AqwPD8ob1OAnMCXDGMuEKfkvhpDwnxm8pixKu6jcmtC0n/lmf38/GJLJVe/8AxMeEqy1KuVqznvS2rGcvnaNoMZR4qQsOWQRU98hnusdj1FhpDUNLl6ijx5Ulj31LJXt6HeVlUdYquSsE6i1GETnbP/0IbVW8PE6+Hp0xDQnKfVXdr0bCs0BB7SKp+YSpKca6MPoKCzkFv3LKxMqOnLt2VucW9LWexCfmtPCgvKoChtNqhJJLTQJTSJ4wj4QALaty5zZNDDNm0uOPPw66Wlu8eLGOSaMbqA9amdEtrmVMJKPMcs97xJ7Yu/c4BpIl48aNQ79+/bSbMpIIdPn1XwiJCxJdvFdpuUTyivikRnivs52lGGQJCRF7xKdR17g+xrGr+4RbNxCREIWAPCWSNbH3niF5N2LECJw6dQoBAQFgHCW6hDQWjvGZpLs5uomjpRKtnlq2bKnJnWQd2Mkol7sMToeftlOScla57j2xqF597aqQVhb2JEexAJ0defqUdttlr44reWEH9iFozDi037hBx3PZ8vZb8G/2GBhLJjVyeddO5FX/Y+5WgufNhbe6Hhe3b9WqSOyEKoLHIHPSop8WQowVxng79YaP0q4lz6hnu+6IUS6rK9LycexWrgFJdjkSSwyyK7I+Yv8h9edVWROq5yE25Jxuxtg8mdUivLsdj6MxuJJ/POwYWpVqlawq/+f9+++/+r2YHgRusg4kQxAQBAQBQUAQEAQEAUHgkUHAjWSH4aIro856norfklr58rP+qW2C6TNmYf78RUi4eQNxcXE4pyZACir3KK4IyZC58xZi4+Ydyv2D8kFjI/RLvmDRMu2+zNHEgk0Th4d0/zby2x8U2RKAZo3trzi1bVyieDF4q+Co/3uuo1XMo8KKbKK7ts+/GKni+URr/+mfDR6OJ59oiUIunrttX3IsCAgCgoCBwNbDwQgNj8T1GzfB9PRdh9GhpslvfO1S/jh5LRo7jp9V791bWPHvERTOkR3FC7i2wtfoQ/bpgwADpnN1vK01geL7EaKMZ1RoONSubupL8SVaqlYEzv0NHD2hVvkrImfu7NSNpbp/DZyOCsG1uKRV065o4OQ2xzp0qGKYLISWFZwAp5s1WlWQlFm5cqWuwdghlJkzZyIiIgI8X06U25I+tEaYO3cuGAOFcXUMye1XFDny+uNc0D4jK1X78j16I2RR0u8Zn2LFQVdKx2ZOwy3Vz+nFC7VLo0L1G6VKb0qVy3Z7WU9Whq5dDRI7u1QsHE6c0hoosPdrCF2yEudWmzBKSRfLT+7ajOLVTSvzbevvPLsTNfNXUYt+3KyKSNLwenEj9obQ+opWUbwWzDdcqpG4MIQutRjTZdmyZWjfvr2RDV4nEgOM+UKyiG6+SPi4Ko7uvTZt2mCUislBSxX2Ybjsc1VvWurxNyLv6UjlIpc4MM3fZBTjPHl+vHdTK3SFRuyo17DmpttCkmEkTBhLivht27YNdHGWHrIvdC+yuLmjlCJrbcXRe4b1+MxxnLTQsZTdu3drV3p8tunCjkLS1lWpX6weNp7Z5Gp1q3okWoupmJgXVqy1yr+l/ifEq3cMCZiDE36GZ4A/vNT9nFa5o74Dtw38AIH939GxZwo3bwHfShWw/0drLBzpp3vGiBPHlRXRJBz7ZSICe/W1qhp34byKVRNq3vjOMST+Wrg5n3Xi1b0Weeokoo+cRJ0vhmvil+Rvpbfewcm5c5KCphkKUrH3zJNX1/YqEaBjyRSsr6yQgs8p7IrofLpE4xhuX09Q1jSm9E1lvWgpdFtW+Z1+Vu9TljvCwK9BY/1uDV6+RL9rj874HXnq19KWSimNx7Jfe2nG+6GbOIrGWB27KjHX1eK58GOoUcT03WTZjoQm3RkOHjzYMlvSgoAgIAgIAoKAICAICAKCQKoR0P/OMycG0U116wxqkJJ7NUfDqFWjOmbMmo+iJaqheNlaitiIQc8eLziqbs6ntU31Os0VWbMcq5fPRjHlWo1C4usX5a6tXKV6qFW/lVoRvBezf//Nikwx6ukGTj6oK1hFky5YtCKaPdEZ1+OvY96fk3VwYKMZx8Fybs+/0FNnsx03yvgfvkaX5zrrND/clImVmwo0/sPYEYiKjEKpCnVROrCeJrO+GTXU3M7cQBKCgCAgCKQSgXWHTqHxiKkI/HQ8Xpy8GN1qlked0sW0luIF8uDDFrXw/p+rUOGTn7Dy4Cl80akZMqv3kkj6I8CJ0LTI7n+Ban5AwcJQk0tA32HKiqqqSRM9iLZ9U+WrOVvliQr11OZMeGktL28JNdlbr1BNzPtXTRBaiPG9ZZFllXRUzhX8jHkye/ZsMJi9hzIdWrhwoW5LCwQGsic5QAsMTipPnTrV7BbL6IDWCpxMp1WCJVnkltkdzXt+iK1zJhhVne5tx5irXHn4d2iX1EZ9Nzf8dixOL1yEmcr10ObefcCA7HRZdFeS+J1v6KA1AQO57/l6FP5RAduLdGqPwk2b62IPZQFTc+Qw5XbtI9hOmBrtLfeXgo/j3P7tqN4m6beEUU5rjOn7Z6BvvdeNLPPeFgujgJY1RnB7XpMePXpg4sSJOtaLUYfkCuMaNW3aVBMQRn7nzp31RCcnPKmHlle04LEVR307uvdIflDq1KmjrT+YJklI4QQr9fG+otBVH49pveOoH10xhQ+SUowTM3nyZE1QMT1jxgzdim7mNmzYoM+P8X9IwqRGunbtivj4eH3PV65cWTelizRitWbNGk2mET+6YCSpZCnOzsm2zPJ42q6p6Fn1ZXhkMVl8W+q0l6YFFietiTPvA46XYugkmUPiz0stSqpSpYqOrWRJ+NnTaZnXLvBJhKq4OftCFDPtgmSyISMr9Ho1WSsSs3NUHKX1r3QH3XU1mzQF7tlM90Wyyg4yjPNj8fHZMxFzMhiBfd/QtTOpF2XNjz/TljoRR4840JCUfeibsVjxZDucXbUSLebPRQFlTWRSZPoPsOKJdphXtZp5u6pcMBpyYPhocz7rbP90AC5s3aRdrNGq0JD8tetq4uWaIo0shWN1WZRlDIkUv8ZNdJO8qj+Kd2I8p33jxuixhG3ZCWNcF7dt1XUsP4o/2VG7krPMc4SBh7LYbPDrz9jUo5d+155dvgz1RyhzU0oK4zFVcvw5r3JVLGvdRlfQGKtjV2XxwYWolLc8KvqZnkvLdiR2KfweExEEBAFBQBAQBAQBQUAQEATuBoFMq1atutO4SdO70XHft6WVDcVwO7Z37z5ljXTTatzZVPBMS3dlVoVpPKA10IGDyf2rc4KCljX3WvjnmX8sjXgC97o/0S8ICAL3BwJBx4JRpULyFdTpNbrIuHhExyUgt7K68cjinkwt43NFKNdrubxcm/hLpuAuMg4cOGAObH4XalLVlC6cUhsLJlUd3IPK6hJCGYWikDJWVXNfyeTqNcBXeR6zV5assk3GgfP78eqCPtj46sZkFh02VVN1SAKAcewMl11GY1rr0MqBFiFc0JAaSYiPw8j2lfHalLXI7VckNU0d11X3f9yVy8iWO485Dg1drmW646CJWoiRqslTB2rSkr3shy/hpWJjNO5iveqfulYeXo4puxUZ0fWPVKumZQivV968eXUsltQooNUP2/I6p5awvFf3nuX46SqM5+dISKSkJGxPSzNO7Br3LPMMN2S27flbju7VXJEw5SeRbtjoes3Q7Uo7R3UuRl1E+2lPYnWPlfDx8HVUzW4+rW04Fh8fn2Tl/I3MsdKSzji31GAwZftEBF0OwvB2rrvzSjaIlDLUtb5z67bDWmmNp3O/vg/snug9wsBuX6nMpPVTfHgYPPPmc8mt5L3GvfWEVhjaYihqF6uT7EzolvL999/H4cOHzXHCklWSDEFAEBAEBAFBQBAQBAQBQcAFBDSZ06RpM4d/IF3Q8cBVofu1eMuIzeoMPFQA5Re6JHendjcnF34tAnPnm1YQW+opWaI4mjVRy6FFBAFBQBC4BwjcazLnHgw53VQKmZNuUIqidERgRecOuLwx+Wp0dlH7m5Eo0/WldOxNVN1LBNatW4fmzU2WUPb6cUTI2KtrmUersUGDBllmmdNPP/005syxtnYzFz5EifsNg4tbt2BVh44OEX5BkY5pkQfpfXCvMEgLbnfb5r/EvVOnTvBT1kpc/CEiCAgCgoAgIAgIAoKAICAI3A0CmZTv+TvNmjUHV1KLCAKCgCAgCDz4CAiZUzFDL+KDaJmToQBJZ0iIVPFN1Cpye5Iluycye2S8FZu9sUheyggw7hLjwDgSWsSkRWJiYhzGjaEbNV/f1FnFpGUM/3Wb+w2D28pKLMHGVZ0lRnRrmBZ5kN4H9wqDtOB2t20eJNzv9lylvSAgCAgCgoAgIAgIAoLAw4uAO1cQ3qH7ZeFyHt6rLGcmCAgCgoAgIAgIAv8ZAll9Hv6J+P8M3AzumMRKWgkbZ0Nl/Bhuj7Lcbxi4KbeOaSVsnF3HB+l9cK8wcIbPvSp7kHC/VxiIXkFAEBAEBAFBQBAQBASBBx8BNx2sU4icB/9KyhkIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgsBDiYCJzHkoT01OShAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBIEHHwG327dvA3SzJiIICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAIHDfIeDu5uZ23w3KckCHjx43H5YrU8qcloQgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCjwICmsm5c0tZ59xnMm/hcjzdtQ8+HjzavPGY+SKCgCAgCAgC9y8Ct2/fwbXY+Pt3gDKye4rAsUtH0H5yO9y+89/+tti9ezfmz5+vt8uXL9s955sJ1zHu5VYIP3/OXB578Twu7dyhj+PDr+Lijm24ffOmudyVRPzVq7h965YrVe9pnUu7diL2fKjuI+zAPkQFn7Lqb83Eb7F9/jSrPONg3bG1eGve68bhA7FP671HK/U1a9YgNjY2w89z69atOHPmTIb362qHl6MuofWEVoi5Hu1qkwypN3vvLAxZ8blVXynd71aV5eCBR4DvWL5rM0JuxsTo74Ib0TG4c/OWTtv2/cy0p7EvZG9GDEf6EAQEAUFAEBAEBAFBQBB4hBFwu6V+CGfKfP9Z5/z+5192LwvzSejY2+w2kExBQBAQBASBdENgY9AplBowzmo7eTHMrH/mpr1oM3IKag75DZ2/m4nQq5HmMkmkLwJeXl7IlCmT1bZ69er07SQN2sZtHocny7aHW6ak3xaTJ0+2GifHXatWrTRod73JuXPnsG/fPnTq1AnHjh2z23DvqgXwze+HXIX8zeWhG/7Gynbt9fHV/fuwqv1TSIiMRMSJ45heoAD+7tvTXDc65JzOu3b0sM67diQIc+vUwJzy5THDzw9nli8113WU4AQ09drbDk/6DcdmTjeXLWrRBHvHjDYTNOc3b9BlMSEhZvWb3nvTPMaVbdshZN0aXbZt4Ac4PvsPcz0mKjZ5Aqt+HILrcTFW+TyoV7w+tl3Y9UBNTtq795KdmJ2MGzduoEWLFggNNRFfdqqkKuvixYsYOnQo+Iy+/fbbTtt++umn2Lx5s9M6loWjRo0CCaCMknw58qNUrhL4c8/MjOoyxX7ib8ZjzLbv0D7Q9JwaDRzd71sHvq+fkyv/7jGqYufQz7C5v+na7P12lPkZ4/O7e9hQxF26aK7rKLG62//M7Wyf39hLF3TZ2VVJi9COz/kDswLLISE6ypFKnb+u50u6LeuyDz7nhhjvHNv+mE9Z8Xwn8L3hSG5ERWrdq7o8a64So+576ruwZZM5zxh/yPq15jzbBMkUtrv8zy6ropuxMTr/6qGD2PXl5zptOd6Qv9fhxPw5Oj9oygRz29NLF2t8mOEMA5YHL1mg37F81/7VuB6uHT+mCfSUxsO2joTvdstxMr2oTQtdPUbhy++C6LOn1fWL1OmwfdbETccKHTFm0xhH6iVfEBAEBAFBQBAQBAQBQUAQSBcE3DJnzgy1fDZdlGWUEhI69rYhw77LqCFIP4KAICAIPLIIlM/ri20fdTdvRfPm0liEhkfi08WbMOr5VtjzWU8Uz5MTXy9Jmhx6ZAG7RydOK4KJEyfi/Pnz5q1hw4b3qDfX1J4MO4ENIVvwTNWkiUK2vHPnDooWLWoeJ8e8bNky15SmsdZTTz2Fzz77DNmzZ7er4fatm1jz81eo92wvu+W2mTwHytl5ixB+8KBO31GTmZQyWCq5AABAAElEQVQ7/B2lyje+/SYCOnZEF0UkNZz4Cza81B207nEmeSpXwdMH9ustsP87yNesgfm41LP/03p9q1VC58NBqD96DC5u2oQD43/UKgs1aIyiz3bEntHD9DGtiIKnz0KNTz531qW5rEDJsvCvVAd7ls015xkJD3cPdK/SDeO2jDOy7uu9o3vPlUFnzZoVp0+fRkBAgCvVU6zTpk0b7NmzBzVq1MDNVFp1paR86dKlGW7J073WKxj/z2+IvxGX0vAypHzxgQXI55kH1fxruNTfrQSTpejBX34y17+dkIDbCTfMx4Xbt9HP2GNTpyM86BAOT55oLnOUaPTdj/pZfSrRkq/p9KnmZzd7/oKo8+1o7PjkY9yMi9XvgX8++xz1xoxBVu8cjlSa8wPfewdPLF2OgCefwppOz+D8lo2mssT3UJuVyoNB4nuD++wFC5nbOktc3LYVWdV39sU1f5utWrwU8Vzl04HYOeRzs0XhgR/GoWDr5ijcpJlDdepPJHwrlUOsIi8tJe7KFX3oXbgwKr/9nh5nnvq1UEkRyhxrwbr1gcR35/6Ro3Ar3nRf3bl9EwlXws2qHGEQrywtN/XojcZTJul3beGWrbC535twZTxm5XYS9YaPtsI0X6N6CGjXzk5N+1lPBnbAnsv7cfD8AfsVJFcQEAQEAUFAEBAEBAFBQBBIBwRMy2bVCtmHQf49EHTPT+PIkeP46ZdJ97wf6UAQEAQEgfsVARVsDbm8PZHXx0tv7onWnVuPBKNqoTyoEuCHHJ4e6FCzHBYcPIl4iwmz+/WcHtRx5cmTBwULFjRvHh4eKZ4K55YHjQACawP51dd/uy5qTUeiR7RlyojjzYFJKmgk+4mJJ8DQ0UDrzkDBwsDAoab2z/YAIiyMr3ad3YliOQojp6eJ4EvSBHBslmPNmzevZbHDNF1QdenSRVs50NLhu++SFm7QNVa1atW01U+HDh30hLxDRTYFYSFnEHXlHPzLV7EpcX7o36EdDk4cn6xSpHJhFrFnP0o/3wVuWbKgaJt2etL0gsWq+mSNVEZmRSR45suvt6y+OeHu4Wk+dlfnS3HL4g6PXLmRp2o1lH7hRRwd/6t29cOyGgMHIXjGbL16f8egT1Br9HB4F06yNGIdZ1KiZkOc3G3fMqRW0drYeXFPqlzmnTx5Ek888YS+Jrw2GzaYrAro6o7WWCEWVkQLFy7U19YY36xZs1CxYkXd9oUXXkBYWJhRhODgYN2eJCD18l6YOTPJWsTevde/f3/MnZucqGL+vHnztG4Sfk2aNAH7I8loCEmTnj17assa9vXGG2/gSuIktVHH0f6vv5QVudLPcdoKdXTu3FmfI+9ry3O0rWt5PGnSJK1v/fr1ekzU/fzzz5ur0Bqoe/fuGpeyZcsmO2+e588//4zevXvrOrwWJIRbt26trZJ4joMHD9Zl3FtKZb+quKEm2o9fOW6Z7TT99ddfo1ixYvo82RfHbQgJrkGDBoHjpJVeOzVhTld3rsrm4M1oXKyRq9V1PRITZ+csQMTRI3bbZfb01M9YzrLlkb9WHVzYav+ZsGycLVcu07OqLDgo2dT72HiWeVzq2S7wyJ8PhxXpsH/cdyjQuCGKtGzDohQli7oe3sUCUKrz8yj7Rh8cTCRwjYYeefOZ+2KfJDJckXPKUq/8a32Rq3Y1XNy2xdyk3Mu9EHf2HM4sXaStXPiOqUVSOIX/iLkqVVJkznkkRFzDPyO+BK0U4y5d0u8+vs9IXOnxZcuKrD4+Op05WzbdL0kl30oVcGrxAvM4LBOOMAjZ9LfWX6RVG/2uLfNcF4Tv2IOoM6eR0ngs9dumOV7j+pHou7xxK4o+0d62msNjbw9vBOYui11nTG46HVaUAkFAEBAEBAFBQBAQBAQBQeAuEDCROXeh4FFrelH9Qfl7Q8p/8B41XOR8BQFB4NFBYP+lcJT96EfUHPwLxq/ahluJk3A5PLLhcrRphS3RiIlP0KCExyTlPTooZcyZjh07Vk8yc6L53XffdanTuYuBKROBOdOBPaHAsx208Ydue1Utij58NEnNFWVUcvyE6fhMCKAWcGOYInUmDAJ+VN5kjp8ENm1Pqn/iygmUzlUyKcMidfToUfNYOV5jkt+iSrIk3V+RGOCkM4mbXbt2wd3dXde7pL6P6RqLE8E7d+5Eglpp/+KLLybT4SjjakgwPLxyqc3bqkr+WrXRKHFVfk412dxw4q/gpKIh5bv31NYvUcHq5C0k7vIlfeSVuEKek6s5ypRC7AXrVesWTVKdvBEVjdCN6/WK+UzupslbrqqvMfIrvXqfpE+Z/3Uz6+XK9fxcBa+k2vsDUKxt8onJPIUDcHa/xUU0twb8fU2kUGiEuvguCK2XnnvuOdDShdeKRAGJkqsqrkW+fPmQRZFcS5YsMWuiZZlBeHCyn20//vhj7N27V1/zMcqKwZDr169rnR999BEGDhyIv//+GyQzDbF37+XPnx+2rgc5xp9++gn+/qZz69Onjz7euHEj2Ich165dw4QJE9Q976eJiFWrVmHFihVGsdM9SQxHMn78eO3Oja7SSpQooc/VUV3L/I7K4oskUc2aNfX5M/3NN9/oKiRCSOxERUVpl21DhgzRhJEl+URSlOfqoybUid2bb76p225Sll7PPPMMunXrpi391q1bh88//xyWcaayZs4C36w5cEpZ3rkq7IeEFi2eunbtimbNmiE83GR1wfxffvkFCxYsAN0h8roblm+u6D8SfhxFcibH2Nn9nr1QIVT88D0ETZ5gt4vLO3Zi9/AvtHuvw+oaVX23v916qcnkM1r3qxHY+9kQHBk3HrUGDUlNc3PdvJWr4uruPeZjJv79dpR2FUd3cXRl5oow9teZBQtRoE59FG3dBmfXJN3PWby9UHvEcOz+YqjaPkf5t16Db5myKar1LanecYoEDT90CIe+GQu6qSS5k6tK5RTbskKlvm/hX+U6MKW4ZJYYxCnikvozqYUlFE9+MSm5HnYFdzserUh9nFakFi1zfEuYvs881aIJfhfwPnLP7qXTOcuVM6qb9yVzl8SRsKPmY0kIAoKAICAICAKCgCAgCAgC6Y2A6Vfww2GYk97YiD5BQBAQBAQBGwSK5s2JP3p1wOp3u6B/i9oYvWYX9gabVrPXLl0MIVGxmLXlX+w9FYqJG/fq1gapY6NKDtMBAbouK6cmlLhxlbsrYrkAvpBaUN5NeURzcVE3GtVVsVRqmnppojiCGsrwIMw0P6szz0acQQHvgnaHQXdnxli59/X1tVvPMpOEwEHl0oyr/OvWrYvyKj7C66+/rqtwEpryySef6AluTvJzQp4WCq5IxKXzyF20VLKqPgElUOzxtjo/e4FCCGj7JIyV5Mz0LFhAT3QGTZpo1fZGdLQ+dstqWnXOgyw5cqQYH8NKiYMDrjpnLI8/S5VEzOmzqDtslFXNPIGmidOCDRrCIHlYoWibJ8yTkX6NmyJ3hYpW7XjgnTuvtlBi/AtbyeOdV2ddijIRVbbltsecmOc147WgizFaX1C2bDFZANDSZfr06TqPRAMn85988kl9PGWKirWliAreF7TeqVevniYrSOhZyhdffIFnn31W123VqpW5yN69R4uQtWvX6jq0WmEfJDVIDtICiFJITc6WKpX8PtCF6oNWPNRDKxrjPIyytOx5zoyjw/uZxJWrkjNnTm3p4u3trS3cSBiRaKIwJhTJsKZNm2qiKIe67wIDA7Fo0SIr9cwbPXq0xo7kjeGCkO4ZOR5iXrt2bZ1PAs5SCnsVxPlI07veMt9RulevXhrXEydOoEiRIroaiR2KpRUO8ScJq90+69KUP87HXER+7/zJKqZ0v5fu8gKOT5gCI76MpYKsObzh5VdYW8NkVsRGtIUFmWW91KZ9AorrJnSV6JHfZMGTWh36PaLcj1kSHl7K+s5b4ao3/6IuqWSMF7oxy1OpsiZ06JLxlgWBWfTx9sjuVwjnl61G4Gsmsi8lxd5FAxCtLGKuBh1EocdbgHGJSLbYIzrs6fJr2AjE/qxyG+dMLDGgFRCPDcmc+M5NiInG3Y6HOvkuDPrtV5Tu0tXoQlkV+ervgmw5c2lrSn4veBU0PX/mSipRwLsAzkWes8yStCAgCAgCgoAgIAgIAoKAIJCuCLhxJZz29Z6uau8vZbGxcRg5aizqNmyNxo+1w/z5pj+30WqF6/Mv9MTPv01B1TrN8UL3Pjh95qwe/Padu/G/F3ujXKV6eK//Jzhvs7I2Li4Ordt2VisXr+j6N2/ewtPPvoSQ0POYPmOW7of9zZo9X5ezfY9eb2l93475Ua+eZIG9urqBfAgCgoAgcB8iUCxfLtQs6Y+A/LnxfIOqeCqwBFbsNa1CzenlgWkvt8PGI2fw9ozlaF2xhD6DnF6e9+GZPBxDomsxWrlwe/XVV106qXZq/rtNO6CJ4n781Bzrd7+41ExXolFM1izK7VfiHFbWrGo1dJIxA4r4FkVolP0JX1pCGGPlvkqVKil2zID0nHAuWTK5tc+FCxf0pHS2RJc9pUuX1vosrRGcdeCbvxCunnHdbZSlrjIvvqxdncVeSDrXrDl8dJVb1+PNVW8oS4lsifnmzDQkvMuWQLNJU1Hvh7Ha9U+swsUQTvBu/2QgAro8g6Bvv0fEyRNGkUv76KtXkLNQCbtumsKiTb9xCuZwbRLawL5MmTK6b147Egi8VhRaWZFw46Q+rVyqVq1qJiGPHDmi48swnxuJIZI/JF4spUGDBpaH5rS9e49WP7QII4FDF26zZ8/G/v370ahRIzORYVZgJ/HYY4+ZSQZaFrnqEs2OKp3FcyHZZZBHnsq1F/G5WyFWFJI6Bn4cO0kdS6F1jz2hJRU3jofCdrYkWkjMBfj5JJ+8tqePeQMGDNBk06+//mq2wjMsn9q2bQu+u0jOsi9aGKZGCnkVUFagrpG2lno5+V66dw8cmTbZMlunfdVYynXrjlqfDkadL77C9rffNbsyTFY5FRn7lHs1xsG6FRuD4EV/paJlUtWEqEjtVswt0SqRJYynVf7lnnor91KPpMpOUiEb1oPvkjPLlyLiuOl7+8qef8wtaE1YpGVr+LVtpV3OmQucJHIoQinyVDCu7N2DCq/0woW16zVZliORxHLS1FSk+qzU713sGzsGd27dcVjdEoOsilC5HpG0iuBWgulLKIty6XbX41EjuLxzB+KClQvOx1o6HI+jgovqvizqYyIvHdWRfEFAEBAEBAFBQBAQBAQBQeBuENBkDv1VP8ySTflpDgwsh7Ur/8KMKb+g79sDER8fj1t3bmP9hm3qz6sHNq5egPy582Dp8tUaCv6h/fyTD3Bgzyb45PbFXwuXWkHE8iqVArFk+Sqdf+DAQUTHxMBL5fcfMATzZ0/B6uVz1QpHU3DWri/1QauWTbB35zrEKJdDy1Q/18Kv2a1r1ZEcCAKCgCBwHyOQwzMrwmOTJq/rlQvA993b4++PeyDQ3zQBLGTOf3MBf//9d4wYMUJPXluOQC2Cxs9fA6diAOUVB18qDuiQaV5PxbVRljZhSbVPnExKM5XSz4XSeUvh5DWbRtYq7B5xcp9j/eGHH6zKOYHOCXDLWCZGBbrY4sT4rUSLEmNC29bih5PFxiSy0Zb7PP4BiI8JV1uUZbZL6RxFi6HES11wyCKgukc+kxVLTGLcFa7ujjp6XFnyFHRJp7NKWZS1Su4KgSjZ+TlU/ngAtn/6kTlQ+dEZ05Cg3FfV/Wokyqsg4Lu/+DzJb54zpYllYSGn4FcueWwXFp+7ZlrgUtDXehKfmPN6caM7MkNyqRgiFJInFBICtKzKnTu3PmbMpMcff1y7WuP9SbLGEFqZkdhgTCTLzfZ60jLFnti792jNQp3jxo1Dv379EBwcjPXr12uXX/Z03Os8klskuox7lbFjiE9qhBYsbGcpfE4ob731lhV2jM1jKcb1scxzJZ1w6wYiEqIQkMdE0Fu2sfeeIXnHe4PnNmPGDG2JxDaGKzU+k3Q3F6N+N//222+6PCgoyFKt03S53GVwOtxk5eO0op3CcspNIknPqNPBdkpNWTmKBehE5OlTDuu4UhB2YB+CxoxD3SHDUHPQYOxSlli0KkmtXN61E3nr1Epts2T1g+fNhXdAAC5u34qw/fs0sROqCJ67EVoIMVbY+TVrka9GLe1a8szixeA70lUp0vJx/Q5zRnZZYpBdxSiK2H8I6uWvu4gNMZGZjHeTHuM5MW+Wfr8zhk5q5XjYMZTOY1pYYNk2Wllubt68OdXPu6UOSQsCgoAgIAgIAoKAICAICAJEwE2Jmp15uMHgH9/6dWth3boNGPvjr/pkj9LRf6I8/0xHvTKwUcO6OHBA/TlQUrFCOT358/MvE7Fl83bs3v1vYu2kXZfnn8ZU5aKAf05XrlqP/6ljH18fNKhbA+9/OBj79gehaBF/ba1zKOiY8ud/A/MXLMGtTLexes0Gu3WTtEtKEBAEBIH7D4Gth4MRGh6J6zdugunpuw6jQ80kv/EHzl5Awq3bOHPlGkYu3Yy3m1SHe2b1PSOS4QgwYDpXx9tOku7aC4QogxKv7EDt6qZhGcYPVSuqCfy/gaMn1Cp/9TU5d3bqhl3dvwZOR4XgWlzSqmlXNHBym2MdOnSoVXVaVnACnG7WGMODpMzKlSt1HbrkosycORMRERHg+XKinG6bLIXWCHPnztWkA+PqGJLbryhy5PXHuaB9Rlaq9uV79EbIouXmNj7FioOulI7NnIZbqp/Tixdql0aF6jcy10mPRNluL+vJ09C1qxGjLHR2qVg4dUeMgrunsoLp/RpCl6zEudUmjFzp7+SuzShevZ7dqjvP7kTN/FXglsn6GSZJw+vFjdgbQuurAmqildeC+YZLNbpcM4QutRjTZdmyZWjfvr2RDV4nEgOc8CRZRDdfi9WksKvi6N5r06YNRqmYHLRUYR+Gyz5X9aalHmPX8J6OjIzUODDNyVyKcZ48P967qRW6QiN2xNdwV0a3hSTDaOHCWFLEb9u2baCLs/SQfaF7kcXNHaUUWWsrjt4zrEeij+P8/vvvrZrt3r1bu9Ljs00XdhRbCyyrBjYH9YvVw8Yzm2xyXTtkDJRizz2NCyvWWjW4pSzu49U7hgTMwQk/wzPAH17qfk6r3FEW+9sGfoDA/u/o2DOFm7eAb6UK2P+jNRaO9CdERyHixHFlRTQJx9R/kcBefa2qximrwNjzoeaN7xxD4q+Fm/NZJ17da5GnTiL6yElldTRcE78kfyu99Q5Ozp2TKvLX6MPYe+bJq5NeJQJ0LJmC9RtoqxYv/yI6n+QVx3D7eoKypjGlb1pYL7JSZmUVVvmdflbvU+Y7wsCvQWP9bg1erv5TqfM+OuN35KlfC96KWEppPNTrTK4rYvzklBko0eFpZ9XslsVcj8ah8GOoUcT03WRZ6eTJk6A7w8GDB1tmS1oQEAQEAUFAEBAEBAFBQBBINQJutMp52N2snTsXinpNntCWM+++3RdlSgdY+Z02UKOLCUO+/uYHfDXyWzRqWB99X+2hAysbZca+SpVKOrlfrQ6bMecvtGrRjOwYZs74Dc890wGDvxiBocO/NrfNo1am5lUrd+vXra1Wo75gt66hW/aCgCAgCNyPCKw7dAqNR0xF4Kfj8eLkxehWszzqqFg5hgz8cxUqfPwjmo+ejnIFc6Nn87tfTWzolr01ApwITYtwbUI1P6BgYajJJaDvMKBmVZOmEupStn1T5as5W+WJCvXU5ky4HoSbISXUZG+9QjUx7181QWghKVkAOyrnCn7GPKF7LAaz91CmQwsXLtSa6XqNgexJDtACg5PKU6dONbvFMrqntQIn02mVYEkWuWV2R/OeH2LrnAlGVad72zHmKlce/h3aJbVRv6cafjsWpxcuwkzlemhz7z5gQPZsidYqSRVTmbIxh2LMBgZy3/P1KPyjArYX6dQehZs210o91O+MmiOHKbdrH8F2wtRer5eCj+Pc/u2o3qZzsmJaY0zfPwN9672erMwWC6OCu3IDZQS35zXp0aMHJk6cqGO9GHVIrjCuUdOmTTUBYeTTioQTnZzwpB5aXi1ZssQoNu8d9e3o3iP5QalTpw5atjS5TSJJSOEEK/XxvqLQVR+Pab3jqB9dMYUPklKMEzN58mRNUDFNCxXKK6+8ot2O8fwY/4ckTGqka9eu2rqc+FauXFk35e9XYrVmzRpNphE/ujEjqWQpzs7JtszyeNquqehZ9WV4ZPG0VOcwTQssXkvizHHSGp5i6CSZQ+LPy8tLu1tkbCVLws+h4sSCdoFPIlTFzdkXophpFySTDRlZoderyVqRmJ2j4iitf6U76K6r2aQpcM9mui+SVXaQYZwfi4/PnomYk8EI7PuGrp1JvShrfvyZttSJOHrEgYak7EPKbHLFk+1wdtVKtJg/FwXq1TcVJr4PVjzRDvOqVjNvVw8dMDc+MHy0OZ91tn86ABe2btKWOJYWM/lr19XEyzVFGlkKx+qyqAVzJFL8GjfRTfKq/ijeifGc9o0bo8cStmUnjHFd3LZV17H8KP5kR+1KzjLPEQYeyhKtwa8/Y1OPXvpde3b5MtQf8bWpaQrjsdRvL312zQo9jgK17RPc9toYeYsPLkSlvOVR0c/0XBr53JPYpfB7TEQQEAQEAUFAEBAEBAFBQBC4GwQyKd/ad7ha8dbtO3ejJ93bPt21T5p0zv19fLJ2K1auxY/jJ2LBvOnaSuax1p3wx7SfUVytIitbsT7OHP9H+wpfsmQFlq5YjR/GjtIxb74a8gnq16uNMd/9hL37DmLqpB+xYeMW/PjzRPwx/Tfdz5+z5mHWnAXIqnz2z5z2CxiH58y5EFQoXxZ79vyL7n364Z+tq1G9XgsMfO8NdH76Kb1iUq8OVpDb1t273XqlYLKTkQxBQBAQBFJAIOhYMKpUSL6COoVmLhdHxsUjOi4BuXNkV5N77lbtbt2+jbCoGPgo95UeDK6SwXLgwAFzYPOM6pounBgD5kESdQkRdlUFf1ee8NTcVzK5eg3wzWG/LFllm4wD5/fj1QV9sPHVjcksOmyqpuqQBECWLFnMLruMxrTWoZUDLUK0tbFR4MI+IV7F1GtfGa9NWYvcfqaV5C40c15FWevGXbmMbLnzmOPQ0OVaJkc/s9wyIVWTp857T1Xpsh++hFeu3GjcxXrVP5WsPLwcU3YrMqLrH6nSycq0DOH1yps3r/59lRoFtPphW7pmSy1hea/uPcvx0xqb5+dISKSkJGxPSzNO7Br3LPMMN2S27UkS0MrcFWFcH7pho+s1Q7cr7RzVuRh1Ee2nPYnVPVbCx8PXUTW7+bS24Vh8fHySlTP2JMdKSzrj3FKDwZTtExF0OQjD241KpjvdMtS1vqMsTR1JJnfXrolt+/v1fWA7Tn18jzCw21cqM2n9FB8eBs+8+VL2Aap032vcW09ohaEthqJ2sTrJzmT06NF4//33cfjwYXOcsGSVJEMQEAQEAUFAEBAEBAFBQBBwAYFMyl3JnabNmjv8A+mCjntSZd7C5fj9z79Spbvrcx3Q6ck2ydpwZeJTnbshNiYWAQFFEK5i1Yz86nOUUEuQSwfWw9kTe/QE0ZKlK1XMnFWazPlj1lx8PnS0+qOdB7WqVUV4RCQm/jpWuYUIRY16rbBg7hTUqVVDr3qkjp++G6ZcZ7THkSPH0fet9/UYQkMvYNiQj8z5vV57B5HRsbps1LDPULRwYbt1k52AZAgCgoAgkAoE7jWZk4qhZHhVIXMyHHLp0AUEVnTugMsbk69GZ9Pa34xEma4vuaBFqtwPCKxbtw7Nm5ssoeyNxxEhY6+uZR6txmihYk+efvppzJljbe1mr96Dnne/YXBx6xas6tDRIawvKNIxLfIgvQ/uFQZpwe1u2/yXuHfq1Al+ylqJiz9EBAFBQBAQBAQBQUAQEAQEgbtBQFvmNG/+GG6rlVcPu5DUocsWV4WrBjOrVedZ3a1Xl8coUiizigFBtxxXrlxBw2btsW3TCuRU8XIMuabIn+xensnaMt9buZVwt1jN56iuoUv2goAgIAikBgEhcyqmBq67rvsgWubc9UmLglQhkBCp4puoVeT2JEt2T2T2cM19lb32kpexCNCy2jJOkG3vtIhJi8TExDiMG0M3ar6+qbOKScsY/us29xsGt5WVWIKNqzpLjOjWMC3yIL0P7hUGacHtbts8SLjf7blKe0FAEBAEBAFBQBAQBASBhxcBd7puoFscSz/PD+vppobIIQaenvYnV7wYNVrJwsXLMGHi73j79Z5WRA7LLIkdHhtiL99enlFf9oKAICAICAKCgCDwYCOQ1efhn4h/sK+Q66MnsZJWwsZZL4wfw+1RlvsNAzfl1jGthI2z6/ggvQ/uFQbO8LlXZQ8S7vcKA9ErCAgCgoAgIAgIAoKAIPDgI+BOdxBuitB5+O1y0v9i3VJ+tPu90xeNG6Y+SGb6j0Y0CgKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoLAw4iAO4OO0ionrT6+H0ZQXD2njk+1dbWq1BMEBAFBQBDIIATCw8MzqKekbv6LPpN6l5QgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoLAw46AG0mcW7fs+3F/2E9ezk8QEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBASB+x0B7WYtk5vb/T5OGZ8gIAgIAoKAIOAyArly5XK5bnpUzOj+0mPMokMQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUHgwUHATYl2s/bgDFlGKggIAoKAIPBfI0CrzstXohAXm5BsKCyLio5Pli8ZjwYCxy4dQfvJ7XD7zu3/9IR3796N+fPn6+3y5ct2x3Iz4TrGvdwK4efPmctjL57HpZ079HF8+FVc3LENt2/eNJe7koi/ehW37wOr50u7diL2fKgectiBfYgKPmU1/DUTv8X2+dOs8oyDdcfW4q15rxuHD8Q+rffe7du3sWbNGsTGxqbbeUZERMCZ+0X2dTOF++ro0aPYu3dvuo0pvRVdjrqE1hNaIeZ6dHqrvit99u6DiKNHcO3oYa03+nQwwvb/e1d9SOP7H4H0fg/fUe8J6rwZ5/g9cSNKPQvqN5ClpHTvPYjvWsvzk7QgIAgIAoKAICAICAKCQMYi4MY/sPdzvJyTwWdgbBkLjfQmCAgCgoAgYA+BFWv2o1jVgShR+1Pkr/gB/t5yxFyNaZb5VR6Axzp9jdCL18xlkkhfBLy8vPRiDMa9M7bVq1enbydp0DZu8zg8WbY93DIlWf1OnjzZPEZjrLVq1UqDdtebnDt3Dvv27UOnTp1w7Ngxuw33rloA3/x+yFXI31weuuFvrGzXXh9f3b8Pq9o/hYTISEScOI7pBQrg7749zXWjQ87pPGOS+NqRIMytUwNzypfHDD8/nFm+1FzXUYKEC/Xa2w5P+g3HZk43ly1q0QR7x4w2EzTnN2/QZTEhIWb1m9570zzGlW3bIWTdGl22beAHOD77D3M9Jio2eQKrfhyC63ExVvk8qFe8PrZd2IV9IfcvmWA7aHv3nm0de8c3btxAixYtEBpqIr7s1UlNXrFixZAzZ07kzp0bzZo1w4YNG8zN4+Li8MILL4DPb5YsWfD999+by2wTCxYswPjx422zHR4vXrwYfNYySvLlyI9SuUrgzz0zM6pLl/qxdx/s/+l77Pt+jG5/fN5sbHn/PZ0+MX+OfoaCpkww6z69dDFmBZbTx6Eb1pufP+ZtHfg+SIymJAd/HW9uZ/tsh/69TpedXbXcrOb4nD90nwnRUeY8e4mgyb+Z9S7r2A5Hpk+2Io75/rHtL3jJQq3qwI/fY13Pl+ypNeet6NxBt78RbXonkJRe1KYF9o8zYceKzFvSvg32jBpmbmcvsf7VV3Dot5+TFa14Xr2TZ0zDmRXLko117zcjkdI1SQkDR+/hlMaTbKAWGXz/z65UQb/b/wgojo1vvQbL9y7TxOTPUiUxq2J584IAqnB07xnqH8R3rTF22QsCgoAgIAgIAoKAICAIZDwCOmYOJ1buN1mzdjPeHfAlxo2fZt54zHwRQUAQEAQEgf8GgdNnw9C51wR89+UzuBI0Cse2DkbpkgX0YOLiEtDuhZ8wZEB7nc/Mj4fO/W8G+gj0ypX9EydOxPnz581bw4YN/9MzPxl2AhtCtuCZqs9ajYOLRooWLWoeJ8e8bNkyqzrpffDUU0/hs88+Q/bs2e2qvn3rJtb8/BXqPdvLbrltprHw5ey8RQg/eFAX30m0vrlzW63EVue48e03EdCxI7ooIqnhxF+w4aXuoHWPM8lTuQqePrBfb4H930G+Zg3Mx6We/Z/W61utEjofDkL90WNwcdMmHBj/o1ZZqEFjFH22I/aMNk2q0oooePos1Pjkc2ddmssKlCwL/0p1sGdZ8ufUw90D3at0w7gt48z17+eEo3vPlTFnzZoVp0+fRkBAgCvVU6xDQoWWOVFRUWjevDl69epljk/5yy+/YOfOnbh06ZJ+ft966610s745qO7L7du3pzi+9KzQvdYrGP/Pb4i/EZeeatOsK9X3QeIzvH/kKNyKN53Dnds3kXAl3GoMfP4eX7YC2RRJt6X/u6CVhjMp878Xzc9xvkb1UHFAf/NxwfoNUefb0djxycfayoPviH8++xz1xoxBVu8cztQik3rV5KlfC5327kGVfv1xQJGBB34Ya9Wm9rejzH3x3eLfopWp3MZixKqROoi7dBGXN25F1ry5cGm3yTrRLXNm1P5sCP4dOgwxF0xk55nlSxBzMhgVevWxVWF17FOiBGJCQ6zyeBCx/xC8ixSBX9NmepyB772DAo810ekKvftCPSy6jaNr4hQDJ+/hlMaTbKAWGdkUMdti9hz878wZdD5wADdjY3BYEWuG7PjsI+RSJP6zivQp1qkj1r/cDbeuXzeKne4ftHet05ORQkFAEBAEBAFBQBAQBASBe46AG4kct/uPy8GSlevtnjzzSejY2+w2kExBQBAQBASBdENg7qJd6PxEJXRsVwPu7plRsIAv/Ark1Pq37jyu912ergM39cWyY+9ZzFm6H5FR98ckX7qBcB8pypMnDwoWLGjePDw8UhzdzZvAoBFAYG0gv/r+b9dFrbROnJdcpow43hyYpOLPv4BPEhdfDx0NtO4MFCwMDBxqav9sDzUxF5lUf9fZnSiWozByeiaPWcSxWY41b968SQ2dpM6oybMuXbpoSwZaM3z33Xfm2nSNVa1aNW3106FDBz0hby5MIREWcgZRV87Bv3yVFGpaF/t3aIeDE5NbS0QqF2YRe/aj9PNd4KYsLoq2aacnRS8o6xlnklkRCZ758ustq29OuHt4mo/d1flS3LK4wyNXbuSpWg2lX3gRR8f/ijs3TROeNQYOQvCM2aCVzo5Bn6DW6OHwLuzvrEurshI1G+LkbvsLZWoVrY2dF/ekymXeyZMn8cQTT+hrwmtjWKXQ1R2tsUIsrIgWLlyor60xoFmzZqFixYq6La1XwsLCjCIEBwfr9iQBqZf3wsyZM83l9u69/v37Y+7c5EQV8+fNm6fbkvBr0qSJtpYhyWjI0qVL0bNnT7z99tu6rzfeeANXrlwxip3uaY3j4+MDb29vTebQXZrhco1Ez+uvv458+fLpc6KiRYsWaX10u/bJJ5/o/ogVXQW6IqxHTIYMGYKpU6fqNI+vKpdQlOtqUnno0KH6+SNugwcPNpNLLOd1IKn07bffmp/R/fv36zatW7fW4xk4cCDKli2LZ599VhNVbEep7FcVNxT5cfyK6f1vynX+uWLFCvNzS50//vijlZeAadOmoXHjxvo+IA68p1wVe/dBSm1JXvgqq4tTixc4rMrnL0fRYvBr1EQ/5wmREQ7rsiCLt5f5Oc6c3RNZc/iYj/l+KPVsF3jkz4fDUyYpq5fvUKBxQxRp2capTqPQLVtWZC/kB7/GTVFr8FDs+3K4JheMcr5HjHcK9+7ZUv5eYNsLW7doMrlMz1cQslZ9GSRKgXr1UaTzU2qcY3Hzejx2DxmM6oM/V8RW8ve80Yb7HAHFEX3mtM46MP4HnFu1QhMcJMqyFy6ix8XxZVHPSWaPbHrMBpmV0jVxhIGz93BK47Ecu22a1z93hYrInC0bPNSzm79OPYRu3KirXb8WjpBFy1H2xZfh7pkd144d0WTglX9ce36pJC3vWtsxyrEgIAgIAoKAICAICAKCwKOBgDvJnBtqQoCxcx4UcUT0HDt5Gn16qlkpEUFAEBAEBIF7gsCJ4MvK0iGbdqF27MRlvN6jEV55oTHy5smB85ciUKlcQWTN6o7PRy7Em90b4ftJG3HlajR8cnjek/E86krHjh2LlStXahhoXfDNN9+kCMncxcCUicByNX/skwNYo+ajjAXbV9Vi9MNHk1RcUXPBx0+Yjs+oBdbKcxieV6TOh+qrdraa/+/3EbBJGQK0bWmqc+LKCZTOVTJJgUWKE9qcEDeEk8KcsHUmdH9FYqBUqVI6pomvry/Wrl2rm9Cyga6xOPn966+/YtCgQXjxxRfN5IEzvSy7GhIMD69cavO2qpq/Vm00mqwAUpJTTTQ3nPgrsqgJ8PirYTqvfPeeWPVUB1R5s59iWTLrPH7EXb6k014FC+k9V7TnKFMKsRcu6uP0+GA8htCN61GwdXNkUmQqxUtdlBojv8KaTs8gV+1qKPO/buauGquJYt8yZfVxtfcHwMMOgZancAC2/pGcnGIjf18TKRQaEQL/nEXMeh0laL303HPPoXDhwti1axdmz56tiRKSMiQv6FZsyZIl6N27t1ZBy7IGDRro9Pr163XbGTNmoEKFCppwGKMsFUhCUEhIUOdHH30EEgsl1Kp/g6xgub17L3/+/KDrwaeffppVtHCMP/30kyYlmNGnTx+dJonEPgy5du0aJkyYgOHDh4NjI7lUr149dO3a1ajidE8Sa8+ePZqoIFFikJeMgVO6dGkEBQXh559/1vrOnj2rdW1Uk8MkVEhq0bKHfb366qtO+2Eh8frrr78wbtw4UNeIEYqtVcLnhTJ69GhMnz5dk1+Z1X3J56Ru3bogUUMh0UR3b7RmI0FGUon/C6iL15J6e/Togb///luTW5s3b9bPJdtmzZwFvllz4JSyyqtYqBKzUhS6eOaYypUrp3Fo2bKlJooee+wxTdx069ZNv9cqVaqkXSVyzK6KvfuAbct0Ve7FEl90RVs/jvzVrd08Vur7FrZ+8B5KdFCMtR3ZPfwLxF+5jBBlnVNz1PAUiQw7Kqyy+PzW/WoElrVopfNpaZMWyVWuvG4We/EifIqX0Onjf87EZQsioUKP3vBS1zElObt6Bfwfa4U8gRWxoVdP1Bw0WL3iTNhXf38gFtSpq62XsubKhZIdnklJHXIUKYro4GDQZdteZd1T6PEWyFkhULdzZTwpXRNjAJYYOHsP51Z938142B9d1kWeOIHD6tmtPdL0nMUlkrxe/kUQvGCeJt69y5ZArLJ0oqR077FOat+1bCMiCAgCgoAgIAgIAoKAIPBoIuDO086s/lBoFyEPOAZHj59K1RkEB5/Fzr0H8EyHx3Eu9AI2bt6J/z3TPlU67kXlBYtXoVJgWZQoXvReqBedgoAgIAikGYHLV6KxbP1hTPnuRZRR7tX6fzYb2bJmwTt9W+FaRCxy+nhi49ajOHg4FHMm9dVkTnS0WOakGfAUGtJ1GSdEKZwod0UMKxzWLVQA6GbtEc2pikZ1VSyVmqYqTeoDNaoBYYoAMuRsxBmUUDE07AndnRljZbkx0WyvrpHHyXu6jmLskJIlS+rs8sqVDWWTcjdGIZmTTa2W5iR/o0aNcFFNahZQMWhSkohL55G7aKlk1XwCSoAbJXuBQgho+6RVHc+CBVBexUsImjQR5V/pZS67ER2t025Zs5nzsuTIgZRiYJgrO0mE79ijY/HEBZ8DXTY1+G6cVe08gZX1ccEGDc0kDzOKtnnCXI+r+O2Jd+682kKJcTCMiVujXh7vvDp5SQW6d4XMYZwiXrMffvgBNWrUAK8ViYUtW7agXbt22tJl8uTJmsyhlQuvq0E8TJkyBTVr1tT3Ba13SJx8/vnnmqSzvLe/+OILtG3b1hiieW/v3qNVBwkZSvfu3dG0aVO90UUhyRtKoUKFdGwbfWDng1Y8JBNoHcbzcJXM2bp1K/744w+QxCRBQyFJQiHx+tprr2ky559//gGtYCgkjUhkGOdHsssV8fT0BOP0kDCKVvch05by1VdfaQKH8XoodP1G6xeDzDHq0gUcCTBL4TNVv7562JWQfCWmthZKhb0K4nzkectmTtOPP/44EhIStHu5+Ph4lClTRse1IpljKYw51KqVieywzHeWtncfsH7+mknkDS0sbMWvYSNlPeONsyuX2xbpYy+/wiarOfXSvKZcrtl7Xuw2dJLpoyxXKHSj6JE/5XeWPVVZEt2yJSjrEEM88uXVbsyMY1qTpCQ342JxZtZ87TotZ6nS2rIk/NAB5KlURTelVQtdxR0YPhotF/xl9Z5xpJsWghH7D+Pa0SBNQIft3I1YFZfKM8DfJWuhlK6J0a8lBs7ew3c7HvZ3dsVyXFKuDD3VfZCzbAU9hBuJcY5uKLeKuz79FE+sXI2Nb/RRsdau6fKU7j1WSu27ViuWD0FAEBAEBAFBQBAQBASBRxIBN571w0DkpOXq/bMvSAX9jddNDxw4gthY059cS11cwfnnvCXKBc1ty+x7luYf/b837UAO9YdSRBAQBASB+w2B3L6eaFCjGDq1r4GKFfzx4nN1MWvRP3qYOX2zI/h0GN4bNBtjvnxOufExvTe9vT3vt9N4aMZD12K0duHmygp+nng7NTfaph3QpKyytFHGFt/94joc7moJiOLu4OZnaqPmpJU1Q1L7Ir5FERplf1LX39/fPFaOt0oV0yRhUuvkKQakJwlkEDmWNS5cuKAn/0nkUGjtQLGdaNaZdj588xfC1TPH7ZSknFXmxZe1q7PYC0nnSjdKlFvKDZEhnNzLlphv5KVlz1XezSZNRT0VG4MxLTghasht9bth+ycDEdDlGQR9+z0iTiaaUhkVUthHX72CnIVKJCNy2Cws+opuXTCHaxPNBvacnKfw2gUGBoLXikIrK1qfMD4NXW1VrVpVW2Sw7MiRI5rsYD43EkN0c0bixVIMSx7LPKbt3Xt0NUYyha76aO1CSyESJyQoHMVSstRLcsGwCqFlkaXbN8t69tIffvihtsyhJRLJGZKM7nyAlAwbNgy5lHUDLWFiYmLMVju05iFehpDculuJjIzUGNKSzcCWLuAsiVX2wb5siRzmc8wk0wy8SESRiLGUkJgL8PNJfClYFjhI0/qK5/+5IutWrVqlrZAMookWV19//bUmcfhs080drZRcFXv3gUttFWFXqd+72Dd2DO7cUoFpbKRct+6o8s57aDFjFo5PmIJrRw7b1Ej94T7lXo0xsm6p+CvBi5RPyzTIjWiTn8tsCk9D/Ju3RPmXe5o3exZ5Rl1jf2n3Tp2MOHoEZ1et1ITL+Q1/G8V6X6hBI73Pp6wXXRFP5QqOEvL3OhRu0ky7sju/eSPyVlerAFyRFK6JocISA2fv4bsej+qw0dgf8fSWHSjStp0ibPrqIRhk0vZPBqDyBx9oN5c31bs/q4/JBa0xTmf71L5rnemSMkFAEBAEBAFBQBAQBASBhxsBTebQ1dqjJCRtSNIcOXoSZUubVt8GHT2BcmVKgC5dEhJumOE4dfosDh0+nio3dDEOSKFo9YfdnrA+x0M5czYUWZSLonx5c9uritiYWHNdywrRMdF2869ft/7DzTY8vxuJq0MtdUhaEBAEBIGUECjslwuenmoGP1E8s2VBTKxpNr9Qfl+cvRiJ1s3Ko1rlYgg+e1nXyqdcsIlkPAK///67tnowVv0bI+BagZ+/Bk6pr6RvVNzsL18FDh01lTLkjkWYEpw4abQy7VP6uVA6bymcvGbTyFqF3SNO7tNCgxYdlsIJdE7mW8YyMcoZL4hWILeURQmFk/8UW4ufHMo6xtJ9lq6kPvL4ByA+JlxtUUaWy3vGzijxUhcc+uUncxuuhqfEJMZd4cr9qKPH4aliGt2tZFHusugiqGTn51D54wHY/ulH2jKAeo/OmIYE5Sar7lcjUb7fm9j9xedmd1IsT0nCQk7Br5z9ydVz187q5gV9rSfqiTmvFze6IzOEE/QUkicU/qaiZRUtLCiMmUSrDBIcvD9J1hhCKzMSGYyJZLnZXk/GobEn9u69nCpYPXXSTVi/fv0QHBysrV8Y0yajxHAlSJdrFBJYjPVkWOvQ7RrPnUJChWM0hERUaoS/543nwWhn4NW+fXsrXGnRZil81uxJSv8REm7dQERCFALymH5PW+qw9w7i+Hr16oVJkyaBcYkMHIzfwWz/7rvvamKP1nd//vmnOb6RpW5HaXv3gaO6tvlFWiqLIfUsOSNWPPPk1bGwIk+ljQg2+gw7sA9BY8ah7pBh2p3Zro8/RkJE0rNk1EtpH3bQZNXlWeDu3jOhinDxrVROu2e7uH0rvIsXw6lFC1Pq3mk544FR5wlloZa7UmUUqt8Ix2fOgE8Jk5Wl08aJha5cE0sMnL2H02M8eliKZCpUr6GOnXRd3S+eie4r4y5dVi7VuoFWTrRIyp4KaytH71r2x3coXRtGKYJIRBAQBAQBQUAQEAQEAUFAEHDnnydSOcnXoD184ISEXsSEabMQGRmN7J4eyhVFrFrJW1z/YTx77ryadLiJ+crF2W21mvy5p59QAX9VTIB5SzUQ/T8ehg/7veqQZFmxeiP+3R+EGOXCIkrpz5nLBwP69dHI/v7nQhw+dgI3Em6iepUKeOF/HbXO/YeOaP2xyjqIqx4//eB1HD12ShFMpj85W3b8g9XrNuOd17pj67Z/sH7zDj0xklMFOej/Vk94qHPYeyAIf86h5dAtrT+bCiD6avfn4aH2E6bNVn7QI1BYuQLo/mJneHtlx8Spc5RLufNgn6O/HPjwXWQ5I0FAELinCLRsVgEjf1qLXXuDUTIgH+Ys/gfPP1VD91mvZim9L+KXW5HGNzFh+iZ0alMRObwVQyCS4QhwspSTxsWLFwdjTxiya6/JvVrhQkDt6qZcw/ihakVFiqjF2Gp9gwo+DsydrdyqmRZjG82d7qv718CXm0biWlw4cnqaJvadNkgsJBEzYMAA7R6NweENoWUFLQK4Up+WDrQoYNwOul4yrBYY44MT1TxfWoTQbZaldOzYEXPnztUB16mLlgWU3H5FkSOvP84F7UOpmqa4LZbtUkqX79EbS5o0NVfzKVZcu0s6NnMaqr3/Ec4sW6JdFXECMz2lbLeXdcDz0LWrkSuwEnapWDjNVIwMBt4O7P0a5ijXZudWr4R/y9YudXty12aUbdDCbt2dZ3eiZv4qcMuk1/6Y65Ck4fWiPP/88yBpQqH1FV3c8VrQ6mLevHk6ny7XDGG8FhIrtFQZP368kQ1eJ+rq27evjudCawzDPZu5kpOEo3uvTZs2GDVqlI61RGKCbtpIItwrITF56NAhHQuIJCLj4lAM67KXXnpJk5MkWXbv3q2fUcaPodANHN2vMY4PJ27nz5/vssUd29PajYQoLdpInDHuDTfq4zWhu7SyKg7UyZMntbWU4T6NbdMq+0L3IoubO0opItdW7L2DOB6+k0gC0sKHZA3vBUOIH8t4LiS+6DqO1kuuiqP7wJX2nOyv/E4/bFcWOLYSf/kyrkdFIkQ9dwlXwhUx0di2isvHd1Ss0m0DP0Bg/3d0TCsf5dbMt1IF7P/xe9QY+GmKem6rhVrR587iWtAh7B4yBFUGfaSff6PhdRXfK/Z8kvWeuyK0sxru2KKjrMrYhqTDyRl/oPaI4Qho10GriThxHIvqN9D9ePsXMVSneu+r3kd035a7fAXcVF80+74cbo7tQ9IjQV3r64rEuqGskzhmdy8vqz4cXRNHGKT0HnY2HquObQ6u7NmNTOq/Ws7SZfU4D0+bpEm9rIpoz6Tu6cLt28A9u5fydnEbJ+fN1mV5qye992zUJTt09K5lRcYN43NCQpjPhIggIAgIAoKAICAICAKCwKONgBvJnDtkcx5yuRYRiW9/mIgnWjbVJEbTxnXgmd0DOX19tDWMW2Y3dHyyJUYO/RBVK1fAkWPBqKcCCZOUeVGRLyQ+HFnLELpDh4/p8oGK8Pnw3T64Fh6pVqvHaZKmVo3KGD74A/R7vTsOHjmhkSaRM/2Pv9BbES/U/UbvF9WElSdoIVRWWQit3bAFa9dtQb83usNHLaMOKOaPwR+9hRFDPsC1yChNGoVfi8T0mX8psudlDPv8fa333Td6qEkVX4we+xs6P6kmML5QAY89s+GMIqvWbtim6wz5pB8+/fANnZYPQUAQEARSg0Dt6iXx0Zst0KzTGBSt/rGKkZMdXZ+pp1V4Zs+KeZN64b0hfyFPuf7492AIvvjYRF6npg+p6xoChtsj12on1dr9L1BNGVoUVPGwGzYE+g5TFgGJ80MligFt31T5al62UaOUiRw1h6Umi5N0l1ATuvUK1cS8f+ckZapUSqv7HZXTqmbt2rXaPRZdQHko06GFC02rxTk5zkD2JAdIJnDieOrUqWa3WMYAGHyeZBGtRjgpZohbZnc07/khts6ZYGQ53duOkUG3/Tu0S2qjiIKG347F6YWLMLNIEWzu3QeNp0yCpfujpMqpSJFVs5BsOXOh4ofvYc/Xo/CPCspepFN7FG7aXNfwUBYwNUcOU27XPsJNC3dvFs2tkpeCj+Pc/u2o3qazVT4PaHExff8M9K2XRK4ZlWyxMPLpkosEDmOv8Jr06NEDjPtiGcOF5Aon75sq4sKwSGH7zp07Y/DgweqebKhde9HyihY8tuKob0f3HmPvUOrUqYOWLVvqNElCCkkN6uN9RaGrPh6vX78+xXtWN7DzQXdhPBdaFPGeXblypY6dY7gB7N27tyZVSFKQkBw5cqR5gpaY0JKIdatXr67dwdnpwmEWXdDRlR3b0z0cXatRvvzyS03u0LUaz4/PzvHjabMsMQgiYxDTdk1Fz6ovwyOLp5HldM/+GcNn0KBBOtbV2LFj9b3AfMplRZpwwprHJLwqVKiAl19+WZe58uHoPnClLesUf7Kjnoi3rT+nYkWsaN8WV4MOoOnv0+7quT4+eyZiTgYjsK/ptzjJgJoff6YtdejmzJnwP1vYlp34q0ZNTf5UUm7oAvtY/6bf2X8A5lWtZt5OKLJXi8L0slokZlnG9FXlMo4EVf4aSe7TfEuU1K7WLm7b4mw4KZb5lCylSe4syt1kLnUtKd7+Jku0UOXGjf3TQskY10ELa0dDue01cYqBOkdn72Fn4zH6s7ePDj2HZY+1xExlRbegTl1N4Dz2x596z/o1Bw1B2N49+t2/490P0PjX3+BKrCK2dfauZbnhvtKwfGSeiCAgCAgCgoAgIAgIAoLAo4tAJvUn807TZs3tuuj6L2F5d8CXaer+m+Ef2203e/5SbYlDCxXKvIUrlcuyGG0ls3zl3wg5fxGvvPSsLlu6Yj0uXLqCZzs9jkFDx2DIJ2/rP5S60M4H49x88MkITeIUyJ9HY/newK8w8P2+yK2IlSPK2mbfwcM4fPSUsqxJwBefvouhI8ehdfOGqFPLNKFAtYaewAplcFD5vPnqs/e09Q3Lzir3a/sOHsHBoGO4cPEyBg18U8WmOIeFy9Zg0Idv4mTwGfw6eZYa6zv4a9FK7FVWQnUTZ+doMfR4yyaIS7iOeX+twGNN66NZ47qaPKJuEUFAEHi4EAhSZHSVCslXSafnWcbH38B1ZX3j65N8Ao+xcsKuRiN/PlMMkfTsNyVdBw4cQOHChfXEfUp106ucLpwYA+ZBEoaLC7tqstBRc77J5Oo15a5MecezV5assk3GgfP78eqCPtj46sZkFh02VVN1SAKAVqyGyy6jMa0frl69qi1CONGcGkmIj8PIYZ4UbAAAQABJREFU9pXx2pS1ylIn7avPrfpUi2TirlxGttx5zHFo6HItkyMTaLdM5glBKz0ZcLDshy/hlSs3Gnfpm6y3lYeXY8ruyfi96x/JylLKoCstXi8SFoYlVEptjHJa/bAtr3NqCct7de8ZY+Oei6BsXZlZlpPQYpxFxtchIUEM7AnvWU9PT73ZlpOEIRlmYOdKn7Y67B3TwoVWLySZ+CzdrVyMuoj2057E6h4r4ePhmyp1xJAY2YvTY9w/nLwmRpTUYJAR94Eek7KwcSSZ1CIxdQM4Knacr3BRt5hdIYnhlpaXsl1t6ZNJKyNHkmYMHClMTb6d97DT5i7gzvhktHrKokhGWuEkE9Vn/JUryKreXam5Ts7etXQz6qWslbp3766J8WR9SoYgIAgIAoKAICAICAKCwCOHgLuxEu5hP/ODh0+g9WNqCXKiBCk/9q2amtyq0BqmtrKeofDP4o5/9uMxZblz/NQZ5PDxdkrksI0R54ZEDmXvv4dAd2c5vLzxwy/T4KXcurRu2VgFjc6igrhG4Xr8dW25U0L5o7YU6qFwYoqWQqEXL6FEQFEsWb4Oe/49qMilJ9QkZUH8OXeJtijKkyun1vPl6B+1zp4vPYMsahLh6Ilg5c4tUK14VcuulXBfsngR5WbNCwXz51Wu3ZYrgukk3n3zFV0uH4KAICAIpBYBD48sajW7/cnAzOr99V8QOak9h0e5vvLSCX/rMChWcOTOaXWYqoOKhSphc5/NqWrjSmW677InDJJu61rNXj17eVk9PPHJqmP2itKepyZwPfPlt2q/6rmncXnjVqs846D2NyNVnIWXjMMM3T/+uv0FMBxEq3Jt9JaWAdEqxM/PyQ3mRClJBrprS4vcq3vPciy02mnevLllllWavyNJKjqKQWNUtiUljXzubQkOV/q0bO8ozUlhbuklBXIUwI7XtqdJHe8R2/M0FNm7f1KDQUbcBzeiY/BnyRLGkJPt2yqLwlzKyiq1sv+n7/HvUGUuaUeKdH4KTX74xU7Jf5N1rzBIl7Ox8x52ptcV3N3UfyxPZ3FwVJ8eDmJPOevb2buW8XIoH330kTMVUiYICAKCgCAgCAgCgoAg8Agh4M7Vg49C0BxaxFxUgSn5J/vQ4eMIU+4ELOPltFRWMrSMWblmkyZTaDGzYcsOFC5of/LI8h5hnJucPr56JebFy2Eq7s5KTRydPhuiLX7oAi0s/Br27juk3bzdVmOgnDp9VrtmO60sbIopN2rUE1CsMPq80gV/zl6ETVt2o6iabVuzfgs+6NdbrdL0waTpc1CmZIBuP3POYlX3fyhYKD987AQErhxYVscB4nlFKNds16/fQKkSAWjYoAa279irdciHICAICAKCgCAgCNxbBJpNnILbDlawZ1EuVkUeHAToysxwX5ZRo/4v+syoc3O1n/sNgywqDmXnoCCHw8+m/hekRcr36IXSXbrZbeqW1f4CCruVMyDzXmGQAUNP1sX9inutWrX0f9dkA5YMQUAQEAQEAUFAEBAEBIFHFgH31LokySik2rZqiiUr16eqO7ZxJE+1bYG5C5Zj09bdKOJX0Bwvh+7JvL2z4/dZCxXxcQN5lEuH/m/1VK4tsiCPcnGx9Oh6DPriW+W+rJ8j1TrOTbxyYfbBpyN0nVaPNULTRnWVC5tw5YrjNj5V7QsWyKfdvJUsVUy7N6Obsz9mL9ZjKpg/H17v/YLWU7tWVb2is3btqvjh5+l4vnNb5M7lq+P9kDBiP48/Zgq6GqP8so+fMFOP3z2Lu7I0aoi6darpWDm/TvkTO1RgBLr76NalE4KDz2HVuk1qRWZ2PcZXVaweEUFAEBAEHlYEwsPDM/TUMrq/DD056Sx9EHDgcimOPu+4iTwwCPC3lSO5V++C/6JPR+f4X+Xfdxg4eKaJT1xUZNphcqT3xk3EZPB3W4on4Wisd4tBih3fgwqOzuV+xP0enL6oFAQEAUFAEBAEBAFBQBB4MBDItGrVqjuNGzdJm1/nB+MczaOkhQotkQwf5OYClWB+vJpMyZ5Idhhl0dHRcFcuP04rF2i3FTFjKe7ubiherIiOlzPgvT6KpPFAduXb25Igu6lW4t68dRMeyg2MrSQkJGiyx5P+bpwIrYniYuOsxrZk2VrExseDBNZNNa4VazeqAM/n0e+NHloT29A3Ot1pGK70eP7xKiCyt3L/JiIICAIPLwIZETPnfkXPiJmTkeP7/fff0bVr14zsUvoSBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQeMQQcGeQUQaovHPb5PrrYT5/Zyv6SMDYEjnEwlu5LyMxcvx4MAPqWMHjpSx6MrtlRpas7io+hClejlUFdeDunllvtvk8tkcq2atHMsZ2bCHnLylSxgOXw8JxQcXWoQu3bs93NDdnG47dUnj+3u7WeZblkhYEBAFB4GFAgEGzM1r+iz4z+hylP0FAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBIH/DgF3BhnFI0Dk3A3EJEbatmlmV0VI6EX8r3N7u2X3MvOpdi11TJ+1f2+FX8H8ePeNV5DnbiJW38vBim5BQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEEgzAian3/QRbGN1kmaNj1jDwn4FwC2jpUD+PHimw+MZ3a30JwgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCGYyAWwb3J90JAoKAICAIPAQIkP+/GhWL+IQbD8HZyCmkJwLHLh1B+8ntlNGvdZy5/7N3HXBRHF/4E+m9SBERFAv2LvZu1Ni7xm40RhOjaUZNLIktsSQx1qiJxthi7xp77xILKAqodESpUgWU/7w5drk77uAOG/6d9/utOztt33y7syfzzXvvZd5Dl758fHywc+dOfjx+/Fhjk6yMp1gyrB3io8Ll8tToKDy6cplfp8fHIfryRTxnMefeJSkIg+S4GCwa1AoZqSkaYemzrhduRlzXWFZUMyftm4D9t/bqrR69ZxEREXq3e9EGMTExOHbs2It280rbF8X3ID0rHR3XdERYXKg89oLed7miSAgECkAgPS6OxVh9VkCtFy/OYnFR6bcpMzkF2Sw+K6Xp3spSFOefsn4iLRAQCAgEBAICAYGAQEAgUDgEFGQOM8wRIhAQCAgEBAICAV0QOHXrPurPWAnv2atRbdoKXAoIkZsFRcVg6ubDKD9pCY7cCJDzReLlI2BhYQFyA6p8HD169OXfSM8el5xbgq5eXWBQLHe/yF9//aWiJ+lcv359PXvWr3p4eDhu3ryJnj17IjAwUGPj60d2w8bJFXYl3eTyyNOncLizwn1qnO9NHOnSDRlPniDxXhDWOzvj1JiRct3kiHCelxBwB08T4nma6tBx8uMRCDmwT66bX0LqW2ornTOTniBw03q5371tW+D6wgVIjYpU6e7h+bO8jt+KZXK+1Gc6W/SXZFfzRgjeu4svNkr32N6gLs5+MRZPgu9L1aANA6mCpX0JOJevCp/9W6QslXOPKj2w8OxClbyifEEE5PHQ02hZvrXeak6cOBEnT57Uu52mBs+fP8eRI0fQqlUrPl9CQnK/rer17969i65du6pna72+c+cOvvnmG63lr6KgKL4Hu3x3wtm8BErbu8tD1va+S3PoVcz5e9u3yPNamosHe3TmOp0Z94lcdqh3d/ivXoWsp+myvpS4uXghryMRz5Qn6VuYOU/ttYn/X3/I+pCOd9f/pUJY0DdEGoN0Dt6/h3fnt2wxTowcqq1rnk9jpHZETJCkREbya/quSZL66CHPizh5XMrKcyYShfp5/N9VlbIsRjpTftztW7g6+3uelvSkc8SpE7i3cxvP91/7p9yWvt9bqlbi1wVhkHDXH4TDtsqVsdHVFaH/HuDt6Hfg9h8r5D6lxKH+7Hdp4zrpUuuZflvOT/yS6xZycL9cL4X99tBvU3JYCDKSn/B07E1VAr0ozj95ACIhEBAICAQEAgIBgYBAQCBQaAQMstn26mwRM6fQAIqGAgGBgEDgXUIgIjYRI9YdwKxuzXF71hhc+HYYyjrbcwgSUtPR4bd/YGNuAlszYzx7w5YZ/+/PJTU1FatXr0ZUVJR8NG3a9I0O+37sPZyOOI8+tfqq6EH/13B3d5f1JJ0PHjyoUudlX3Tr1g3Tp0+Hubm5xq6fP8vCsRVz0KjvRxrL1TNpDCRhO/Yi/tYtns7O2YGt/P+o93btRE/fG/Do2Blnho9A2uNHvK4u/3Q8cRy9/Hzlw9DCkrvBtaldHb3v+KPxgoWIPnsWfr/nkjbULy1GGpeww4OdO+TbSPrKGTmJnGHwq+Zr16Dtuo0wc3bBngaN8DQ2Vr261uuGvYbj2Mo5yFRbZKYGXat2x7XHvrgV5ae1fVEqWH5hOfpX6Q0LEwu91dqwYQO6d++udztNDYjIob7q1aunqfiF8siS5++//36hPvRtXNTegyw25xdfWoIR9XIJ2fzGJM2hVzLn2US09PKU5zrN+1arFc8nm/12eo0djd7sO1N93OfwmTwFEcdUifqQ3Tv5nI84lUtuSPqqj+lF53wx9ulzaFwfPa9fQ80vvobf4sXwW7pI5Tbev85XGYtb23aKcuWbq7RQXKQ9isbjMxf4WB75KCwiLRgZUnPqZFyZ8b1MGvktXQKX9q1RqkUrDb0osgxYHFib6pWQGh2tUicth9C2LFUKNcZ/xfWk8VSf/A1PuzRsDOR8y33nzcez9DTePvt5FjJi4nk6XwzYGM+M/wxlevTAALaJoOnqlTg9dDjIstPa05ORU3kt9xJ9b8OydGkVPdUvaIPAvmYtYGJrx/HJfq6fxU9Rm3/q4xPXAgGBgEBAICAQEAgIBAQChUOAkzm0Q7aoyp2AIEhHUdVR6CUQEAgIBN4VBA5cu4NuVT3RoVYlGBoYwNHaEk42Vnz4FiZGuPTtcHzdpQXsTYzfFUje6DgdHBzg4uIiH6ampgXqQx7Dps0FqnoDTuznv/MAgBkEcDl4DPhscm4Xm3cBU35UXM9cALTvDbiUAibPVLTv+yHbDf4kt/7VsCvwsCrFyDy73MycFOmmrGuJEiXy1NGUERoaigEDBoAskej47bff5GrkZqp27drcioEWwfOzZJAb5SRiI0KRFBMOt8o11YvyvXbr3hm3Vv+utY6xrS3MnVzg1roNrxPPdmzrKuaOTjBTOoqxOUZiYGQIUzt7ONSqjQqDBiPg91XctQ6VZbOHF7xrF7znzUPiNV+k6OHyixYJbSp6oe6EyXwR9N6OrdSlTuJWqQbSU+LxOCQoT31LU0tUtffC1VDF4myeChoyyCpl0aJF8PDw4M95/PjxIMKS5JdffsHs2bPlVlS3ffv2OMuILZJotng7fPhw3s7Lywvbt2+X61KCSL0VK1Zg1KhRvA5ZhUl9U/nZiAuoX5pNiBzZvHkzJk9Wmgg5+f/884+cv3v3bjRv3hx9+vTBmTNnpKb83LFjR/6e0rtZrVo17NmjsFJQqaThgkgccgk4btw4DaUA3Z/mEGG0adMmjXXUM9PT07kV3MCBAzlOpBMdp0+flqtu2bKF60l/DwwaNAixSqRecHAwb0/kK7WjOUj3njlzJn8GdE1YEe59+/ZFYmKi3G9h3oOgoCDeL+lCY6X3IIW5lJLk8uXL/D5UTjjoQwqHxgcjlblZq+lWW+pOp/OrmvPFjY1V5jvNcUmMLC1hyr6Rrs1bwnPYQG5RJ5UlBT9Aou8deM/9Cfe3sjlbAGEitaNzYee8AftNNy/pyvWp/8NM3Jz9E8jiRRJjG1uVsRiaFPxbRG0fXjgPx1ZNUHHkCEQcZz9AOVJp2EdICwtH6IG9SAgK5N+8+lO+B/vYS1U0nu2qV2dkThQyEhPw39zZIMuWtEePOBlCOhpbWnE9aTzG1tY8XdzEhPdFhLhN9Sp4sG+3xr61YfCEngf79lboP4B9q43g3qEzv9/Dc6dhVaYskkNDeH9+vy9F+JFDePb0KSeJzEvlT+YYMV17+/mh7uSpMHaw06hTfpmFmX/59SfKBAICAYGAQEAgIBAQCAgEigYCBkzYf4yLhjLKWuzY8y96DRyN735YIB90TflCBAICAYGAQODNIBDKLHPMjQ3Rf/FmeM9chWWHLvLYOaSNEdsV62Ct/872NzOS/4+70uL32LFj+fHll1/qNKjt+4C1q4Ft64FrkUBfZlQgrQXGsU3Id5S848UwF/xB9xTdhrLNxWzDNH5kpM6f04BlC1nZfbYQfin3tvdi7qGCXbncDKVUQECArCvprLyYrFRNJZmZmQlaGKeFdyJurl69CkNDQ17nEVuga9u2LTp37owrV64gIyMDgwcPVmmf30VcRDBMLezYwaxflMSpvjea/cUAYmLLFqibMhdHRmzBWpLKw0cieP0WJCm5JZPK6Hzrj+W4PO077GnbCuVHDIVT/QbKxfmmfebOwuXpU/gRuHljnrqZScmIPHOS71AvZliclyfcZYuVwYyUat0Wjs0ascVRBcGRp3F+GWzuOno3YIumiodfEAbUVXG2aGlb0hOx4cEaey5nXw53Y5VeJo21cjPp+dLC/Zw5c0BEyS5GUP3666+8ApEIlE/PmOTatWs4fPgwatasyYjI5+jfvz+SkpJw7tw5zJgxA7179wZZokhChODo0aNhzRZvT506hc8++0wqQlxqLDLZDnw329yF1VJsB/+aNWvkOlKC7unM3DKRtGjRglvGpaWlqZAfVEb3WLZsGZYsWYJhw4bhgw8+YHNMYdlF5dqEyFltlmREklA/3333HdauXYu9e3WL72PCFqq3bduG+fPn874JVzok6x9yEdevXz/e7/Xr1/lcW7iQTe4cecoWnmneffvtt5y0obGRnmFhYSCcaIw//fQTVq1axd0Z0jNQFn3fA5rzRMwRiUREDb0XROZJ8vnnn3Pdybpvx44dsLGxkYoKPD+IewAjA0NYmSg2IEgNCnrfX9WcJ0JGmu90prgn6kLuxaJOnkKJ2nXlInI/RlYqri3b8LmfwFxA6i1qc16f9naVKvPqyhYwQZs34crM6fKhK6kcdvQQ3Nq0gwuzDAxm76kUb8bI0oKTVT6zZsJn1veozFzPEfFckNiUK8/cUEYh/vZt3P5lEXcZSeSOXc0aBTXl5dXHjMMNNlcKipOmjIFkfWnhUpL3QRZCVhWZHg+jYVXaHcnsXSYXctenz8DdDX8jLeYxr2fB5k9+YsB+60wdHTVWMWNEJ/02mZcsCUNzC562rVQpT11951+eDkSGQEAgIBAQCAgEBAICAYFAkUPAkHa2KbsHKSoabqDtwBpEWz5V7dm1g4YWIksgIBAQCAgEXhYCMcmpOBIYjiX92qKMkz1m7ToFE0MDjGiTu6v9Zd1L9FMwAuS6rFLOAo4RW1zXRdjatywl2br0kL7yZYGJZg2BRjkeoFo0BuqyDe6xjACSJCwxFJ52ntKlypkWqSVdqUCXRVhaRL7FXA3R4n65cgqSqDKLSUAiWWVMmTIFtGBNi83NmjXj1gfSgjuvqOWfxEdRsHcvn6fUuown6CAxdy6JMp26qtQxc3HmC4v+a1aj8oiPVMp4G2aVY2rvABuviki8H8R3iBuyPF3EuqwnjKyseVVz5vpMkvjL13g8BiJtiLBp8tsSqQhR586gVJcOMDQzh1u79gg7chjleveTy3VN0I79uNt+vHpBGEh92pcuh8RoxghqEGdLZ1wMz7s4raEqz9q3bx86deoEsiAh+fTTT/Hnn39ykkFyH0hEAcWTITKCFvytrKxAsWOIkFjMXD9FslgblFe1alVOdlAdSShvwQLGRDKRiAxKRydF0wkOFg78TP/UqFGDv0dEGBBpQuTR8uXLceDAAYwYMYLXs2UWWHRoe4+/+uorNGnShFu8TJgwgVuNlSlThrctzD9EWNJ7LRFRdCaLo4JEsmAh8oWwIWsWZSFiiPCgcUQwq65GjRrh+++/x7Rp06D8TZk1axZ/PlJbIohovjVuzD4ETMhKiSyelEk0ytf3PaD5TVY+RP6SPvQsfH19qStO3N2/f58TY/Q9qVs3l+DgFQr4JzIxksXLybs4XtD7/qrmPFmCWOd810h145y5T2m/nxbgHrPEojlfunc3VBgwiLK5hB7+F6WY5R9ZmRCpE8UsQGzLV5CKdT4rz3mdG7GKZDFCksHcgEli6lhCxW2YZO0ilWs6Z6WlInTLTlT5aDTXn1yaxbNvkEP1mry6+/td4P/nH4g6eBRNfl2sqYs8eZbuZRB6cB/i/G+h5PttEXPjGhzZxkVNREeexizDtWkz9hwsEcYwzk+UMchMTuZVDYwVFj50YcTmWkZyEixLuXErqoQAf/6sYq/4IJV9p8zKuEFX6yVNehhb26j8Nqn/Tklt9J1/UjtxFggIBAQCAgGBgEBAICAQKLoIGD5jPoKLGxTDs7cobo42Qsfv1l1Mmzy+6KItNBMICAQEAm85ArZmJmhY2hkdait2gPauVxlrz90QZM4beq7kWkyfIOikZud2wEm2eb4F2+Rs4MpcprH14PGjdBsAGcUYM86I2pEYGwNs474spW3cEZkUJV8rJ9zc3LhljnJeQWlanKdFW4nIUa7/8OFDvghNRA5JhQqKxUxaTNaFzLFxKom40ELsaGf3qjh4GHYzCx6PTp35vZX/Kdu1B+wqV+ELlHvbtkD40cOoOGCIchWt6Qp9B2jciU2xNZr//gdf6Lzw6Ti+GEiLhCQh+/fCnO3SfsBiaKTHxiB81z5k/JwEyUWb+s2KMYNsTULxHciNkj4SF3YPNl1zF5mV20YnR8PdOtfaRblMU5oW7uvUqSMXValShS/oUwaRCkTukPs0Ig3ICoRICJJwFqOCJDAwkB+UbtOmDScuKC1JDxbPQpM4WyksbWJSYmBtasOrkAUPERx+zMURuRQj116TJk3iBA+RC7oI6U8ikT1PnjzRpZnWOj4+PjJxQpWUiVGtjXQoIDIsKysLhw4dkmuPHDmSW+hIulMBEVPqQlZy9GwkayJj9kGQrKekuvq+B4R5gwYNQPjRmZ6vJXM5RkLeBNavXw+yzqHnQeQfWe1UrFhRul2+Z1cbV0SnKqwi8q2oofBVzHkzxqZXGpJLOCrfllyrebHvTPC+Pbi3bj2yM7N4McVRIXLDvmo1PufJVVvowf2oPHTEa5nzpERmsuJdNrHLdf3l1vo9FXJBeSza0o98rvCixIC7SHrwgBMcUaeZ5VcOmUMWLqXfaw+6j7ILOm39Ub4Vi0Pz5EEwc3dmjCqMbD/DLPLMnJy5u7P82sll7J7Vv/gSNxctRLUxn8rZ6gllDJ5nPePFz1j8MCLVSTKZpaAJI+fMcr6pFNeM4v08y3jKCfgSddhOiNcg+s6/16CSuIVAQCAgEBAICAQEAgIBgcALImBAO/beIh4n3+He8PPPt1wUCgQEAgIBgcCLIeBiy/zNGxWXOzFhLtdSMjLla5EoOghs2LABc+fOlXe1S5qxTcdY8TPwgIU7YF5oMPtj4HaAopRC7iiFy8C9+1IrxZn9lyFfqVCiPO4nqDXKt4WikGLdkK5Lly5Vqe3IXMyQizWykFAXcvVElju0KYVEWtRXXoCmfLJGIFdR6uLgVobHfElPSVIvKvDayt0DnkMH4PbK5fnWpfgN8f4v/n8TI2Y1YV+lKre4qfHdJFya+i13R0Tug2LPX0FxczNEX7rAFxBJoUeXL7Hd5Yrd88+yMmQdnz3NYPm28rWUINdG0efO6rW7/xlzh5UQdR8ObqqWHlKfQbGBqOCQ11qALKroWe/fv1+qys/0rMkaQ5IHbHGXLM8k6dWrF38/KD4NxcghN2ck1I6E4sxQPCXpIFdrymKntPCsnG9v7sBdb4UnhClncxd+RHAks133Y8aM4ZY5RPDQ+6SL0P+vX6aQxQpZqUmiT3woqQ25olMXwpisliTcpLP6PJIIFeX2uoxR3/eAXLYNGzaMu04kF24SKSbdl1wrEuFz584dkEs2cqunq5R18OQu9Z6k60+sve45b85cdjlUq4HaPJ5VFfj9rrDGi750kcdjeRofz+c8udh6fOIc0hmJ/arnvIRz7C1fnjRTsh6UyvQ5RzKCw6Z6JTz+z4ePxbKsBx7s3aNPF3nqWpAlDItfE3XsOBzr1ufuzkKZ1R89P12l9HvvI4PhG7xXs5cI6kcZA7JKIknJ+Z2i72lSQBDIFRqRbTRGsrKyr14DJRs3Q9CmjbD2LMfbvOp/tM0/+q6RpaPyN+VV6yL6FwgIBAQCAgGBgEBAICAQeDkIGJAP75f75+bLUUz0IhAQCAgEBAJFD4FmlcvixP1I3AyJQkJqOg5cD0T3Wl6yovEpaYhOSMLTZ88Rn5zO05k5i+1yJZF4LQhQzA/ave6vRiZcvQ5EMG7Egm0g9q6jUCUnzjxqVWOkyCkg4B6zdGCczPat+qlax60uQpIikJCW635Hlx6IiCFdKai6slCsFNr1//PPP/PA8ETKUNwSEslVFllOUDwRGi/t0C/JYggoC1lkkEVHQkKCitWAvas7rEq4Idz/pnJ1ndOVPxyFiL15XfGkx8ciOSKcB7oO3rgV7u931LlPXSp6DRnGFysjjx9F1PlzfDd70wWL0HDOPH6UHdwfESeO8UDn5MYpgtWjxcWYaz7cZZMFs5CSJD0ulrlWu4WrP0xD8t37KNtTlQCR6mk6h9+5yWMOOXrkdVWX8jQZt+MDUbd0vTxNL1y4wJ81uSxTFrK4kVyaUYwbeq7dunWTq9DzJouroUOHcldjpsQ8MiELFSIkKH4UxVEicu/ixYu4d4+9xDpK01KNcDVMYSUgNWnYsCF/70iHdu3acQLqvffek4pf2ZkslMgijYTSdJCQPkR2UQwZKieyVh8hMoiIUcJGIkCpPc0P6osWdik/Li4O5PLuZUhh3gNXFpiLSCey8CGLqHXr1smqUN7Ro0e5nmStR89enXSSK2tIuNt6wNzQFDcj2EewEPIm5jxZp9Qa/zX8Fy5BysNIhB8/Ao+ePeT5Tu7HaJ4/vHTulc7554wITg4P4981H0ag1Zz2rWyFQlA+Zd+S1KhI+SAXY5JQWrmM0uwh4v7Gf1D98y/ksTScPY9/2+g+hRUzBwWxYuFZhseScWncJOe7V5p3mZGYwHWh8TzNSWcxixplIQKmBtNL/fuuDQNrj7KwqV0dgZvWMcubDIQwaypyGUfEDYkNm3vkLs+eWWw61KjJ0+RSUxchi0l67kTEE8aULiiej9RvfvOP3BWS+8offvhBqi7OAgGBgEBAICAQEAgIBAQCbwkC3DLnmbID/bdEcaGmQEAgIBAQCLx+BGqVccWXLeui5/LtqDfjD9iYG6O7d1VZkVk7TqDJT2sRkZSKqfvO8vSD6Di5XCReHgKSayN9e/S5AdR2BVxY7GW2loMxPzJipJaiF0+2ebnTZyyfrc+zcBhopFiL0noL5vWIuT7KLfZkljmNStbDjhvbcjNZqqAd/NrKyQri+PHj2Lp1K5ycnEAL+Hv2KHZu02IuxTEZPHgwj11CZM7ff/+N4mzxU1nIYoPIIrLMUCaLDIobovXIibiw7U/l6lrT6jpSAGy37p3z1D/Wozd21amLgE3rUXfeHDg3aJynjl4ZahYeFOei2sSvcO3n+Zyoce/MdFCqQ658Qnbs5A+mydJluD57DjayBfJ/O3REnVk/gAKES3Jm+AicGD4EGUmJ6MZ2/OvqyojaX9m1Di0/nAAjEwWpIvVJ53239qB6icqo5prXJZmEo3SW2pHlTb9+/birNSmuC8VBkoSe6yeffAIievr2zQ30RK69yMqHSA4ie8j1F7kfVLdCUb+f1C+dRzX4GP/c3ob0zDQ5m4hEEnLZRnFkSIhQkcSF7bqnPum+gwYN4uk5c+ZIxXne+fzuLzdiCXJHKN2HXJvRNQm9/1OnTuUWQ6VY4HRdLYR4Y/YPWbJRfCkaC2EkWUaRBRMt6NLCLuVTPalMaktnXfQnN2h0SFKY94BiElGMHHKfSPGRlJ81uYMjrCX3bhTLiOa3rmLI5vwn9UZj9dXVOjVRH/NLnfNKc1ZdmWJqvhCdGzaCnXdt3F27Bvf/2oCSTXI/zET2uPfozkieo8y1mBFexZzPZrv+yAJwV9168F22GNXHj0fV0WNV1L7y9STsqFVbPu5t3qQoZ+MkyyHlMkrH3b3DCQ+nurnx9mw8y3FyOvrieZW+tbmMVKkkXTA8HBrXh2tzheVeCXYvEkv2DSS5uWQh14XGQ3GJSJfoixd4mfI/5C6TSDJJ8sWAjbHpr4sQsmcvNjE3b+dGjUZz9qwkN3TW7JtLZA/FQ7PLcb9o6ZZrdSjdQ9P5MiPNdtaszQkgwpjSiUGBmqrmyctv/kluH+m7IkQgIBAQCAgEBAICAYGAQODtQqAYcyGR3apVa2QXMb17DRxdKI22b/g9T7vkpGSMHPM5mjdrjEVLVqF6tcqYOvkr/Dj/N/gzM/gZUyega+f32Y7FNCxZugo7du+HsYkRvhj7Mdux2IX3999/11n9RThz7jL69OyEn+fNxMbN23nZzp374VWpAmZ9Pxmz5v6KLVt2watCOUyaOB6NGtRHJvvjc+as+dhz8AicS9hj7uxpqFUr7wJHHsVFhkBAICAQKAQC/oHBqFkld8G2EF0U2ORpZhYy2LfNyizvQm6BjV9hBXK/U61atVd4h7xdkyugsWNVF7by1ipaOWlsI3Is49hYyAZGfuTVLS6B7SZm3qQ0leWtrZrjF+WLj3ePxpmPz8BAbVFStaZ+V+Rai+Jz2NvbqzQkax2yJqCFfOWFZJVKWi4y0tMwr0sNfLL2OOxdS2up9eLZZBlTTNt/tFjcQr0WK/VUJ5vFc0iLfQRjRgK9SMBt5ds+Yf0t6t8EX+/6j1nnsBdFTdr/2Q4z286Et0cDtZKCL2mRkZ6p5D6t4Ba5NWKZj0Ba8Ke2+r4Lo7aOREev99G9Rq/cDl9yiixfyCJek6gTIZrqUB7hQ30oW6TQmLUJkWDqpISmuuSyjOYYza/CEsXq/b7Ie0C6aHqONHaKi0WEjrLrPF0xIMKu+aqW2NZ/C9ztPdRVfmnXb9Wc5++l5qETiUGEUZER9vyzmeWvNilm+AZ1ZbqlxTyGib2Dbpi9Ytzzm38LFizAhAkTuLtCLy8vbXCKfIGAQEAgIBAQCAgEBAICgSKIQDHmriC7RYuWLG6O5j8u35TOL5PMSWR/+HpVa4yf505Hpw7vYcTH4xGf+ASrV/6GoHvB+Hry97h+6Th32/DvoWNo1bIZWxiKR73G7RAccBUJrG6t+q3xz/oVaNK4Afx8b6F27ZpY8MsSLFj4O479uw0Vynti3vzFuB8cgh9nT4Uvi98zaNgn8Ll4BEFB9zH/58XYtX0DHj6MhoWlBexsFUF23xS+4r4CAYHA/y8Cr4PMKaroCTKnqD6Zd1uvQ7274/GZvLu/CRXvX+ah4sCh7zZA78joGzduDHIzp0mWLVvGY/NoKssvjyyQrK2ttVYh65VatXJM77TWersLiiIGb9Oc92XWKjdm/qjxJSjduxtaLF2psexNZEZfOI8j3XtovfUgRgK+LfImce/ZsyfIpSFtRhEiEBAICAQEAgIBgYBAQCDwdiFgSDvcaKfgq9wVWlQg6dOrG8gdR7MmDfmuxjIe7nBxdsLDqEeIZ+SNnb0dGjesjxMnTuPUuYtc7QBGxISFhqNtm6Zo2bwJzyMiR5JJX32KqlUq8ctte/Zj8c+z4ezkCOfWjmjA/NZc++8m6tStiaD7IZjJzPkH9e/DXGYoTP2lPsRZICAQEAgIBAQCAoH/XwRarV7L4hw80zhAI3Mzjfki8/8PAYoTRBYwmsTCwkJTdoF5lpaWPFaQtorK1iva6rzt+UURg7dpzlf+8CNUGDBE42tgYGykMf9NZTrWq4/eanHg3pQuL3rfN4n7jh07XlR90V4gIBAQCAgEBAICAYGAQOANIcDJnHeByFHG18TEGOnpT3mWoaHij5TneM586kei7fu98ANzu/bl+DG4eOkKDzJJ7j6epmcodyGnjU1N5HQ6c9NmYmosX5uZmyIjMwOuJV1w6dwh7Nl3EF16DMTCBbPQoX0buZ5ICAQEAgIBgYBAQCDw/4uAsbWwxv3/fbq6j8zW1lb3yjrWJBdqhXFJp2P3b0W1oojB2zTnDc0tQMfbIBQXyFTN1ebboLcmHd8m3DXpL/IEAgIBgYBAQCAgEBAICATeDALMRbeBTr6034x6r/eut27f4bFu+vXtya2VHj2K5QrUqFmNx8rx8bnOr+/eDdKoWNcuHbCZxctJT0+H321/nDx9kbljq4EHzPVaZkYGBg/ohy/GszgCZzW72NDYqcgUCAgEBAICAYGAQEAgIBAQCAgEBAICAYGAQEAgIBAQCAgEBAICAYGAQOCdRsDg+fPnWoOxvklkBvbrrvfttbUxYLsWSaQAsNk518o3MIABGjeqj6SUFDRs2h5ffTMVHu6lWBsDlPcsi+W//YiBw8agVoPWrGwK4hMSlZvz9NTJXyL68WOUqVgPvft9iBVL56NsGQ/4+wegbae+aN+pN5avWosBH/TO01ZkCAQEAgIBgYBAQCAgEBAICAQEAgIBgYBAQCAgEBAICAQEAgIBgYBAQCAgENCEQLFDhw5lt2rdpkgSOpoUfh15FEjVysoqz60otlBScgpsbbQHmqVGyUnJMDUzg6FhcbkPIs0S4xNgY2cLsoYSIhAQCAgEXhUC/oHBqFml/Kvqvkj36+fnh2rVqr1WHSmA8NixY1/rPcXNBAICAYGAQEAgIBAQCAgEBAICAYGAQEAgIBAQCAgE3i0EDMlaxYAZrjzLfrcGnt9oNRE5VL948eIFEjlUz9LKkk4qQgSOnYO9Sp64EAgIBAQCAgGBgEBAICAQEAgIBAQCAgGBgEBAICAQEAgIBAQCAgGBgEBAIFAQAswDWTFkZj0rqJ4oFwgIBAQCAgGBgIxANtsAEJeUivSMTDmPEpSfmJqO9MwslXxx8e4gEPjoLrr81RnPs5+/0UH7+Phg586d/HjMXKBqkqyMp1gyrB3io8Ll4tToKDy6cplfp8fHIfryRTzPerfe54IwSI6LwaJBrZCRmiLjppzos64XbkYo4gwq5xfl9KR9E7D/1l69VaT3LCIiQu92L9ogJiYGx44de9FuXmn7ovgepGelo+OajgiLC5XHXtD7LlcUCYFAAQikx8XhOfPk8Koli7kFp9+mTOYxIpv9HU9pureyFMX5p6yfSAsEBAICAYGAQEAgIBAQCBQOAe7vq7iSO7DCdSNaCQQEAgIBgcC7gsCpW/dRf8ZKeM9ejWrTVuBSQAgf+t3Ix2g/9y/UnfEHqk39HVM2H0J0QtK7AstrH6eFhQWPBUebMqTj6NGjr10P9RsuObcEXb26MKvfXJeif/31l6yjpGv9+vXVm77U6/DwcNy8eRM9e/ZEYGCgxr6vH9kNGydX2JV0k8sjT5/C4c5d+HWc700c6dINGU+eIPFeENY7O+PUmJFy3eSIcJ6XEHAHTxPieZrq0HHy4xEIObBPrptfQupbaiudM5OeIHDTernfvW1b4PrCBUiNilTp7uH5s7yO34plcr7UZzpb9JdkV/NGCN67iy82SvfY3qAuzn4xFk+C70vVoA0DqYKlfQk4l68Kn/1bpCyVc48qPbDw7EKVvKJ8QQTk8dDTaFm+td5qTpw4ESdPntS7naYG5JL3yJEjaNWqFZ8vISGKb6umunfv3kXXrl01FWnMu3PnDr755huNZa8qsyi+B7t8d8LZvARK27vLw9b2vktz6FXM+Xvbt8jzWpqLB3t05jqdGfeJXHaod3f4r16FrKfpsr6UuLl4Ia8jEc+UJ+lbmDlP7bWJ/19/yPqQjnfX/6VCWNA3RBqDdA7ev4d357dsMU6MHKqta55PY6R2REyQpERG8mv6rkmS+ughz4s4eVzKynMmEoX6efzfVZWyLEY6U37c7Vu4Ovt7npb0pHPEqRO4t3Mbz/df+6fclr7fW6pW4tcFYZBw1x+Ew7bKlbHR1RWh/x7g7eh34PYfK+Q+pcSh/ux3aeM66VLj+c7fa/LoSvrS801hvz3025QcFoKM5Cc8HXtTlUAvivNP40BFpkBAICAQEAgIBAQCAgGBgF4I8JWW7OfCx5peqInKAgGBgEDgHUUgIjYRI9YdwKxuzXF71hhc+HYYyjorXEjSQuTXHRrh+vSPcHbSELbzOQkbz6kuLryjsL2SYaempmL16tWIioqSj6ZNm76Se+na6f3YezgdcR59avVVaZLNTLbc3d1lPUnngwcPqtR52RfdunXD9OnTYW5urrHr58+ycGzFHDTq+5HGcvVMGgNJ2I69iL91i6ezc3ZgK/8/6r1dO9HT9wY8OnbGmeEjkPb4Ea+ryz8dTxxHLz9f+TC0sOTmbja1q6P3HX80XrAQ0WfPwu/3XNKG+qXFSOMSdniwc4d8G0lfOSMnkTMMftV87Rq0XbcRZs4u2NOgEZ7GxqpX13rdsNdwHFs5B5lqi8zUoGvV7rj22Be3ovy0ti9KBcsvLEf/Kr1hYWKht1obNmxA9+7d9W6nqQEROdRXvXr1NBW/UB5Z8vz9998v1Ie+jYvae5DF5vziS0swol4uIZvfmKQ59ErmPJuIll6e8lyned9qteL5ZDOrRq+xo9GbfWeqj/scPpOnIOKYKlEfsnsnn/MRp3LJDUlf9TG96Jwvxj59Do3ro+f1a6j5xdfwW7wYfksXqdzG+9f5KmNxa9tOUa58c5UWiou0R9F4fOYCH8sjH4VFpAUjQ2pOnYwrM76XSSO/pUvg0r41SrVopaEXRZYBc4dtU70SUqOjVeqk5RDalqVKocb4r7ieNJ7qk7/haZeGjZm/cYU1je+8+XiWnsbbZz/PQkZMPE/niwEb45nxn6FMjx4YwDYRNF29EqeHDgdZdlp7ejJyKq/lXqLvbViWLq2ip/pF+d59VTCtOuELODZrBNMSJdSrarwuavNPo5IiUyAgEBAICAQEAgIBgYBAQG8EOJlDu2SFCAQEAgIBgYBAoCAEDly7g25VPdGhViUYslhgjtaWcLKx4s0quzmjXS0vWJqZwMXWGp1qVsCu65otIgq6jyjXDQEHBwe4uLjIh6mpaYENyWPYtLlAVW/Aif38dx4AMB6Oy8FjwGeTc7vYvAuY8qPieuYCoH1vwKUUMHmmon3fD9lu8Ce59a+GXYGHVSnYmtnlZuakSDdlXUvouCAVGhqKAQMGgCyR6Pjtt9/kvsnNVO3atbkVAy2C52fJIDfKScRGhCIpJhxulWuqF+V77da9M26t/l1rHWNbW5g7ucCtdRteJ57t2NZVzB2dYKZ0FGNzjMTAyBCmdvZwqFUbFQYNRsDvq7hrHSrLZg8veNcueM+bh8RrvmzHdt6FQ6qnSUxs7WBT0Qt1J0zmi6D3dmzVVE1jnlulGkhPicfjkKA85Zamlqhq74WroYrF2TwVNGQQGbxo0SJ4eHjw5zx+/HgQYUnyyy+/YPbs2XIrqtu+fXucZcQWSTRbvB0+fDhv5+Xlhe3bt8t1KUGk3ooVKzBq1Cheh6zCpL6p/GzEBdQvzSZEjmzevBmTJytNhJz8f/75R87fvXs3mjdvjj59+uDMmTNSU37u2LEjf0/p3axWrRr27FFYKahU0nBBJA65BBw3bpyGUoDuT3OIMNq0aZPGOuqZ6enpoPEOHDiQ40Q60XH69Gm56pYtW7ie9PfAoEGDEKtE6gUHB/P2RL5SO5qDdO+ZM2fyZ0DXhBXh3rdvXyQmJsr9FuY9CAoK4v2SLjRWeg9SmEspSS5fvszvQ+WEgz6kcGh8MFKZm7WabrWl7nQ6v6o5X9zYWGW+0xyXxMjSki/auzZvCc9hA7lFnVSWFPwAib534D33J9zfyuZsAYSJ1I7OhZ3zBibGMC/pCtKn/g8zcXP2TyCLF0mMbWxVxmJoUvBvEbV9eOE8HFs1QcWRIxBxnP0A5UilYR8hLSwcoQf2IiEokH/z6k/5HuxjL1XReLarXp2ROVHISEzAf3Nng6wm0x494mQR6WhsacX1pPEYW1vzdHETE94XEeI21avgwb7dGvvWhsETeh7s21uh/wD2rTaCe4fO/H4Pz52GVZmySA4N4f35/b4U4UcO4dnTp5wkMi+VP5ljaG6Ri6m9A0L27EaFAQM16qYpszDzT1M/Ik8gIBAQCAgEBAICAYGAQKBoIWBAu7jy/29x0VJYaCMQEAgIBAQCbw6BUGaZY25siP6LN8N75iosO3SRx87RpNHFoHC0qJD/YoWmdiJPdwRo8Xvs2LH8+PLLL3VquH0fsHY1sG09cI156+rLjAqktcA4tgn5TkBuNzHMBX/QPcV1KOMI2IZp/MhInT+nAcsWsrL7bCH8Um79ezH3UMGuXG6GUiogIEDWlXRWXkxWqqaSzMzMBC2M08I7ETdXr16FoaEhr/OILdC1bdsWnTt3xpUrV5CRkYHBgwertM/vIi4iGKYWduxg1i9K4lTfG83+YgAxsWUL1E2ZiyMjtmAtSeXhIxG8fguSlNySSWV0vvXHclye9h32tG2F8iOGwql+A+XifNM+c2fh8vQp/AjcvDFP3cykZESeOcl3qBfLcZGbcJctVgYzUqp1W75r++EFBcGRp3F+GWxHu6N3A7Zoqnj4BWFAXRVni5a2JT0RGx6ssedy9uVwN1bpZdJYKzeTni8t3M+ZMwdElOxiBNWvv/7KKxCJQPn0jEmuXbuGw4cPo2bNmoyIfI7+/fsjKSkJ586dw4wZM9C7d2+QJYokRAiOHj0a1mzx9tSpU/jss8+kIsSlxiKT7cB3s839VpViO/jXrFkj15ESdE9n5uaIpEWLFtwyLi0tTYX8oDK6x7Jly7BkyRIMGzYMH3zwAZtjBVvBEzmrzZKMSBLq57vvvsPatWuxd69u8X1M2EL1tm3bMH/+fN434UqHZP1DLuL69evH+71+/TqfawsXssmdI0/ZwjPNu2+//ZaTNjQ20jMsLAyEE43xp59+wqpVq7g7Q3oGyqLve0Bznog5IpGIqKH3gsg8ST7//HOuO1n37dixAzY2NlJRgecHcQ9gZGAIKxPFBgSpQUHv+6ua80TISPOdzhT3RF3IvVjUyVMoUbuuXETux8hKxbVlGz73E5gLSL1Fbc7r096uUmVeXdkCJmjzJlyZOV0+dCWVw44eglubdnBhloHB7D2V4s0YWVpwsspn1kz4zPoelZnrOSKeCxKbcuWZG8ooxN++jdu/LOIuI4ncsatZo6CmvLz6mHG4weZKQXHSlDGQrC8tXEryPshCyKoi0+NhNKxKuyOZvcvkQu769Bm4u+FvpMU85vUs2PzRVR5f/w/Jd+9DsngyY0Qn/TaZlywJIn0obVupUp7u9J1/eToQGQIBgYBAQCAgEBAICAQEAkUOAU7mZBdRNufh7auQjiKHnFBIICAQEAi8gwjEJKdi07UADGtaE+tHdsf5oDDsvOyXB4l/mQXPntsPMLZ9wzxlIuPlIUCuyyqxBRw6aGe8LsLWvmUpydalh/RlC/PF5ax8E83Y42xUT1GlRWOgLtvgHssIIEnCEkPhbOkiXaqcaZFa0pXOuizC0iLyLeZq6Oeff0bDhg1RmcUj+PTTT3m/klXGlClT+OIuLTaThQRZaegiiY+iYO9ePk9V6zKe8Hi/E883dy6JMp26Qtq5TZlmLs58YdF/jYLwUe+ArHLIfY6NV0Uk3g/iO8TV62i7ti7rCety5fhhzlyfSRJ/+RqPx7C5fDmkhISh4Y/zpSJEnTuDUl06wNDMHG7t2iPsyGG5TJ8E7dhPy8GuIAykfu1Ll0NiNGMENYizpTPCn4RrKNGctW/fPnTq1IlbkBBJR89ZcgsmuQ+UiAIiI2jB38rKihMIREi0bNkSkSzWBuVVrVo1D9lBeQsWLODvypAhQ2TSJDpJ8b44WDjIitWoUYO/R0QYrFy5EmPGjOFlBw4c4FYqdGHLLLDKly+v9T3+6quv0KRJE3z00UecINHHakxWRClBhCURSURE0ViVCSmlanmSkgWLK2NiCRuyZqFDIo2IGCJih+ZjBLPqatSoESdPiFRRllmzZnGLGKrbrl07XtSsWTM0bsw+BEzISoksgJRJNMrX9z2gOU4WPkSSkT70LHx9fakrTtzdv3+fE2Okf926deX78woF/BOZGMni5TjmqVXQ+/6q5jxZgkjznc7GVtaybn4/LeBzfkf1mihRry6zyBgkl4Ue/helmOUfWZkQqRPFLEAKI8pzXp/2Ruy+JBksTpgkpo4l+HePvn10KH8zpTrq56y0VIRuYTGMGjRECWZ1SC7N4m/n/n/C/f0uMHctiaiDR1H1k1wCVr0f5WtL9zLcEibO/xZKvt8WMTeu8e+aJqJDuZ2Udm3ajD0HS4QxjPMTZQwyk5N5VQNjE7mJEZtrGclJsCzlxq2oEgL8+bOKveKDVPadMivjBl2tl6jTezu3w3PoAGZNpCAv6Uy/TfQMycKL0hYurvL9pYS+809qJ84CAYGAQEAgIBAQCAgEBAJFFwFD+iMPBW8WfK0jIAJn9+cd8tzTe8QM1O73SZ58kSEQEAgIBAQCrwcBW+ZCrWFpZ3SordgB2rteZaw9dwMj2uS6KPK5H4Gxm4/in4+6yy7YXo92795dyLWYPkHQCaHObB32JNs834JxPwZs7WfydGD8KN2wI6MYYyNFO2rB1pDANu7LUtrGHZFJUfK1csLNzY1b5ijnFZSmxXlatC3HFjrV5eHDh3wRmiwPSCpUqMDPtJgsWU/wDC3/2DiVRFxoIXa0s/4qDh6G3cyCx6NT5zy9l+3aA3aVq6DKR6Oxt20LhB89jIoDhuSppymjQt8BMHXMu9hMsTWa//4HX+i88Ok4vhhIi4QkIfv3wpzt0n7AYmikx8YgfNc+ZPycBMlFm/p9ihmo5yiuKb4DuVHSR+LC7sGma+4is3Lb6ORouFvnWrsol2lK08J9nTp15KIqVaqArLlIjJgVEJE75D6NSAOyAiESgiScxaggCQwM5Ael27Rpw4kLSkvSg8Wz0CTOVgpLm5iUGFibKhZKyYKHSAs/Pz/uUoxce02aNIkTPEQu6CKkP4lEWj558kSXZlrr+Pj4qBAXRIi+DLl79y6ysrJw6NAhubuRI0dyAkrSnQqImFIXspKjZyMRQ8bsgyBZT0l19X0PCPMGDRqA8KMzPV9L5nKMxMDAAOvXrwdZ59DzIPKPrHYqVqwo3S7fs6uNK6JTFVYR+VbUUPgq5rwZY9MrDRmu4W7grtW82HcmeN8e3Fu3HtmZWbzeU0agELlhX7Uan/O0kB96cD8qDx3xWuY8KZGZrHiXTezsZN3dWr/HCQU5Q4fEI58rvFZiwF0kPXjACY6o08zyixFYJGThUvq99qD7KLug44Va/rFiRNKTB8HM3Zkxqoz4CGeYRZ6ZkzN3d6aliWo2u2f1L77EzUULUW3Mp6plSlfKGDzPesZLnrH4YUSqk2QyS0ETRs6Z5XxTKa4Zxft5lvGUE/Al6rCdEDpKZtITBK1i8c0YoaOv6Dv/9O1f1BcICAQEAgIBgYBAQCAgEHj9CCjInNd/33zv6LPhN43ll5lfl8ibF+Bao5FcXrK6N1yq5GwTlnNFQiAgEBAICAReBQIutlaISU6TuzZhLtdSMnJ3cAdEPka/lTuxcmAH1CunWGyWK4vEa0WAArPTQii5KavO4ghIwjYdY8XPLA7JTGD3QeDz3sB7LYEqbD2UQu4ohcvAvftSK8W5gHAFqFCiPC5FXFJtpMMVWS1QPBBatJUsb6iZIyM2yMUaWUiUZO5klIVcPZHlzjMWuLo4W4CTFvWVF6CpPlkjkKsodXFwK8NjvqSnJDFXa1bqxfleW7l78F3St1cuz7cexW+I9/fPt44uhUbMasK+SlV+pDCC69LUb9Fp/7GrTVMAAEAASURBVCGkxzxC7PkrsBrUF9GXLshdPbp8iS2IKkiHZ1kZcv6zpxls17mtfC0lyLVR9Lmz8GJBu3WVZ8xyIyHqPhzcPDQ2CYoNRLvy7fKUkUUVWdhQLBlajJeEnrVE3lDeA7a4S5ZnkvTq1YtbZ5ELNbK+IjdnJNSOhOLMaCL9eCH7x05p4VnKo7O9uQN3vRWeEAZPh1zSkKyDiOBIZrvuyTJn+fLlnOCh90kX4ZuldKmoYx2yWFm9erVcuzCWPuSKTl0IYyJllGNRqdeha4lQUS7TZYz6vgfksm3YsGFYunQpvxW5xyM3eZLQcyHCh0goeubkVo8IHl2krIMnd6n3JP0JI+5yrWB0afu657w5c9nlUK0GI4arIoa52PL7fQnqTp7K5vlFHo/laXw8n/PkYiti77/sWxDD5rbi3XxVc17CKfaWwlLKTMl6UCrT5xzJCA6b6pXw+D8f3syyrAce7N2DaoywLqxYkCUMi19D8XYa/TSfuzsLZVZ/DefO17nL0u+9Dx/2XgXv3aW1jTIG0p7IFPY7ZeNZjruKSwoIYlacLtxqhsZ4j/2+NV28FJks/lPghvXwZN8xXSXsyCH+zJ29c//+1bWttvlH37UbN25wC0OyWhQiEBAICAQEAgIBgYBAQCDw9iBgQL7Gi1rQnPArbHVJi1AZkTrSQRY8K9qV0FJbZAsEBAICAYHAy0SgWeWyOHE/EjdDopCQmo4D1wPRvZYXv0UEi6czYNVOjG1eC1VKO+FhwhN+vMz7i750R4BiftDudX81MuHqdSAiCrBgG4i9cwwhcuLMo1Y1ZulwCgi4xywdGJGzfavu96OaddzqIiQpAglpue53dOmBiBjSlYKqKwvFSqFd/+RmjQLDEylDcUtIpJgfFIyd4onQeGmHvjrpQxYZZNGRkJCgYjVg7+oOqxJuCPe/qXxLndOVPxzFF1HVG6THxyI5IpwHug7euBXu73dUr/JC115DhvHFysjjRxF1/hzfzd50wSI0nDOPH2UH90fEiWPc/Q65cYpg9Yisibnmw+NrWDALKUnS42IRd/sWrv4wjcdjKNtT9wXG8Ds3ecwhR4/yUnfyOeVpMm7HB6Ju6XpynpS4cOECf9bkskxZyOKG4sBQPBxavKfn2q1bN7kKPW+yuBo6dCh3MWZKzCMTslAhQoLiR1EcJSL3Ll68iHv32EusozQt1QhXw66o1Ca3fvTekQ7kVmzu3Ll47733VOq8iguyUCKLNBJK00FC+hDZRTFkqJzIWn2EyCAiRgkbwkgSmh/UFxFslB8XFwdyefcypDDvAbmDI9KJLHzIImrdunWyKpR39OhRricRd7q6a5Q6cLdl7uUMTXEzgn0ECyFvYs6TdUqt8V/Df+ESpDyMRPjxI/Do2UOe701+XcwX+h9eOvdK5/xzRgQnh4fx7xoRHTWnfStboRCUT9m3JDUqUj7IxZgklFYuozR7iLi/8R9U//wLeSwNZ8/j3za6T2HFzEHxN6GFZxkeS8alcZOc715p3mVGYgLXhcbzNCedxSxqlIWsnWowvYgkUxZtGFh7lIVN7eoI3LSOWd5kIIRZU5HLuJKNm/HmNmzuUVwze2ax6VCjJk+TS01d5e66tajESE0pTpqu7fKbf+SukNxX/vDDD7p2J+oJBAQCAgGBgEBAICAQEAgUEQSYxwIt/jaKiIK6qkGu2V6nnPp1IuKZexFtkpGajANTP8RzNZ/j2uqLfIGAQEAg8DYgUKuMK75sWRc9l29HvRl/wMbcGN29Fbs6rxPBk5aBJaevo+lPf8vHM+UgLW/DIN8SHSXXRvqq63MDqM28abmw2MtsLQdjfmTESC1FL57MyKLTZyyfrc+zcBhopFiL0noL+i+E8n8jPJllTqOS9bDjxjaVNgXt4NdWTlYQx48fx9atW+Hk5MQsh0yxZ88e3jct5pK1xODBg/nuYiJzKMYKWekoC+3eJ7KILDOUySKD4oZoPXIiLmz7U7m61rS6jhQA26175zz1j/XojV116iJg03rUnTeHxYNonKeOXhlq5lAUI6HaxK9w7ef5nKhx78x0UKpDrnxCduzkD6bJ0mW4PnsONrIF8n87dESdWT+AAoRLcmb4CJwYPgQZSYnoxnb86+rKiNpf2bUOLT+cACMTBaki9Unnfbf2oHqJyqjmmtclmYSjdJbakeVNv379uKs1iulCQnGQJKHn+sknn3Cih2KqSEKuvfbv389JDiJ7yMqE3A+qW6Go309qT+dRDT7GP7e3IT0zTc4mIpGEXLZRHBkSIlQkcWG77qlPIlcGDRrE03PmzJGK+bV8wRL53V+5HrkjlO5Drs3omoTe/6lTp4IsU0qxwOm6WghJfZMlG8WXorEQRoQZCVk60YIuLexSPtWTyqS2dNZFf/qbQvnvisK8ByNGjOAxcsh9YqtWrXj8HEkPcgdHWJOe5N6NiD+a37qKIZvzn9QbjdVXcy2c8murPuaXOueV5qy6DsXUfCE6N2wEO+/auLt2De7/tQElm+R+mInsce/RnZE8R5lrMSO8ijlPsVXJAnBX3XrwXbYY1cePR9XRY1XUvvL1JOyoVVs+7m3epChn43x84pycL9WJu3uHEx5OdXNdtJJVC8WSib54XqVvbS4jVSpJFwwPh8b14dpcYblHsXhILNk3kOTmkoVcFxoPxSUifaIvXuBlyv+Qu0wiwyXJFwM2xqa/LkLInr3YxNy8nRs1Gs3Zs5Lc0Fmzby6RPUZW1rBj7gNJLN3cpa7zPZMLOtLVo2Pe35p8G7LC/Oaf5PaRvitCBAICAYGAQEAgIBAQCAgE3i4Eih05ciS7Of2HN58/Kl73kJQtbShODrlSK0het6u11T0qouPsjVpdvKUnxmFtn4oYsTdcrwCXBY1TlAsEBAJvPwJ+S8bj4bnVKNXuC1QePoMPKOzIetxdPQZWZZuhwZwDLzRI/8Bg1KySu2D7Qp1pafw0MwsZbGHNyizvQq6WJq8lm9zvkPum1ylLlizROxbM69RP073S2Ebk2DiAhWxg5EfeGnEJLNYH89ijqSxvbdUcvyhffLx7NM58fAYGaouSqjX1uyLXWrSAa29vr9KQrHXImoAW8pUXklUqabnISE/DvC418Mna47B3La2l1otnk2VMsWwt/RgU0xrrQksLvbKzWTyHtNhHMGYkkD4Bt/O7yRPW36L+TfD1rv80uqhr/2c7zGw7E94eDfLrRmMZLTLSM5Xcp2mspCUzlvkIpAV/aqvvuzBq60h09Hof3Wv00tL7i2eT5Ut2tuYXQZ0I0XY3wof6UHYnSGPWJkSCqZMSmupmss1HNMdofhWWKFbv90XeA9JF03OksVNcLCJ0lF3n6YoBEXbNV7XEtv5b4G7voa7yS7t+q+Y8fy81D51IDCKMioyw55/9jHmV0CL6Wq9o6aZw2Uy3tJjHMLF30A2zV4x7fvNvwYIFmDBhAu7cuQMvL6/CjVe0EggIBAQCAgGBgEBAICAQeCMIGNIflsWKGyD7ueY/Lt+IVjk37bbwX0T5Xga5UtNViPyp3e8TXauLegIBgYBA4LUj8Dwzg98z6sQaeA2Zxv7oN2Q77NfxvGcZqa9dn8Lc0MTIEHQIeTsRIA7OTbFRWeMA7G01ZuuUWa1kdZwbfU6nuvpUIrJGk9AOfnXXaprqacozNjXDlCOBmopeat6Rfr3w+Eze3d90E+9f5qHiwKEv9X7KndHiprlzSeWsF05bOzjli9uhEYcLfQ9ra+tCtyWrksLKyj5/FLapzu2aMXM3cjOnSZYtW8Zj82gqU85Tx4cskNTzlOuT9UqtWjmmd8oFamkiSiUrILWiQl++yHugbb4TMaVO9OmDgamRGS5/on9cL31BeJvmvO/yxbgx80eNQyzduxtaLF2psexNZJIVzZHuPbTeehAjAd+YsHfTzFF3S5dXjXt+8+/8+fM8Pp0gct7Y2yJuLBAQCAgEBAICAYGAQKDQCBhydyRFkMhxq/8+HxTFxtFHIm9eyEPmpCcnYtfn3eDh3Q5+u5bB0sUTLb/8GWcWTcKTh/fQaPQcVO04gN8m5PIpnF3yDVJjIuDRuAtaTfiFuRAxQ2Z6Ko7+yFy1XPkXVq7l8exp7oIrtTnz2wRWJ5nd+zPU6jtGRWVytXZ07jiEXj4IY0t7tJ64FG419Q9iqdKpuBAICATeegSeZyaweBWXYOVWHsnBqm5F3vrBiQEIBAQCMgKtVq/Fc2Yho0mMzM00ZYu8/0MEKE4QWcBoEgsLC03ZBeZZWlryWEHaKipbr2ir87bnF0UM3qY5X/nDj1BhwBCNr4GBsZHG/DeV6VivPnqrxYF7U7q86H3fJO47dux4UfVFe4GAQEAgIBAQCAgEBAICgTeEgGJbNblYY6bhRUnqDhwPnw2/6a0StcsjzPooMdQPpm37YeDGa5zYOTxzBLrM247Y+/449es4TuYkRoXi3ym90GriH9y125FZo3B64SS0mfgbTi/6FmnxDzF4yy2kxDzEjk/a8NskRYfzNmRFZONWFjvHdYFbneawdMzdBXv/4lE88vfB8B2BjDwKhymLASBEICAQEAgUK26Oh6e2IKVsdQ6GgdELmEMIOAUCAoEii4CxtU2R1U0o9voQsLV9+d94TZYqr29EReNORRGDt2nOG5pbgI63QSgukKmaq823QW9NOr5NuGvSX+QJBAQCAgGBgEBAICAQEAi8GQRY6OKiJ+QqjdyrhV85qJdy1C6/2DnVewyHua0j3Oq3QdlmXWHvUQFlGrXFM2ZRkxb/GBHXz8PC0RMV23SHlZMravUfjwfndnMdQi4cQP1hk2BqaQOHMl4obmLO88P+OwsjC3s89LuCu/9ugbGFNYIvHFHR27F8VdZ/JI7P/5LdKxVmNiVUysWFQEAg8G4i4Fi3Jwu8+w8ijq2FbdXOzN1lxrsJhBi1QEAgIBAQCAgEBAICAYGAQEAgIBAQCAgEBAICAYGAQEAgkC8CCjKHGeYUJaGYN/q6VyP9dY2VY2iYG7C7uJExHzoFVM3KSIehmYKkoUwKFJzNgspKwWqlM2+Q8w+1KWZgCIsSrvyo2WsMI4jeU64Cm5LuGLzpJiOBKjHLnfa4e2ibSrm4EAgIBN5NBEq1HsAC+aYiNeo6PDp8yNPvJhJi1AIBgYBAQCAgEBAICAQEAgIBgYBAQCAgEBAICAQEAgIBgUB+CBgQQZFdxGLmXNu8LD+dNZaRm7MXlVK1GnN3bA9vX+Uxcnx3/QnXum1B7hs8m3WH/771yHyahpArp5CZEsdvR20ykh7B2qU0KrTuhlJ1GsPes5KsSnb2c8SGBCCLBTyv88GnqNF7HIIvqlruyJVFQiAgEHinELD2rAbTElVA7tUcard6p8YuBisQEAgIBAQCAgGBgEBAICAQEAgIBAQCAgGBgEBAICAQEAjojoAhkTlEVmiyOtG9mzdbsyD3amyAXMFiBjmGSDnXyloTBg4eFdFk/G/Y+3V3Fqg4HXZlaqLr/K28Ws0+H+PkL19jdZfSMCvhDlM7V55PbZp9sQR7vu7KrHqsGTGWhR6LDsKudDkYWznh6rrfYOdeDmeXfgNjS3tkJMehy08i6KQy9iItEHh3ESiGWhPX4zmz8DMorghhxkz93l04xMgFAgIBgYBAQCAgEBAICAQEAgIBgYBAQCAgEBAICAQEAgIBjQgUO3LkSHaLVq2KnHWORm1fU+bzZ1nISEvh8XHUb5menKgxP/v5c6Q9ieXxcIgYIiFrHIqRY2Jly/Bl5YkxivIcUkm9b3EtEBAICAReBgL+gcGoWaX8y+hKax9sHwDik1NhbsKCERsbyfWes4KElHSYGxuq5MsVXnHCz88P1apVe8V3Ue1+yZIlGDt2rGrmO3wV+OguvjzwFXYP3QODN0hO+vj4IDQ0lD+Jpk2bwtHRMc9Tycp4it9HdcHAH1fDrqQbL0+NjkJyaBic6nsjPT4OiYEBcKxTDwaGOYRrnl7+/zIKwiA5Lgarx/XB6JX7YKwhcHqfdb0wtfVU1ChV660BZ9K+CWhWtjk6Ve2il870nrm4uKBUqVJ6tdNWOYu5942JieHva/HixfNUo81XSUlJsLa2zlMmZTx79gyHDh1CixYtYGFRNAPb/3JyPkqYO2KI9zBJ7SJxVn8PslJSEHvLF/ZVqsPQ1BSP/rsCm/IVYWpvXyT0FUq8PQhkJj1BMWNj7sb7ZWhNf1s+TUhgmwlNVdyEK/edmZQMI0v2DVDayJgYcBfMLwdsK1ZCckgwnj5JhEP1mnKzE4HHsdN3Oxb1XCrniYRAQCAgEBAICAQEAgIBgUDRQcCAW+UUMTdrbxoe2iFvammjUQ1t+WT1Y27ryK2cpIaGLB4PETkkvNzOiZ+lcnEWCAgEBAJvIwKnbt1H/Rkr4T17NapNW4FLASF8GA+iY+E9YxW8Z/3J8yesP4jI+Cdv4xDfCp1pkZZ+w5WPo0ePvnHdl5xbgq5eXVSInL/++ktFT9K5fv36r1TX8PBw3Lx5Ez179kRgYKDGe10/shs2Tq4ykUOVIk+fwuHOigX9ON+bONKlGzKePEHivSCsd3bGqTEj5b6SI8J5XkLAHbaoFs/TVIeOkx+PQMiBfXLd/BJS31Jb6UyLf4Gb1sv97m3bAtcXLmBxtiJVunt4/iyv47ci102t1Gc6IwYk2dW8EYL37sJzttgv3WN7g7o4+8VYPAm+L1XTioFUwdK+BJzLV4XP/i1Slsq5R5UeWHh2oUpeUb4gAvJ46Gm0LN9abzUnTpyIkydP6t1OU4NNmzbByMgIJUuW5GTN+PHjQeSOJMeOHYOlpSVsbGz4/ImIiJCKVM6ZmZno1KkToqOjVfK1XWRkZGDUqFF49OiRtiovPb9T5S5YcnU5Up6mvPS+C9uhpvcghc1x+gYkh4Uw6/onPB178zq/xZaqlUBHZnLuGGiOBW37h5fv79JBnmd7O7SF3+9L+dwrSD9p7kpzVDq/yPeA7kn9hB/P/Y24MnM6Lk6ZxNU5MXIoL6fxHB3yAaLOnS5ITV4ew7CQ9KPvk89Ps0B6SnJ52ndyuVSP8kiiL1/kZfQ90iaHenfndSSMqS5h6bsk9/tCeYT1tfk/auuG59M3+fYfK/LUOdSf/UZsXIfQQwfz6Hr9l3kFfvsLwoB+GwjTzeUr4B93D1xb8BPAdPZf+yeODRuYRx+/ZYtx+rPRefKVM+gd2Vq9CrZVrox/ypTFmXGfIEXpe0BpwmRz+XLYUq0yHl25LDf3Xb4YNxcr8AvasRXnJ3wll1GiUdnGuPjwKm5GKN5zlUJxIRAQCAgEBAICAYGAQEAg8MYRMKDde8UNFJYkb1wboYBAQCAgEBAIFGkEImITMWLdAczq1hy3Z43BhW+HoayzYoeyraU51o3oxvMvfTscqWyBcP2Z/4r0eN5m5VJTU7F69WpERUXJB1mgvEm5H3sPpyPOo0+tvipqkDWBu7u7rCfpfPDgQZU6L/uiW7dumD59OszNzTV2TVa4x1bMQaO+H2ksV8+U3NGG7diL+Fu3eHE2+z8UiXLswfd27URP3xvw6NgZZ4aPQNpj3RfIO544jl5+vvJhaGHJOs+GTe3q6H3HH40XLET02bNsUTiXtKH7R5w6AeMSdniwM9eNq6QvlSsL606W5mvXoO26jTBzdsGeBo3wNDZWLiso0bDXcBxbOYfFEkzPU7Vr1e649tgXt6L88pQVxYzlF5ajf5XesDDR34plw4YN6N69+0sZVp06dRAUFAQiY/777z/88ccf2LdPQQjSfG/bti0WLlyIyEgFmffFF1+8lPvS3wKrVq0C3eN1iZdzJVS0LYdtN7a8rlsWeB9934OMmHjQ8WD3NrnvZ08zkJ2ZS8DVmfUD+ty+jYZzfsLtxYsRyeaqrvIyvwda78msOySp+tXn6HjgX5Tp2g3HevZB1PkzUpH2c84Hpduli2j0y29IYN+p48OHcI8E1Ihih5Yd3F/+ptH3rfaEiYr+CthMmPYoGo/PXODftkc+CjLCgFmreU+fgRszf0TKQ8U8CP13P1LuB6PKR/kTINaenkiJzEuAJvrehmXp0nBt2YrrSTg4t2nB01VGjZFdkWv99heAwS1Gsj9LTUO/oHvofO4sbs3/lWNrVdoDCf538mCbzHS09iyXJ185w4RZhrXdug0fMOvT3swiOSs1BXf++kOucnn6t7BjRE9fRvp49OyBk8OG4NnTp3J5fglTQ1MMrzkES84vya+aKBMICAQEAgIBgYBAQCAgEHhDCHDLnAL+L/2GVBO3FQgIBAQCAoGihsCBa3fQraonOtSqBENmkehobQknGyuupp2FGSq7OcPYsDgcrC1Qr6wrLgTlXTgpamN6m/VxcHDgLp7IzRMdpswNUEFCG/2nzQWqegNObC9H5wGAtJ538Bjw2eTcHjbvAqbkbHaeuQBo3xtwYd6kJs9UtO/7IZCYuwkbV8OuwMOqFGzN7HI7yUmRbpKedC5RokSeOpoyyFXagAEDuLsoskb67bff5GpkqVC7dm1u9UML6iEhCisxuUI+idiIUCTFhMOtcq57mXyqy0Vu3Tvj1urf5Wv1hLGtLcydXODWug0vir/rr15F67W5oxPMlA4p1p+BEbMYtrOHQ63aqDBoMAJ+X4XsLIlIeo7gXbvgPY/tIL/mq7I7W+uNcgpMbO1gU9ELdSdMhk31SrjHdmnrKm6VaiA9JR6PQ4LyNLE0tURVey9cDVUswOapoCHjOXsJFy1aBA8PD/6sySpFIhd++eUXzJ49W25Fddu3b4+zjNgiIQuU4cOH83ZeXl7Yvn27XJcSROqtWLGCW5/QO0RWYVLfVH424gLql2YTIkc2b96MyZOVJkJO/j///CPn7969G82bN0efPn1w5ozqonfHjh35e0rvJrl93LNnj9R1vmfSvVy5cjBkLv0o3ahRI1y+rMBQGuuQIUP4+3716lVs3boViYmJvM/r16/zcdH4ZsyYke99lAvHjBmDxo0b8yzClHRWnmPUbyvmjpms6Wi8vr6+cvPg4GB+TyJmqR3dm6yL9u/fz58PXdPc7d27Ny+/lUOCSh008WiCcyHnpMsCz2RBROOnfkkf9Tn/8OFD0HionI45c+YU2KdyBfX3QLlMW5q+B77svdW2UG7E9DBh32ly1WhTuRLIikNXed3fA9LV0qMMyvfuD6+xo3FLjTTOT28zJyeUqFELjX6czwmYmGs+cnUjCyuV75qRlXYXgXIjlnh44TwcWzVBxZEjEHGc/TjliHOjxijduxuzzlmELEYm+8z4AXV++B70PctPrJgFS3Ko4jeCrKTCjxziz40IOfNSpbn7M/r+GjHrt+KmJlxnY0vF/2+o34K+/dowCPp7Hf9uG1lZwpZZ55QZ1Behhw/B0s0NacHh3For5OB+2WqIdLRmzyE/od8D+yrVUNzEBKbMhagTI+Mjc75DZAkUsfdfeA0ext2vJQTe5aRjzH+5zyS/vqmsvrs3rkRfw3NGxgkRCAgEBAICAYGAQEAgIBAoWggY0M5NYZdTtB6K0EYgIBAQCBRVBEKZZQ7Fw+m/eDO8Z67CskMXEZekupv73+t3eP7S09fwcau6RXUo/xd60eI3xeuh48svv9RpTNvZRv+1q4Ft64FrbGNzX2ZUIFlrxMUDdwJyu4mJA9hmYi6hjJdzdQV+ZKTOn9OAZQtZ2X22EH4pt/69mHuoYKd5R3FAQICsK+l7+nTBbnzIQoEWxmnhnYgbWsCmhW4ScglFlgqdO3fGlStXQAu9gwcPzlWmgFRcRDBMLezYwaxflIRi5TT7iwHExJYtqDddvQq0yClJ5eEjEbx+C5KU3JJJZXS+9cdykBuhPW1bofyIoSz2TgPl4nzTPnNn4fL0KfwI3LwxT12KfxB55iRc2rdGMUaakiTcvcMXBN1at4Vjs0ZsAVRBcORpnF8G2+3u6N0ACUGKh18QBtRVceYOzLakJ2LDgzX2XM6+HO7GKr1MGmvlZtLzJQKHFuCJKNnFCKpff/2VVyCigPLpGZNcu3YNhw8fRs2aNRkR+Rz9+/fncWTOnTvHiQwiDyjujCRECI4ePZq7Ljt16hQ+++wzqQhxqbHIfJ4FN9vSch7Fv1mzZo18LSXons7MVRUJxaMhy7i0tDTEqlk00T2WLVsGiqc1bNgwfPDBB/LufqkvbWfSe+PGjXyuECb9+vXjVcmlWtWqVWHCFm+JaPr88895/uPHj/l53LhxnDCheUXuBXUVIrqIgCEh6xzCXZpHpAth36xZM9xm1iU0ZiJTJHnKdvrTnPz222+5TjRuIpgTWBwPInpIf+q7ZcuWnAhav559dJSkjJ0HbsXqTnbSs65Vqxa3WqLviZ2dHcdW6pIIO3oWpCuRUISXrqLpPaC2Zox4pm+AOXN9Z8jiQ1HatlIluVv39h1g6uSI0H8PyHnKift7dsJn9g842KMzMtgiezlm8aKrvLHvAVOQiJk4n2u6qirXMy/pyi1pnuSQJlQQfe4MyKWbdEQzkkYXCTt6CG5t2sGFERXB27apuKirwwjooFVrcOm7iTBm70G57gXjalXaHcnsvSSXbdeZdc/dDX8jLUYxfyx0iHlV0LdfGpMyBs/S0ziRYuHKdkHkiLWHJ3PbFwrznLynsTG4w1yu/ffdNE4uJd4NYJZCHlL1fM/B+/fg5qJfcYtZ7FXP+a6l5Xz7LNxKI3j3Dr4RwNLLE6nM0omk4sChqDTkQ552b/8+6k6ewtPK/7jZuPHLyET2wy9EICAQEAgIBAQCAgGBgECgSCHALXOesT+OhAgEBAICAYGAQKAgBGKSU7HpWgCGNa2J9SO743xQGHZe9lNpdszvATZfvY2SzFKnoqujSpm4eLkIkOuySmxhkQ7aya+LKP/kl2Tr0kP6soV5BS9QYPNmDZk//XqKai0aA3VrA7GMAJIkLDEUzpYu0qXKmdydSbrSmeJ+FCS0UEy7+X/++Wc0bNgQlZnbmE8//ZQ3kywVpkyZgnr16vEFZbKQ0DVOSOKjKNi7l8+jgnUZT3i834nnmzuXRJlOXfnuZ6mimYszKrP4BP5rFISPlC+dySqHXPbYeFVE4v0gZCQmSEUFnq3LesKaWWbQYc5cn0kSf/kaKLYNxT9ICQlDQ7b7XZIotlBaisVGMDQzh1u79gg7clgq0utMu9rTcmKsFISB1LF96XJIjGaMoAZxtmTxOZ6EayjRnEXuxCjOy8CBAzlJR8/577//5pUl94FE1pAQ4UCWOFZWVjweEsWsIcKA3I9RHi3i7927l9eV/qG8BQsW8HeFCAnJ/V50kmKB08HCQaqKGjVq8PeI3AGuXLmSW3tQ4YEDB7glCqVtmQVW+fLltb7HX331FZo0aYKPPvqIk5G6Wo3Fx8djG1u4Xrp0KXr06AE3tnufhPLtmWulEydOcKJi0qRJPD8pKYmTJ/TuE6lSt25dfuaFOvxDVnJkDUVC3xNK031IyMKGxNvbGw8ePAC5gSOSxN9flYCZNWsW+vbty7Ft164db0PWTzRnCWey6GnQoEGeuelo6YTUrHRkMTJNFyHrPiKt6Rnfu8eI4woVcOHCBbkpWeYQ4WNsbMzLyNWirqLpPaC2xtY2/BtA86M465e+BxYurrndGhigxrjPcePneSpkg1TB1KEEzNkztCpTBs8YGZmuh9vFN/k9MGIYk8XKczLl1FPMSrupuGw0ZH3RN1E6jGwKtszJSktF6JadcG7QECWYRSLpEn879/8aZGVTbdLXeLDuH3h/P1Mmt/NT1bKUGxJ97yAhwJ8T4rFXfJDKvhlmZdy4VU5+bamsoG///9g7D/AoivePf9MLJHSk9957U7ogKE0EQURAUBDsveMfsf0UO8UGgiBFEMRClyq99ypSQu8kJCH1P9855thc7i6XBiS88zx3uzs79bO7s7PzzvuONb5hYNb68Q0Ksp/2UfsxSqOOWj80j0nBzpklK7UW0oU9u7RwPocqqyfu6Px52P/zJASpl3nuilV0lNiIcNtWtQ0b3n4bdd9SWktKyBpz2fYuKlivvppkYNNEpHZPkeYtkmWVL2d+7Xc6/HSyc+IhBISAEBACQkAICAEhcHMJ+FIzR0l0kHhzyyG5CwEhIASEQBYgkDsoAI2K34F2tW0zk7vVq4wJK7diQGvbwACr8Env9mpALRGj5q/Giz/Pw6wXki/wmwWqmiWKSDNDnTp1SlVZO6ix1qVqTLy5kv14qzHJ198Bnh3oWRJUivH3s8VjDDW2CasZ/uK5SuB4+AmniXFQmho5qXEcnOdgME1POToO3FKIQ00FOg7s0lGbwGhPaA8Xf7kKFsb5IwdcnHXvXeGRfpitBsNK3tchWcDSne5XaxVU0es3cEHwsEULUKHXdW2GZBEsHuUf7KVN5li89C5nVTf75gc9mLn6yWf0ACQHJukO//UHgtWA/H+zZyFazfAO++1PxHwaDmOiTQey/Hl5Ww4su9EXzivtA8sgteWcq93zR/9Frk69nZ4+FXEKJUKva7s4DWTxpOYJhQXGValSBdS+oPNTWkAU7tB8GgUD1CCZMGGCPhcWZhMY7d+/Xwt26Nm6dWs94K8DXPujYMSZuyNESTSVO3vlLEIDbQLG0NBQfW/tUGtRULOEps4oPKGgkIIeTxzLT2eElpcvX/Ykmr6PZ86cqTV+aPbsk08+wUcffaS1UMiDGkZcp4dCCzoKNlhOOgpj6Jw9L/pEKv+o0cRnaeHChfaY1ACKjo62H3OHQitHR4GKcdznzzHemYjTyOUfokx2qobFAxenBAu8/rxXyMYw1et/Kok0BT0vv/yy0iAsogV6XF+I2nueOGf3gSfxGKZYyzbYOHwYji/5O1mUInc2RflejwB9gY0fDsfu8WNRoG79ZOGceWRke2AEB475eLmQ5MeEX9aCBu9rmpCO8dwdRx0NS9KO5VNaPpX7PeYuSrJzpzeu136X9u1FuBIkUuByYrnS/Kpe0x62sGK7AyNQ4Jpgwn7CxU7QtfaNa4wVbd5SCdeugsLw/HXUrAQPnbu235qEYeCrTKvRxSkNPuPi1X6A0iaiy1e/Lo4tX4oi97VFwXoNcEytm0YXdE0DUB+4+Wv61WggPh5bvvoMK54ajI7zFikzcTbTcGvfeg01XnkFfFfEKcGOf2huNyklPXUuwqbZWOha+5j0rBwJASEgBISAEBACQkAI3EwCah1JH213+mYWIq15n9y1AeaX1jQknhAQAkJACHhOoFBuZfve77oaR4AyuXYlJjZZAt7eXmhYvji2n76Ai1eSDvwlCywemUKAA77/+9//kqxxwYw4tvTtp8B/V4DPvgLeHwTsso2ZqzV3lKbNuevF+ffg9X3uqbkfbl35/OVw8KJDJLcxbCeptcCyUhvB6gqotQBoYo0aEo6O5pyoucOBXDozqG8Gz014DnbTHJSjy1eslF7zJfqKbRaz43l3xyElSqJM317Y9d0Yd8GQp3p1XHDQYnAbwcVJP6XFlLdKVZTt1gM13nwNa99+Q2sBRJ46gXOr1sMnOAin1q5GrBqwozu9bi38Vb3p4uNi9FbvX41R/skH9BIUw1NqYW6u5+Cpi1cm8C6eOIh8xWxaHY7xDpzbj/L5kqdHjSpea6P1YeLxWhvhDf2oCWKEEzx+4IEH9P1htK9o8ouO8egoZOBaL+ZHU2tWR5Nczlze4HzwU8KEsItHk5ymEGD+/PmIiIjQmjljxozRAh7eT544rumSHhekZu9TYEGNJTqafqMwqWPHjrocBw/anrOCaq0SagjR0fQgHYWgaXEUllidEYrS3J3hyi1Nr1ldTrXGiKPzVhorKbn/zh9ChTy2slvDumoPaOaOghzWnRpTRvOGE9PoKNCl1hYFvTS/yPOOdbLmY913dR9Yw7jap8nDGs+9gO2j1No5yoSXK5dLPV8nFy91ddpj/7S0B0yc2hsJ10wV8pj7RqjAY6s7s2E98jesb/XyaD9cmVejFk1IyVIehXcV6LgSuHAdrzNqnRe2bTlLl8R/f/zuKrhH/tSs0muDqbWv8lavgcJNmuLAlMkILZN8soCrBD1p+60MfAMCtVDsStj19uXSgf1qvZwSOovcFdVaZao8BRs0Umui1dLlyVW7OtQHuqsiJPdXYQs3vkuvmXZVafAFXVuPLur0GWVSrY8SJEVqjaTggjbBdfIEkvuY9rBQrtQJ+JOnJD5CQAgIASEgBISAEBACGU1Ar5ljBkIyOvHMSo8CnG/b5sfs59rZfzzePE3NThInBISAEBACmUagaeXSWHLwOLYdPoGLkdGYs2U/utSqqPPbeug4dh49iZi4eBw5exFTV21D7iB/hAbbNCcyrVCSsFMCXPOD2gSOJpE2bAGOKdlIjmBlPumaIoSSl2hXq5oSiiwD9v0L7Fdjxb9Od5q0S886xericPgxXIy64DKMsxMUxLCsw4cPT3Kag8bUzKGZNa4NQqEMB3TpqJVDR80JLgLP+laoUAGF1doWVkeNDGp0cB0Ps+YKz+ctUgIh+YshbPc2a3CP9yv3H6gXmXaMEH3hHCKOhenFtQ9Nno4S7e91DJKu44p9+ulBu+OLF+HEqpV6xvpdI75Cow8+1r/Sj/RUs7v/1ouB04TPMRWOwhouSM7FtnNcM9vFQkSfP4fzu3Ziw7ChiNh7EKW7JhWAuCto2J5tes2hAiWTD8ZfuRqBXRf2o25x2zWypkOzWLzWNFlmddS4oGk0rodDjRBeVzNYz3C83hQu9O3bV695Q5NbdDTZR6EP14+iMIN92jVr1mgzXDqAB393FW2MDUdtmgAmOE2E8b5jGWg6jAKoNm3amNOZsuVaQTQfxvt848aN+Prrr7X5MmZmTM3RDBrPU/BJARe1iGgqjWbkaJaOz8L48eNTVT4KjrgWzbx583TaRjjSqlUrLUBiulwbiJo1LCP3M8KtOrIKTUo0TpaUq/aA2kisOwVsFPhQwGZ1XKOHZuco4GLbkV8NaqdGqObsPrCm726/xH0dEb5PmVVUggyru6rKE3X6FLhOzP7Jk1DsvvbW0+ne97Q9YEa5lJnKIwvnIu5qtFo/5SROLFsKCieMi1HmuS79ewB7J/6I/d+NQ9XHB5tTKW6vKIH7aSUAWvXK89pcWIGa1wV+MRGXEHniuP131TpjQKVsPcf9eFW+g5Onovpzz9vbtUbvf6zbvQiLUCTFQjkJQAZsB/Mq7cl8NWrqfZqzo6PQg/lfVaYxYyOv6P2Yy5eSpeKq7XfFoLxqs/ZOnADyvbhvDw5P+1WZxGyr0w1RzzPLk09p/OWpVFXv56laOVmejh5sz8/t2KbX2Ak/9B/2qGvG9t5fCf5pEpCmN3Or92GiemYOzpyuz+WvU9cxGZfH61V7WK9gTWW9I2WhrMtE5IQQEAJCQAgIASEgBIRAphDQwhxXpjgyJccMSHTjz186TWXd2KH4681HtFCHgh3+KPgRJwSEgBAQAhlDoFapInihRV10HfMr6r37A3IF+6NLg6o68RMXLqPzqBmo8tYYtBoxSQ+ije/fSZvyzJjcJRUrAbPmh9XPk/2NW4HaarJtoaIcIAYGf6gGymvZYpZR43r3Pa381fi8WvMcjdXPnePke+sE/DJKM6dx4XqYuXVGkmgpDai6Ok8tiMWLF2P69Ol6gJYD+L//bpudTVNSHMzlYu1cv4TCHA46U+PY6qixwcFhamZYhUXePr5o9dirWD1jrDW4y33HMuapVBnFunRIFv7v+7vhNzVotm/KJNT9+AO15kOTZGFS5eGg4cGBumqvvojNn36iBTUllAaCVWWK5oMOz5ylL8ydo0Zjy/sfYLIyOzWv3b2o894w5Cp7Xfiy4tEBWPJoH8SEX0LntWv0Qtmelm39bxPRov/L8FMzzx3dnzt/R/X8lVGtSHKTZIaj2Zq4FEz06NFDm1oza7hwDRjjeF2HDBmiBT1cn8U4mu+ilg8H8ins8VVmoWh+kIP6VueYn/XcwIaDMHXXDETHXhdSGO0Tmmxr3NgmcKCAxzgKUJgm8+3du7fe/+CDD8xpfWw/UDvu8jfheK9Ty4b3OYVb1C4ya0TxeZ87d67WQOJ5CnsobDKOwqZXX31VPwsUCKXWDR06FFz7hmm//vrrOjrLMmvWLF0G5k+hz5tvvgkj7DF5ONbNesxnmMdWP8bbf3ov9l38F91q9jDJ2LeOYc0JakvxGvB5L1WqlN3knQnPNoDCLWoKsT4UeDm2ByYtZ1tn94GzcM78qIFR/ZWXk53aMnQYflVaIJtUW1C01d2o/bKNbbKAnnoollbnaXtAgW6tF1/Bha3bMFUJcGYqc2V5a9ZEqY5d7MntUqqa8zt10Otu3T3rV9zR2IO261p5/mhyJ9aqNWwK1K6Llj9MsLdJXkoYcGjSL5ip1r0xv5UvP2fLU2nw0v1WV70zLOfDFszXQrGCdRvYwqn/XGXKasH1qTWr7H5p2QlV7R81X/xCQpHnmilEoyVzXJlxYzl2fzFSr2HD/Z1K+9LcXya/ZG1/CgyqDHxCr2n2i8r7z6bNUfXF51BEadLQ5bwmTKMgJ1CtVUWTmrnLJNdoNHmbbcTxMMxt3QZTlCB7tlpXiN/yradOs5vXrDf0XZzbshlT1FpF6154Bc2+/yHJ2m8mHWfbmPhYTNo+GYMbP+nstPgJASEgBISAEBACQkAI3GQCXosWLUps1rxFsg+zm1wut9lTCye1btCCs6mNIuGFgBAQAlmSwO79h1CzyvUB28yoxNXYOKWBE4eQoKQDubFqwOjilSjkVOuYBAX4ZUbWbtPk2hHVqlVzGyajT44cOTLVa8FkdBlSm16Usnx37jygrO6owc7ksc9fVINnypqUs3PJQyf12XFiOwbNfgIrBq3I0Fm9NDHFtVPM4uwmV87UP3/+vB7I98S0k4nHbUx0FD7uWANDJixWmjrFracydJ8DqV42S1DJ01UDmpk5qSZRacpFnTsNfyUE4oBzRrjLKr2vet6Jl37bpLRzkpsdu2dsWwy/ezgalGyY6uy4DgqvqTGflpoEzqkZ/zSrxbipvRcGTn8M91Zsjy41HkhNlqkKS60hR0GISYDl5Y9mBXk/U8PMmSCCaVBLjcIkR0du1MyhZopxnuRpwrraUiOGzx+FORSkZIQbvmAY8ikTd0PueirVyZFPjhw57OtlWRNg/ak5ZOWTGgY34j64qe0BtZvUc+ITGKAFGlZ2TveVCbvE+ASnp+hJE3O3kmN758p5+ajZBw7CMFdhM8Of65L5qWfIJzAo5eQ94J6g2rqr58+pNXJywjc4R/I0VRrRag05fyUkSo3ZtgV75mHCxvH4+eGpydMUHyEgBISAEBACQkAICIGbTsBLmStJbN6i5U0vSGoKkBZhTucv5qFQleTmPlKTb2aHPb13G/5d/hcaP57OWXuZXVBJXwgIgVuawI0Q5tyqAESYc6temdu7XPO7dcGZFaudQmjw2cdqXYO+Ts+JZ/Yi0KRJE9DMnDM3evRovTaPs3Pp8bsZeaanvJkR91ZjkJXaA5qHW9jlfpeXpbcS8t0qLlatVzStrM1kmrMy3ac03/Ioc4RZwWUl7lmBp5RRCAgBISAEhIAQEALZiYAvZwhSfdzVTMFbvbINBryLwtWvq+G7Ku+tLshhucPPHMfhtfNFmOPqIoq/EMgmBHaMfBYnV45D0bbPo/Kj7+paHV04CXvHDUZI6aZo+MGcbFJTqYYQEAIk0HLcBCS4mDHuF+zBLG3BmC0IcJ2g2NhYp3WhpklmuJuRZ2bUIz1p3moMslJ7UKBefXTbvTs9+G9YXD+1EJy7sgaE5rphZUlvRlmJe3rrKvGFgBAQAkJACAgBISAEUkfAl4IcmiyOd2X+I3Xp3dDQ1LY5sX0dZj/XzuN8Kfyp3WOIx+EloBAQAkIgowkkxMboJE8s+REV+wxV5i981doXE7VffExkRmcn6QkBIXCTCfhnoUHEm4wqW2efUSbKUgPpZuSZmvLdiLC3GoOs1B54K9OWXMslSzj1TZtlypoC0CzFPYW6yGkhIASEgBAQAkJACAiBjCXgTWFOrIvZohmbVcamVqx+e53gurFDU5Xw8W3OzVscXrcMkx5ugB8fqIItv4zRaf75Vl/smmuzF7xl+jdY+tUbiImMwNLPXsG4+yvosNtmj7fnP/uVB7Hhp8/t5w6vW4L5wwbh+3uL6TgMGB1xCZP7NcGSES9qf+Z3fMc6exrWnU1TRum0pj7WAofW/G09JftCQAhkAwIJsRdxftdaXL1wChGH0reobzbAIVUQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQsAFAV/6+6jFKxMTspZqTt2Hn8XGn790US3X3ozn6MJPhWHeWw+Amj65ipXGrGc6olidZqjf+3n8/kIHFCxfHet/fA8Pjl0FX7Vo5R1V6qLJE0MRqRYAnjagASrf8yD8AoMRfuwQTgUE46Hxq7D6uw9Vmt3RdtgUNBr4Jqb2rYNa3Z9AYGhuhB/fh5oPPoUmg97B2p8+waoxQ9Ft1Lwkxdq/5Hds/+1bdP92KWKjrmDm023Qf9YBPYM/SUA5EAJCIMsS8PIJxsllv+BK6eq6Dt5+GbOwdJYFkkULXqFCBaj155yWvm3btk79xVMICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAikhoAW5mQ1QQ5NpdG8Wtj6uampKxjP2do5Rzf9A78ceXFyx3r9888RikOrF6LeI8+h4n2P4tchzVGv7zvIVbiEzq9Uw1Y4sOxPHFplG7w7++9OFK5aX5+r3mUAgnLlR6k726ky/oPSjdto/1wlqoHhitW+Ux9XbN0VvgGBqN19ECb3HqM1fvSJa3///TMXIXeUwL9LZ2sfbx9/nN67xWn5rfFkXwgIgaxDoEDdrji1ZiouH9yE3FU74NKexVmn8FLSJATqNKqd5JgHm9ZsTuYnHkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQiAtBLwZiabWspLjmjepNa/G+rlaKycuJhpe3r7Ikb+I/tV8YDBKXRPCRJ8/C2/fQPj4+2tEF8L+U+bYauPqlcto+vS78A8piPi4uGT4fPxs4c0JCm4SE5NrP8VGRduCOGhGxcZEwUdp+5gyNX36E4QWsgmTTJqyFQJCIGsTKNqqFxLjIxF5YgtKtuuv97N2jaT0QkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAhkBgFvChiyligH2DxtdKpZ0ISaK1e0VhPEhJ9WwpLiKN+qM4rWaYK8ZSrhyMYVOLFjJbqMXKjMrA3HpeNHcHrXJgTnL4ra3QYqIU484qIuu0rWrf/F44cQpxZB3/7bWIQUqQD/nCFJwpds0AoXD+9BkRqNbGWq1RjBeQsmCSMHQkAIZG0CoWWqITB/FdC8Wr7aLbNUZSibPh8eieiY2CxV7swsbJfnQ7F9n1Z4zcxsJG0hIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgduQgC+FOYmU5iRXGsk2OFyZVzMVzFeyApo+PxK/v9QJvkGhav2gOHT87Hf8/cEgtHj5KxQoUxk1uj2DRR8MRocPf8aascMw7v4KCM5XBAG5C3qs2WTVgJr3Vh9EXTiu8+vy+e+6KPlKV8KlIztweP0yVL2vN87s24ZJvaoiME8R+AXlRI8flqn1jfxMsWUrBIRAlifghVqvTkKC0g709rkmBPDSCpO3dM2W7TyIF2cswsWoGF3On/t3RMMKJZOUeeKyTRg2dxWmPt4F9coWS3Iuux482CYGn04Mwvjh4dm1ilIvISAEhIAQEAJCQAgIASEgBISAEBACQkAICIGbRMBLLdqc2KJlK6cmwG5SmW5atokJCYi6fE6veWMVvDgrUPTlCwgMzePslFu/6EvnMaF7BQz4IwwxUeEIzl0gSfjYK2oQ0McHfsrEGl3c1WjEq4HegBBZGD0JKDkQAkLAJYHd+w+hZpVyLs+n58Sxc5fQ/JOJGNnzbrSqVh6XIqP0+6NgruvahUfPXsSAH37DwYsRN1yYs2PHDlSrVi09VUx1XPUeBdfMiYj0QqV7c2HeDxGoVi5Or5nTtm3bVKcnEYSAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAjAd+UhBaOEW7l48RoNai49m8knjgKKO2atLgAFSnBg4jUj4n3IJxjEC9Vxto+QUicNgYBvr7J0jBz8k3aVJrifH1z7JhetjtWaxd5FS4Or4at4RUYlO2qJxUSAlmdwJzNe9C5ahm0q1UJCWqtrwKhOZNUiebXPpi9FK93uAuPT3Jt3jJJpGxykDM4EXc1iseGnX5amJNNqiXVEAJCQAgIASEgBISAEBACQkAICAEhIASEgBC4BQj4JihtFL1oThY3s5ZwYCfihw9RizicugWwui4ChTW1fXMA07/1SGjkOqVsfibvHfB5ezS8y1XN5hWV6gmBrEXgiNLMCfb3Rc+vp+HA+Uvo36gGejapgbwhNm3ChVv36go1q1Ima1Usg0pbvngC9h42YvkMSlSSEQJCQAgIASEgBISAEBACQkAICAEhIASEgBC47Qn4entn/UGnxOhIuyDHS60741WvmVJnkbVlsuTdHReLxA3LkfjfHn1Nvb6dJxo6WfJCSqGzK4GzEZFYuD8MI3vcjVIF8+K935YpLUNvDGjdABcjo/HG7GWYMbibmiNAvcLbzxXOn4B/tl5b/+j2q77UWAgIASEgBISAEBACQkAICAEhIASEgBAQAkIgkwjoEafEeGrnZN2Bt8S1i7VGDgU5Pp/PgJdZSDyToEmymUsg8eFnEP98Ny3Qodk8r+YdMjdDSV0ICAGPCeQOCkCj4negXe1KOk63epUxYeVWLcz5ccl6NFTnomJisfuYTUvyv9PnUEYJfYzmjscZZdGAJ856o1Rh9U4VJwSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBDKQgG98fLwSfngjUa19kFWdXiNHFZ4aOSLIyapX8Xq5eQ15LamdY67t9bOyJwSEwM0kUCh3CM5GRNmLEKBMrl1Rwhu6eGW288j5y3hl6gL7+ZGLNyJECYC4xs7t4PYoE2v33Zm2NdtuBz5SRyEgBISAEBACQkAICAEhIASEgBAQAkJACAiBtBHw9fHxAbKwIEdXO+HawJmYVkvbXXArxjLX0lzbW7GMUiYhcBsSaFq5NL5evgXbDp9AiQJ5MGfLfnSpVVGTeKljc7zU0QYlQb1XKrwxCp/2bIt6ZYvdFqSuRHph9TofvP34dWHXbVFxqaQQEAJCQAgIASEgBISAEBACQkAICAEhIASEQKYTsBn2p4m1xKyrmeMJpZO7NmDjz1/agxap0Ri1ewyxH8uOEBACQkAIpEygVqkieKFFXXQd86sO3LN2eXRpUDXliLdBiN+XBaBZk3jUKC+aObfB5ZYqCgEhIASEgBAQAkJACAgBISAEhIAQEAJC4IYSyNarNFOAQ0chTtj6uUnA8njd2KEoVr89RLCTBI0cCAEhIARcEvBWwv8h7RqrNXLqIyYuTplQC3Qa1tvbCwc+esrpuezqOWaGP0Y8J1o52fX6Sr2EgBAQAkJACAgBISAEhIAQEAJCQAgIASFwMwlc08xRRchmijmbp43WwhoDl0Kbug8/i0JV6mkvnqejQMcIdhoMeFe0dTQV+RMCQkAIuCcQ4OcL/sRdJ7B87OXrB7InBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEMpCAd6Iyr5aY1dfMcQKEQho6CnEGLTiL+96faBfk0J8m1vjjOYahM3H0gfwJASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJC4BYg4Ethjpcym8NtdnTUuvm2bX5Q64bOrJNj1tBxNL+WHRlInYSAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgaxLwNfb2xvwUhXInrIc+5UxWjdma04Y82uM7KCHAABAAElEQVTO1tUxYTJim5AQj3/G/B+aPTk8I5KTNISAEMjCBHaMfBYnV45D0bbPo/KjNkHz0YWTsHfcYISUboqGH8zJwrW7PYu+ac3m27PiUmshIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgRtCwFdr5WRDM2sp0TNCHLOGTkrh03s+9ko4ds8eI8Kc9IKU+EIgGxBIiI3RtTix5EdU7DMU3j6+OLZ4ovaLj4nMBjW8varQtm3b26vCUlshIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgRtOwDs+Ph4+3lTNuX0cBTmOa+ikVPuwzSsxpX8zbbJt9isPIu5qNFaMHopdc6fqqDRT91OvOoi8eAYJsbFY8N5g/NCplPY7umkFpg1qpcNN6FEDW6Z/o/c3TRmFcfdX0L+NP39tLwLT3/DT59r/xweq4PC6JZg/bBC+v7cYln72ij1c+Kkw/PrUfdp/+ci3cDX8IqIjLmH6E22w7scR2v/c4X3YNHU0mA7z2vLr9/b4Zof5LR/1tj7PPLbM/AExUVd02SPOnNDBEuLjMLlfExNFtkJACGQAgYTYizi/ay2uXjiFiEOrMiBFSUIICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgexIwJuaObehYk6qrmX46TD89WpnNOz3Gh7/6wTq9noOvgGBiDh1HDHhF2xpKWFO1NkjSIxLwME1i3B690Y8OnM/On78K/KXrYx2Q3/U4R4auxLVu/THvkW/YdOUT3Dfh7+gw4fTsXXG19i7aKYOE37sEE7t34qHxq9CyUbtMe+t7qjQthseHLsKe+eNw8WjB3W4mc/ci7LNO6LfzH2IjYzA7gXTASWcO39wMy6dPIxHpm5HUEhurB83FD2+X4qHf9qAEvVa6LjWP+YXG3EZvSduRIuXR2PtN6/BS5nfy1e2BvbMm6aDHt+xHnEx0dZosi8EhEA6CXj5BOPksl9wctUfOiVvv9zpTFGiCwEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASGQHQl4U6Pk9tLLSf1lDNu4EnnL1EaZZvfC288PxWq511ApUK4qoi4cx+JPXkB8dCSCcuWHX46cOmP/nCHw8fPHodXzUb7Nw7ijUi0UrFQT5e7ugUMr59sLV73LAB2v1J3tkLNQWZRu3Aa5CpdArhLVcPbfnbh4/DCiVR7xMbHY+fsELcT5b7ltQJiJNH36PQSG5kFQ7vwIKVIBc4c+ihM71yNP8bL2PKw75e/uBpatfMtOqqx5cWLHBtTsNgg7/xwH3iMH/p6FKu37WKPIvhAQAukkUKBuV5xaMxXH/p6A3FU7IDHBZn4tncnekOiqWcD58EhEqzZInBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACmUtAr5kTn5AAaujcru7krg0IWz/XZfVjr0YqrZSrTs/Hx8Un86fQ5ZEp27BrzhTMeuYeNHv2CxSsUjtJuNiYKIQE5LD7+QYEITY2ueYLBT9WR40gClfiY23lCc5XEL7+gciRvwj8lRaOcb5+AXqXGjYPKq2cg0v/xPKvXkbR6nei9evXTbqZ8GabqO6FhPgYJCqzakXr3KW9T+7cgANLf0H3b5ebYLIVAkIgAwgUbdULp9dNQuSJLSjfayi27vwzA1LN/CSW7TyIF2cswsUom/Dp5/4d0bBCSVy4EoX6w8cmKcCI+1ugS8NqSfzkQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiB1BHwpWBA2VqDmmSdrVyDAe9i3dihLutEAc7Gn79MIsRhHGeucI1GWD36ZRzd9A+KKwHH6b3bULBiDeQrVQnHt69GnYQhSthxXSuG69QE5AhFnYeeRKxae+bQmoUo0aiFTjr68gWtMVOyQStsnDQC1e9/FEqShv0Lp6LOwy86y96pX97i5eATmFOvk1Pxgcf0Oj3xMUoIkxCXJDzX0LmszLJVaNMVwQUKYd7QXur819j3928oXL0eQgoW0+EvHNmPEnWbYv+S35U2UYTSFqqhBXw1uj+FJSOeRajSDqKQSpwQEAIZRyC0TDUE5q+CmEvHka92y4xLOBNTOnbuEgZMnIORPe9Gq2rlcSkySguYmSW1dejmPtMTeXIG6f2cgUkF0tpT/oSAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQSBUBXx8fHz1oT6FOdnK1ewwBf5unjcbxbauTCG2ohWM0cYrVb4+6Dz+rq16oSj2nCAqUqYzGT45Qa9f0hJevLwJDCuKB0XNQtmVHbYbshw4lULzBvVq44uXthTN7tuCfUa8os2V5ERNxHh0/mqlNphVr2AETe1ZH+XZ90Pyp93B6z1b8/HB1nWe5u3ujaofeTvN39KQWFTVuOo/4A3++3gMbJn6ogzR/7ksUr9dM7/M83eVjhzH3//rq/Zjw82g46D0l8EnAsk+fQoPH30XN+/vrc1umfoF139uEX61eH4eg0Hzav8o9D2Ldd2/o+msP+RMCQiADCXih1quTkKDWo/L28bWl62V7djMwkwxNas7mPehctQza1aqEBLXgWoFQmwlJayZ5lSAnT0iwnihg9Zd9ISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIATSRsBr4cKFiU2bNtPCgbQlcfNjxU/+GglTRsFbacL49HraZYGMYMcEoBDHlQDHhLFuExLicTXiol3QwXMUjMRciUBASKg1qPaPunRWC3GMYIUBIi+egX+OXPC9Zj4tVq2pQ+cXGKy3afmLunwO/sGh8PH1cxmdYfyCQuz5xkRGqOMcWpA36eEGaPbCpyhYvhr8gnMmSefK2VOY3Kcuek/dmqTeLjPKoBOeXtMMyk6SEQLZisDu/YdQs0q5TKnT29MW6HT3n76AA+cvoX+jGujZpAbyKuHN+YgoNHjvupm17jXK4tXOLZE7R2CmlMVZojt27EC1amLWzRkb8RMCQkAICAEhIASEgBAQAkJACAgBISAEhIAQyLoEtJk1q7Ah61Yl5ZIbbZ2UQzoP4e3tk0ygQXaOghzGpn9wnoLJEgrOXSCJX3qEOCYho0Vjjp1tHcP4K6GNowsMzZPEa+ecydgy9UtU7Tw4Wb2TBJQDISAEbhsCZyMisXB/GEb2uBulCubFe78tQ4CvNwa0boBgf19837sdyhbKjz1hpzBi3mrMXLcd/VvWv234SEWFgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRAZhDw9VZCB5rtym5m1jIDVnZNs36fV5CneOlk1UuMj0Pjx95B6bvaJTsnHkJACNyeBHIHBaBR8TvQrnYlDaBbvcqYsHKrFuYE+vuhZTWbRlCJ/LlxMTIaPyzfjH4t6onJtdvzdpFaCwEhIASEgBAQAkJACAgBISAEhIAQEAJCQAhkEAHfBGUmTAQ5GUQziyZT8Z5uTkterWMfp/7iKQSEwO1LoFDuEJxV5tSMC1DaOFdiYs1hkm2OwAAcvBiBOLW2jr+PV5JzciAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgOcEvCnIoWaOOCEgBISAEBACKRFoWrk0lhw8jm2HT2jNmzlb9qNLrYo62m5lWm3f8TOIjYsH9ycqjZ025YspQY53SsnKeSEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAE3BDwpSDHW8ly4hPdhJJTQkAICAEhIAQUgVqliuCFFnXRdcyvmkfP2uXRpUFVvX/4zAU8NW2RndOdJQvh7a6t7MeyIwSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBIRA2ghoYQ5nUXPtHHFCQAgIASEgBNwR8FYTAIa0a6zWyKmPmLg4hAQF2oNzHZ0das2ci1ciERzgj1DLOXsg2RECQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCINUEfBnDx9cHiWpNg+zoNk8bjXVjhyapWrH67VH34We1X6Eq9ZKckwMhIASEgBBImUCAny/4c3SByq9Q7lBHbzkWAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQiAdBLQ6TnYV5JCLoyDHymr2c+1wctcGq5fsCwEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQuCWIqCFOVw3Jzs6TwQ1ItDJjlde6iQEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkIg+xDwTUxMBEU52dPImvsL1WDAuzrAie3rIObW3LOSs0JACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEwM0hoIU5ibeZNCds/dxktAtXb5AhAp2982fA288P5Vt1TpbHre6x8tt3UaFNdxQoU/lWL6qUTwgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhMBtQ8Bbm1i7DdVyKNCx/jLqip/YuwlnDu7MqORuaDr/Lf8TURfO3tA8JTMhcDsS2DHyWSx6KAS7fxxqr/7RhZO039o37rX7yY4QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkKABGzCHGEhBISAEBACN4xAQmyMzuvEkh+REB+n948tnqi38TGRN6wckpEQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAlmDgHdCQgL0ojlZo7xpLmWx+u3R+Yt5SX7088QlxMZiwXuD8UOnUvipVx2EbV2to4VtXokp/Zvh27b5MfuVBxF3NVr7n9m3Bb8MbI3v7y2G9T99bs/i8LplmPRwA/z4QBVs+WWM9o+OuISpj7XA6u8+0OGZ3okd63V85rdzzmQdLiYyAks/ewXj7q+g42+bPd6eLndioq7oskWcOaH9OUA8uV8TXDp+RJdtgyqHiXt43RLMHzZI58c0xQkBIXBzCCTEXsT5XWtx9cIpRBxadXMKkcZc1XJrOB8eieiYWKcpXIqMxuUoW5voNMBt6Hnw4EHs2LEj29T87Nmz+Pvvv7NNfRwrwv4R6xcZmTYBa3x8PObMmYMrV644Jp1tjjdu3Ihjx46luj4XLlzA8uXLUx0vLREWLVqE8+fPpyWqPc5THyVg1uKbr8Y+d+5czJo1S/90/91ewus7+0/vRcfxHZCQqPr319ylfXtxcd8efRRx+BDObd9qTmXLbbS63gnq+buVXUrXZMn+xXhm5pNOq3Ba3c41esQjPMrp6Uz3vBFt/+HDh7FmzZp01WX3f0DDvvGIv/4opCu9tEZmXcxzu2eP7Tl0ltZrf76Mv3b+YT8VeeoETq9fp4+jL5zHqXVrkBBnmwBkDyQ7aSKQlZ+/NFX4NomU1mc+vf29G9EmpucSbt68Gfv3709PEumKm57+8L59+7Bly5Z05X+jIru6D26177/09sFd1fNGcZZ8bARudl9QrsPNJ+Ct3M0vxQ0oAU2qbfz5yyQ/Z2vnOCvKwTWLcHr3Rjw6cz86fvwr8pUqj/DTYfjr1c5o2O81PP7XCdTt9Rx8AwJ19EthB3D3m9+g44jfsGnS+1rQEn4qDPPeekD5j0bPH1dg15yJOHtAmWNTH5uXjuxAYGgePDx5MxIT4rBg+AAdv/nzX2H1N2/oNH0Dg3BHlbro/fMm3P/Fn1g96iXERl8fYPIPyoF8ZWtgz7xpOvxxJRCKi4lGriIlEH7sEE7t34qHxq9CyUbtVTm6o0Lbbnhw7CrsnTcOF48edFZt8RMCQiCTCXj5BOPksl9wcpXt493bL3cm55gxyS/beRD13/0ODd4fh2pDv8XafYftCR9SPYv7P/sZdd/9AXWG/YDvFq61n7vdd2bOnImvvvoq22DYu3cvOnXq5HF9OIj1yis3fwJBly5d8OmnnyYrd7NmanLGt9/a/WPVRI67774bx48ft/ulZofx77vvPpw6dSo10W6ZsDExMRg4cCBOnz7tskyvvvoqli5dmuz8n3/+ifHjxyfzNx67d+9G+/aeTagxcdK67dy5M3ivptVxcGjSvAS0acwFJq+7HDlygKaKrT8KjjLTkRsFjF27dkWci0HdkStHolPFjkr1/nr/fvuYr7Ht6y900Q7MnI5VL79oL+a6oW9i0h136N9vzRrrcNFKUGt187t10edjI64LJvdPmWSP98fdzbHlixGIPGF7Vhb1ech+zqRtthSybHj//5KdP7ZsCU5vWJ/M38Tb8+MP4OC2OTbbvzq2sxf14t7d+LVhXcyoXBmTixTBkXlz9LnVr7+s453dutkedv3wd7DypWftx652ljzWFztGf20/Hbbkb50WB9YjjoUlKw/LRf+N7w/D/J5dVb/+uiRh8ycfguWln7trwswal26CNSc3YNux5INYBfMCNct7YeLvN0fAmNq23w4vFTsU9r7zzjupiJE86McTEtC7nTd8rj8Kul2yPrPcr1+/fvLIGejDgbNt27bhtddew19//eU0ZQphFx9ZjhblWtnPH1++DAs6dNTH57dvw8KOnRFz+TLir151et/x3uP9emLlcn3+ikXQ/s+LT2PZ4MfsabvaYXym80vVSuBzzLQcHdsShjGCJp5P6Zm3tjOMyx/90vrMU7jFNKx1Mu0K2wE6tgUmL7M99Nfv+lxWfv50BTLgr3bt2vb3V7Vq1fDRRx+pYQnPheCffPIJVq+2TXDNgOJkSBKOz/yN6u/diDYxPYC+/vpr/P677d5PTzppjZue/vDs2bPxzTff6KwpGLe2371799aTptJaroyO5+o+uBHff3x2yWbVqlVJqsUJZfS3CsTS2wd3Vc8kGd+GB66+faz3LPvvM2bMyBA6N7svmCGVkETSRcCXsRM5ZUk95NnZUQunSI3GyaroiUCnQLmqai2Z41j8yQuo3f0JBBUrjd1zpyFvmdoo08y2vkWxWk3saZdr1Q15S5bXx96+gbh45F+cPbgLfjny4qQSsvDnnyMUh1YvRLVOfXS46vc/qoVBxeq3VhckUccPuaMoFn8YofI+g6A8BVCqYSscWPYnDq1aoOOc/XcnCle9/gFSs9sg/P3BINTt/SwO/D0LVdrb0mbg6l0GIChXfpS6sx1ObP8HpRu30WnkKlENTCd38TL6WP6EgBC4cQQK1O2KU2um4vLBTchdtQMu7Vl84zJPY07Hzl3CgIlzMLLn3WhVrTwuRUapJss2oBSvBqgGjvsd7auXxcQh3XQOZy5FpDGn7Bft8ccfdzkAm/1qm7xGnMn1008/4eOPP05+8gb6VKhQAfwgdHTUMnnrrbfs3v7+/jpcETUofDs6fhh+//33eOMN26QSZwx+/vln5MyZM9mpnTt34tChQ+jXr1+yc/SoU6cOONsyK7hPJybgxd4+yBmUtLTU2Bo3blwSoVTu3JkrkH/hhRf07NpRo0YlLcy1o4Pn/sXyY6swrN27Ts8780xUGjxl+vZCndfexqUD+7DujVd1sBpPP6e3UadP4cyK1fDPnwenN65D0eYtbcmodj9X7epoM+UXXFHP04b3hiHmwkU0GPYemn45WmkQxCIuKgqz6zdAi0k/IV+t2jqet48Pajz7IqoOHIKlA/ujiEqvwsOPwD80l/4WeWDHdh1uz/ixKr/1aPa1bRDHLzgHvAMDwfNnNm7A8r6PouuWzfC+NpGKfecVzz6NUvffj9ovvoojC+boMN327Ea8mtxEt/O7MWg+6ju9n6CElQkuNEt1AOvftXfcqdWrsLRnL7SYOhl3NGiEiLCjOlS7BfOQo0hRe4yAvPlQ7YmnML1KFRxbvAjF7m6L8COHsXPEF2j715/w8mAiXaD6fni0Zh+MXDUS33X/wZ622XnqQW/c80wcHu3ii6AA4ytbQ2D/EWDK7/H4bKmf8dJb9ldKlCiBtWuvTzTx9dWfw0nCZeRBrVq1wN/Ro7b7xVnaY1aPQc8q3ZAjIIez00n8fAIC9HNAzzObNmJ5n37oorY+6p3l7eeHgNx5UOLB+7F5xIe46/ORWqPn0KRfdJgkCbk4qPricyjf4yGcXL8Gf3ftjtazZqBwk6b20Idnz9LtwbFli1FQPd90KT3zbGdKP9ITdV59056Or3qe+fym6Zm/Jsc8OvMPRA8/C7+QEBycPFWnnWBRxWrw+Sco3ua6wNcvNNSev7ud2+X5o0CmT58+OHDgANq0aQMKdTp06OAOjf0cNY/5LDVunHx8xR7oBu44e+alv3cDL8ANyMp8b27atAl58uTBpEmT9KSpc+fOIW9eNcvhFnU34vvPR/WteL+fOGGz0mNQmAllJUuWNF5Zqg9uL3QW2HH37TN16lTdVlLg0717d/2NZL0maa2e9AXTSi57xPPWUlzrlKXsUa8MrUWuwiXwyJRtSiOnEmY9cw/2zp+B2KuRSvPlaor5ePEDQX04UEvGy9sXOfIX0b+aDwxGqWsCFWsivurjzTgfP3+9yxfXhbD/lIm22rh65TKaPv0u/EMKIt5hVmbRGo10+JM7N+DA0l9Q/u6uJin71qRpPKhNZF6Mxk+2QkAI3BgCRVv1UsL0SDWbeQtKtuuv929MzmnPZc7mPehctQza1aoEXzUgVSA0JwrmCtEJbv7vOM5fjcGT9zRBsBpUyBkYgNJ35Et7ZlkgJt+hTZo0STYwbfxp1oDq9dT66Nixox4ct1Zr+PDheO+993DvvfeCM/0p6HBlPskaj/scTOZAe6FChfSsK85QY750/Bi3zsJiGa0mFjjjmVoo1LxgvpyZ7Ik5MXZGmR87oFOmTNF5mT9qu9CfM5CY3tJrGhvR0dH6+OGHH9ZaKpwNyp8xs3VVzTImB6bLsgwbNsxeD5N2Rm75scNrQseZqJz1xzKy/qZjTT7NmzcHmVo/jDgYx7qNHj1al5ect2+3DT4zPTLnedbj3XeTDqhHRETgqaee0ueYz5gxY/T7d9q0aXj99dcZPYkja2f+1kCsB1kOHTrUfh35MWGcq2tizru6DwYPHqzva4a75557dB5ffvmliaaZ8Z7mB8mKFSvs/hSIsTysOwV35lpbzZxR26lt27Z48smkJqR431NzjWzI79lnn7XfkylxtxfAxQ5ZMl3eY+RNd/HiRX2trEIl3pMsn3mOGG7G4gQ0qeF8wlO+fPl0mkyXv0A1OOmJ48xJ8uOzUrFiRbu5QncMPEl3w9H1KBlSFLmD8ngS3B7GV2l3B6qBEAooyj/SF3uuzYJlgJNKgFGg5Z2o8NgAJZj42x6HO95+vgjMk1cLasr3fgT7vvkeiXHxCFCDLEEFCiJIzZynC1Cc9LHyo/PPGaKPvQP8lRAnVO9zgJqD0Sacf67coFa6OfZV9wQFQTwOuDZoE1jwDl1upnn50H+4tHk7yithCwe0S7TroAecT17TLCh0TyscnTEbNK+UFndmyyYs7HI/7hr3PYq1bJ0kicD8BezlZPlYTta5/qf/w4Z331HCpBhs++ozlOr9IArWuz4JK0kiTg7ql2iA9ac2JzGZZ4LVrgxEX06ERTHWnHK5ddUGmQicuf3MM8/g888/t9/Xpn1z1/ZzsOjRRx/Vzy3v519//dUkqbd8pjgzme853vPMwxNHrcCePXvqOA8++CA4YEdHYSa1XKyuV69e+O233+xea1SzXLeWD/I4Gbvnc2qeWW7z589vj+dux907l22xqZ/1/eYuPeu5f46tRv3iNsGI1d/VvnkuApXgkC5YPQv62chte/brvj4UhyZP15o164a+hfojPkLOosVcJZfE3089azlLlkK5bj1R8aknsPOb0fbz4XzOtu9Bg/99hIPTp+tvXJ5M6ZlnGL8ctufelN0vJDRdzzzTLNPvYRxfTq2+tSh2X3t6JXFsR0x+3BorGkkCuTjI6OeP2bh651KYwnctnw/ek3z/GROtKb3/2O/gPWf6T+zvGfOnKT2bIUoIVrBgQf2+r1mzJtats5n1Y1l/+eUXLdxhmdgXMs/fjz/+qPNjH4/lZN58Tk2/1/pOZTrGn33QlPp7rvJMiQHzcfbMp6e/R2HVY489putItuy/cVKSce7aRFftwUsvvZSsfWR69Gcb6c6FhYXp60StaTpqu7MfYRzbH/bTeD0olHPUxGH/zPRPOXHJ9HPc9Tvc5ZnSNXHXH3Z3H1DrmOUjc5aX5XZ0FNyUKlUK1A6nmz9/vj2Iq/eNuzwZ+ciRI+B7hPnyZ+3zsi4tW7bUzyeZm/ci46V0HzB8ar//eG2sDPgt8L///Y/ZuXV169YFrxm1QWkJgaa9+Q0THByshV+M7KoPntH3u3nu3bUHbiujTrq6Ju7uS5Omq/uA5121wzyXljbIk28fTvai8JvfV7weFOrQueqXefptmJa+oM5Y/rIFAfW94QP1lZAtKuOuEtTAOb5tdZKfu/DWc+cO70OcWrC8zkNPoka3Z3BozUIUVoKTy2G7cHTTPzro6b3brFGS7RdVmjsx4acRWqg4yrfqjKJ1mijNnkrJwrnyOL1rE4LzF0XtbgOVECdezXa8rIPGXo3Czj8n6fV62Nmq0f0pLBnxrMqnLCiESq2zmoNIbVwJLwSEQOoIhJaphsD8VdTAU27kq31ttnPqkrjhoY8ozZxgf1/0/HoaGgz/HqPnr9Fr57Agx89fRiU1e/utafNR4Y1R+L8Zi3DgxPUPnxte2BuQId+h7JRxlpjV8cOc5ifYcStatKiewd+wYUO7EMGE5cfQ22+/Dc7a4kAUP0yMoMGEcbVl556DZhTKHFJaEDVq1LALgpYsWWIfCGB8liVKzZI3jh3kJ554AqFqIHXZsmV4+umnzSmX20uXLuGhhx7Cm2++iQkTJuCPP/5IEpZp8WOUWi8U3PDDhx8UAWqQlirlnAFKVqwnf/Xq1dPxR4wYoWfXUTjENUGo7eCJuSqazzAfXdatK60FU9jSpUtrwVZ4eLgWllAwY2au8XrRkQ2FLRRU8APQOH5Eb9igtALUoD/LyjrTfIVxHKQ0A3k0q2N1FNQtXLhQd+Ap7BgyZIhmz/uDgyOObsGCBbjj2mC44zlzzPLwI5MfbCwTP+CpvWGcq2tizru6D/ihY4R11M7h9XrkkUdMNC3o4nXiPWUGeHiyitJEYFjWjR+v5lrnyqW0Lq657777Tp8nC6uj+TAODH3wwQdaWMS4HFSmS4m7NR1n+0xr4sSJ+npz0InXnh9WxYsXtwt3GI/XgVpDum+sjs9dtA2YlyzkLFVo4RMHePizcnce2ubLZ/XOO+/UgzIcjBk7dqz+mONZdwzcpWnO/Xv2X5TPU9Yc2rcVHu6LSn366+MS97RH3deva6DZA6kdmkCj1kveujYtGp47umg+irVui0ING+OQeo6drUUTGx6B4yuWggITL1/1XXETXNQZmznAHIUK69wpUAmpUA6RJ0/p4+DChVHt1RexW2n8pNadXLsa8xW3WkowU+q+Tsmib/38E9BsG3809WRcuQd76cHqtW+9iv8mTkWtF2wDTzzvyTUplss2+H780jGTpH3rrxROChfzwoGjnn/DuWqDTKJsr9me8Z3A55/PDM1xu2v7ORBonqmVK1dqQW63bt2SDHry/cP2g0Jcrt3Ad6Enjm0bB2MZ/7///rObweRgNQe2KJClo8kXlrdRI9ukNu13OBFVyzgXwnJwyTy33JqJBToxN3+u3rmcFNejRw9Qm5PvBw7KczKAVYjtJlmcjzyHWGVmu1ju4kmCUeul6fhx2i+3EpJRkEhBiycuh9IorfvxB1qzhkLXCg/18SRasjD5a9TC+Y2b7f4nV/2jn/MiLVoj6lAYLv57wH4upZ1TK1fYnxM+K9R0S68r2b4DDv6m+h1zlZaI2nd0B6ZNSZKnMT13M54/ls3VO5dmqCgQ5fuBfQu+Cz777DNdnZTef9Z+x9atW/Xzwn6LJ88mtWv57uKgOd/l/fr103lSUMN7mv09PocUZH7xxRf63P1K+5HvVPbh+Exwn2X1pD/srr/nLs+UGLBge5088+np77F94fuZ2tksG/ssRmjgrk101x5QcObYv2V49jeLFXMvbOU1ZVvI60rH/pd1Mg3bbfZnR44cqa8j++vWCbtsI1988UXd52Hfiu01nbt+h7s8U7om1vvSsT/s7j5gnVg+Dqo///zzSfpousCWPzN5qXr16nZfV+8bd3ny+aMwjPc5ebAdNxqbFOCxX9+0aVPs2rVLt+3UZqNzdx/wfFq///hOIgNeM34XcuIZ34EpucrKxCy/K/nM8puL9ysFuw0aXJ8o4KoPntH3O9mk9H3srj7urom7+9Kk6eo+4HlX7XBa2yBPvn2YL59HrgXI+4zCczpX/TJPvw3T0hfUGctftiDgrWuhhAC3g6NAx/Fn6l2oim1QyRxbt2f2bMHU/o3wU6862P7baNTqPggFylRG4ydHqPVneuKHTqWw4N3HEHUp+aClt4+/TipfyQpo+vxI/P5SJ/z4QBVMffROXDp2yG7ezphcoEDG0dGvVOPWSmAThXH3V8C8oX2VCn1BPTvgklrv5p+vnsOFY7YGvso9DyL8+D5Uuu/6oItjeo7HJs/C1Rpi7fdJZxI7hpVjISAEMpKAF2q9Ogn1/m+Omsl7zcyHZZ2DjMwpo9I6GxGJKZv3od9dNTHpsS5YdeAoZq3boZO/qEyurTl6CkXVVNiFzz8Eb3jh/d+XZVTWt2w6LVq00B1/flhxVjJnbPHXunVrLcigMKNcuXIuB+b5wcyPY5q44Mexo2DIWcXZkaUWAwfduSYItQ44C8tPzUj31FWtWhX8uGGe/DBhp9udW79+va4DBT+ss6MAiAIp1vPff//Vg+RMy9i3Zvn4QcxZoNznz+THwXsKfsiPM5RatWqlBxHdlYXnOLDADy7HH2dwu3OlSpXSmlTmGv3zzz/644eCk6CgIB21sBr4ZV1cOWpE8eOuf//+9tmP/BDiRyjPcXaco3kyCsA4I4t17du3r74/OBOOQjgKkzh7jh9ZDEPHcxxg8cSZPDlbnUIgfijQubom1jSd3QecGcxrREcBF/etJiwoCCEfq5CGYcmPYTnTnSYwuM+fEY4wTJkyZXSa3Lc6zlLjGkMUBHJGHTV3qN1jdc64W8+72n/uuef0DFYKi3jfmdnHvH4U/nEGIT88x48fr2dmmnROnrUNlNMutTNHNpUqVdI/PvueOApgea/xvmecu+66Sz/DjOsJA3d5HL10BHfkTC55ojaIMYeUt0o1ZdqsRZJkjs6bi3+efwqzmjTAib8Xo/pgm3A3LioSR36ZhTsaNkJ+ZSYt5uwFXNhla++ZwIV1m/W6FNPKlVWm1o6i0YefJEn3Rh7EqraDzts/wJ4tTS/FRITbj8v36o0DYyfoNW3snh7snJy/GDkrlsGxhQu05pFjlBxK4yGnEgzqX7ES9tPUNKo7dBgOTpiMWmp9EKtmRErXhInky5lfp3VaTQZz5iqW8ELYSWdnnPu5aoMcQ7MdYjvFdxLbB3dtP2fbcwCE7wSuL8Y2nnEchf18X/A5pLkxPuOeOg4mU0jDuGYmK9Ow5sHJAg888IDWaDDpHjqWiKIFzVHSLdsA89xy69iOJQ1tO3L3zuUsYb6HTDtMTUk6x7ULbCkl/z8VbhM45sth07IxIUJLlUHJ9vfpw+A7CmtBIjXYPHX5qtbQQQvdeVeahaz6GVLPfYKaLU93ZME8FG3VWmvXUXjrbE0dHdDJn6+6N+zPiXpe/HKFOgmVOq+8VashQglADnz/Iwo1apwscmCB/EnyNPxuxvNnCufsnctBWPZd2A/i4Cv7BdbZ/4zr7P1HASz7HZzFz36HdV1CT55NChfYJypfvrzWUD550tagsK1g35DPBstDU2oU2HCAle9/vtdpYtX0FYw5WrYDfBZc9Yfd9ffc5WnYOWNgzjl75jOiv0etGfbFqLVhnml3baK79oDpLF68WBeZwjvWmQPL7LNxMk56HYU1nCzCvh/TtJoU5jqFFLxTo5xtMIU/dOntdzi7Jin1h93dB3yf8JuE/UEy57eUo2P/0GiNs+13ZOfsfeMuT96zFAxRm53vGz6PRnvcrHNGgQgFKpzwQ2EJ151xdx+wzGn9/uOEPDLguqScHOHpGpNly5bVEwJZPk6eoDlRPr9WYZerPrhhnJH3e0rtgcnT2dbdNXEW3pmfs/vAhHPWDqe1DfLk24dr5bDN5GQUCtqMeUrmmd5vw9T2BQ0D2WZ9AtdGD7N+RZzVgAKaBgPexbqxtk61szD0Yxh3rpISkFRs000La7jujBG81OjcD9U6PoKrERcRFGrrgLd45oMkSfWfdd0mfJX2PVFZpRV1+Zxev8YIUQYtuC4EajzwDXt8Du5az/Wdtk2ZVLiAwNCk5jMenfmf7lQzYpwa4OM6PeVbdrSn0/vn6yrTJes3R8mf1trPdRs1z77f+vWv9fo8dg/ZEQJCIFMI1Hh+jEqXP2V2IiS33vLv7inXB53snrfYTm5lnL9R8TvQrrZNs7BbvcqYsHIrBrRugFBlVo2uf8t6CAkKxCNNa6HN51O05k7eEPeCglusmqkqDmcZ82OGatac8csPNQ7MczDME0ehgHH8QOZHUErOaJLw4z2tjgKk1DjWj51Q4zgIZnUUJHBWN4VLBQoU0Kc4AObOXVaLOfODk+Z0zIxHapOY+O7ictDQmVkrI5BxFdfMfuTsV87E4+xCzri01s1VXOPPgQ86mtky14LaMXRGu4cfVcZxNhY/2PnxYBwHSujH+nKf8TkLj4IGsmS6HNDxxBnBEz/S6Dh7kGl6ck1Sex94Up60hOEHJz+SjeNMN0fzDM64m/DutvwwN47PJbUDOEDAwWpq6XAwjAPRvD4cKDauUH4vvXvqPKAsSiZz1A7jx3ZqHAdXeN9R48HRecLAMY71uHiuEjgefsLq5dF+qLpXi93dBhX79kf+ajXtA79cs4aOpsnC1SBGUKliOLF8GfJVt80opICj2Tc/aAHP6iefQaRiaBVYeJR5BgXyVyab6OKvRsM3yPa+iVXXNkD528Q8QI5CRVB+YH/snTheh/X0r9yAvnodntnN7lRxf0SlRx9LErXcgw+5rLcRohW+s2mSOJ4cnIuwfR8UCrnDafC9RxIxsKvTU8k83bVB1sBsNzjAa3Xu2n4OXNJx4Jg/Oj5bbJ+tjkL61Do+ixwMozMaOjSJyXafs76pNcjBPr53OIPe6koV9cLRkxTG2p5h6zm+A6iRkxpn2nln71xjeollpKOwiG2JGRhPKZ87rl3fs1fOqn5UrpSCe3Sewpe1b72OUr26Y/fnX4P3aK4y199JHiWiAsWEX9bmCr2V2fCrFy/gxNxFoADlP7VuDoWVR+b+hcp9B3iUXD6l5VO5X9Jnx6OIbgJ5qQlQlQcOQpTqQ5jn3hq8WKs2TrXprGFc7Wfk82fNw9k7l+9/9iX53uOWz5XjenTO3n9GM4F9RzpqohjnybPJd+CgQYP088RBXE6SYV+I2m40d2X6ZUyTJsfYX3Mn/HTXH06pv+cuT1MnZwzMOWfPfHr7e2zLzGQU9ks5gE/nrk101x5wYJ79Gvb9qHly5swZ3Y+k1oeZ4GTqk5Yt7x86c43I3Dhr/4rtEwXutAyQ3n6Hs2virj+c0n1ArRQKaIzjO8nxu4j3Le95DoRToOjoHN83KeXJ/h/5W/vtJk1eK07AsWqT8/3Dd5G7+8DEd7d19f3HPqmVAb8FHBk4S5fPP+8vaolSsMe2hpPTzLvJWRyrX0bf7+7aA2u+zvbdXRNn4Z35Od4H1jDO2uH0tkHW9B33qU3MPg2FiryXeH3c9ctS822Ymr6gY7nkOGsTsAlz2M+1TT7M2rVxUvraPYaAv/Q6CnCC8yT9uGGa3t7Kfvc1QY4neeh0ctsGuTwJ7xjGUZDD87Q9TrdzzmRsmfolqnYenKoy6cjX/oLypL1s1nRkXwgIgexJoFDuEJyNiLJXLkCZXLsSE6uP84Xm0Fu/a4sJ+/r46OOYeNuMTnukbLbDzhlnENHUBGc0084tP3gd10xxVW1ng7quwhp/Y+OfZpqcaQTwvLG3zg6xM0fNidQ4DojTtJZx1hl/HLRiR5Wz1jgTkqbiqDnEjqrVceDc6sxgBU1ycZZiahw/ijmDz9FR24idZFeOg4P8sOFAID+mWSaauEhN/mYyhjUPI1ChYIofl1buDM+PQauZBF47MwBDTRQOmlAziTO0WB5+wJoBUbKmXW7yMrMFrXlz0IazZU2e/KDz9JqkdB9wQCe1jvU19tg9jcuBEqvwhqyMYMyk4Yy7Oedua71XOduZZuDoeC/QxMzkyZP1PeuobZZPydoDQ71wRE1WLl/CXQ7Jz9F8Da8LBTfWWZG8NzgA4cx5woAf6XQUlJp9k1b5/OWw9tj1CTvGP6VtrvIV1IBn52TBji9bglzVK+lF1nkyZ+mS+O+P31FNCW7o/NSs7bxVqurfFdXOrH37Ddz313y9ZowOcAP/OAOf7ooSpHPQmubgwvcdQBAHenZtt5eEgpg/GjfRpqK4ULwnjgIqroHDdUL+GTAIhZu3TNPAuCd5WcOEXTyqDwvlKmL11vt87Z4IS0RZZWrN0Tm791Jqg0wazgTp7tp+E56DW84Gwky6HJhIrePsYrYjHEyl6RgOQBoBPgdiOAhN04hswzkIZXWVSnphyYak7x/reVf7rtpad+9c04Zy0I/tMLUXOMhu1WZkfiw7+waOLm9wPvipdVV5vcvkK+t4Ok3H+yZPRIzS2mj0wcdq7apC2Pje/6HV2J+UbCv5/eIugzMb1iN/Q5uG6Km1a7Rg56pK95QyPegbnAPH/piHaGWGKNDDdYfc5ZXWcxV790trVLfxMvL5s2Zk7herH80o9evXT2uK0p+mXnk/WZ2z95/p//Fdw/4EnxPjPH02TXgKAtj3oOO7l2amrOuGmHBmy+fSsX/grj+cUn/PXZ5GQOKMgSmPs2c+I/p7Jn3r1l2baK6vs/aA7QPbMZpCowkxfjewH2ud/OWqDTKCbbYhbEus/RpTNnd8rP0r9tGN5re7fkda83TXH07pPmDf95DStjOO5XacYMCJNKb/bMJZt47vm5TyJANy5UQ8Cj+sjn13Opo9c/xe4/Pm6rvImoarfcf0TDhqbfAbwTjuOwqt+I6hgIeCHvOtwO8v+rP/zAkOfKb5TWoto0kzNdu03u/u2gOTP60j0OQftauojWWcu2viyX3JdBzvA5M2t+Y5tfqltw3i8+fq24dCT2ri81rwHuOaVpz8mJ5vQ5bdXV/QWjfZz54EvDnQkpiQ+s5u9sSRtWuVqAZMGz/2Dho//nrWroiUXggIgVuWQNPKpbHk4HFsO3wCFyOjMWfLfnSpVVGXt07pono7e91ORF2NxV+b96Be0QIolDv1gzi3LAAnBWOHk8IBqufTZBrNNdFWLzuxmeU4g4yDWZyRzJlEtKFNYYDpRNL8ADuKFA7QdFRGOJoe4EcV7UlTaMABQ0fHDwvWn+VydPwY4McS7QWbcvJDhoMWHJBjPej4kWlMWTimYT2m3XFq1Tj+aI4nJUdbxUbzhR+03Pd05pqrtPmhxY90mgYzJrusYfnxOWnSJD0LkqYZZs+ebV+8lmx5/7BjT9MIFIxx5qFxHKihls3w4cONV5ItrzHzZN78EKbGkHHurokJ42xLDSfew/PmzdOCA0fBnLM4xo98eT/yPjH23c05V1suEsuZotSa4SAItZTIIyMc71UKt3jPMG3OFjSOM/sp2ON9zWvk6Lq18saqbanvJ/Oe5jUzM3lNunw2+RzxWtEUDQepaAqDzhMG/Njkxx/NtVFga54lxq9TrC4Ohx/DxagLPEyfU4PoBydPRfXnntcDwhwUbvT+x7i0eTsiwq4PGJpMKvbpp88dX7zIeLncxly6iMgT6t64GoOr1/bjrka7DG9OUEDDeGZ9HO5Hq5nNdKElSyNX7erYP2Ui4lW7cPjP37VZuMJNkmrEUNBTsscDoOm01LqS93ZCkfvaYs0rLyZZOyjq5AldLpaHP+afEW790fWoV7AmvJX2gaPbvNsmaKxQ0vGMbe0nZ/eeuzYoeSrXfdy1/dTQ5D1J4T0F2bwf2cbT3GZGOA5EcS0PClytM2n53qWpIJoToiDJCHlMng2qq9nzW+Jx4frEdHPK7dZVW+vuncvZ/3wm+cyzHWY7T+eoxcPZ93wvMw8++1Z3V9HG2KCud0Y4ClY3vPwaGv3vE62tUnXgEBz/awHCFi3wKHmaJrz07wGthbb/u3Go+vhgHS9s8UKU7Hq/vT24U2n8+Kt1Ek+uXelhupeSPCdX1XVNybl75lOKy/NXz59LkqfV7GJK8TP6+XOXH82UUSjJ/gy1c7lelSeOzwHf+TSBxmeOz6Fxnjyb7B9wAJtmnSjIMWZq+azxvclBVj7TXP/JmDk06XPAmRrOvOfNe95dfzil/p4neZq8nW1dPfOZ0d9z1yam1B60a9dOm1miAJp1Nqa9TJ1ctUFcQ4PtEJmzTXQ0Q2viu9rSXBgF5NSgpBCpRYsWOqi7fkda83TXH07pPmC5pk+fDq49yv7grFmzXFXJY/+U8qSGDNnyWlBbipNlaLKYjtod/EYwfTZq5LD/zjbc3X3gceGcBGSefJ9QS4n9Vubn6Pg9QOGA9V1rhF78nuFaopwoxrJbNfYc0/Hk2F093d3v7toDky+/l9lfoWlpq3N3TdJ6X1rTd7af3jbIk28fPhu8djQhy7bVXb+M3N19G7IO7vqCzuooftmLgBbmuJPiZ6/qZu/aVOvYB2Wa3Ws3A5e9ayu1EwJC4GYQqFWqCF5oURddx/yKeu/+gFzB/ujSoKouSo5Af3zfuz3e/GMFqr/zLdYePIaX77vrZhTzhufJAVoOwnMWEDuD7EibmbzUpOB79uWXX9aDxtw3s/D4geH4DnY8dlUZzuzjzEh+sHPLAS0z4E5by1xHgLO1zExNx3Qdj13lY/z5kUCTDPw4YEfazATjeXZOhw0bpteR4cxDfuzQWfOggIF23TkAwBmfxg71+++/r+OzHgzP2d38iEvJsc5cI8jxR/+UHPOi4IVlNUI387FDYRLLYQYHOZuKx5w9aepjto75UAjDxUqZrvUDi+HIjh9//PCh7W0KsYywwpha4Me9saPMTrxxrvIz52lWjXlyrQaq8NN5ck0Yzl3aTO+9997TLLjQsXFMm/EoAOndu7feN/kyDG22UyOF7Hg9OMhLx4FZxuN5Cva4zx+FjjQpQWEoTYGYGZc0X0jHMNatPkjFHwVTnAlHARk15qzCLgoZORjWvXt3PSDrmOwLD3vj00lKiOAga+CHf1ocB3j5kc51k5gGP3aNxpY7BiYvsuCMS2qgcbapdTHlMkozp3Hhepi5dYYJnuKWZoqcufN792hhSMG6DeynKQihqbVTa1bxotj9uUMtl2qvvojNn36SxJ8H5vqZE9tGfoGZag2ec6vWY8dHI/T+qTWrzWmX2+izp3XYf/o/rsP8VrceFj7ykC28Ks9dn3+Fw7//gSlqPY6VA59Aswk/IkBpIDrWscrjg1zm4e4EtesbvPsBzqxYjf2Tf7IzmH9vB10u1om/85Z1hUx6iUlxGW+X25j4WEzaPhmDGz/pNMw3MxMw7HFlHSDA6Wmnnu7aIKcRrnm6a/upHca2nG0BBRps2zk44aiF6XgPuMuP5xieQiK2O3yXUgDuqD3J9xwd14FwdBWUJl239j6YMjepIDalcrg77+qdyzrPnDlTa+ayHeZaXJx9a9oxUzb2E9i+F1f3p6NZz4ENB2HqrhmIjk0q5DFxU9xansdNH72H4l07omiLVjpaYN68qPfxh8rs2hvKHLdDQ+Yk4V2ffYX5nTrg6MIFuHuWWuNLabIlxinh7vifYTUX6K3a9hL3d0GYEwGuI0c+g4cm/ZLkOVn5csoTL9w+807KTi9r3utfei1Jnv9Om+IiVlLvzHj+TA7W8hm/AQMG6DVyOOOc/UMjVOF5E95sTRyz5X3JwXlqQ5jZ5uwXefJschCVgiSutUMN6Q8//FAnS81n9uk4WMz7m+9M02cz+VKYyr4e73mrSVh3/WF3/T13eZq6m60pg3Xr6plPb3/PmofZd9cmptQemD4eJ5WYSTumD8j0XdWR/hzYZZ+LbSK5OzrHuOaY3xrsdzIffp9QW5jCZTp3/Q53eZq0zdaxLO76w+7ugxZKmMP+OfuP7A+acjJ9V3k55u0snLs8+T1DE9kUIvHasv9PwTsdnysKlPgtxz4b+5MciOf3lrv7gHHT+v1HARvfd82bN9dp8BoZbRSmS2e01cwzTz/2t9mfpcCQzkxc4ruUzl0f3BkzHUn9uatnSve7u/aA6Zt8zdbk6e6aMGxKz4I1bZOmdeuYH8+ltw1y9e1jzZf7nIRCDSpOenPXLzPtgqtvQ6aVlr4g44nLHgS8lM2+xOaq05CVtXPiJ3+NhCmjENd1ICI7D1Am45J23LPHpbq9ahEw63sEzB6Lq+p6Xr3f9tF+exGQ2goBCwHVafH380WgGrUxJswsZ5Pt7t5/CDWrlEvmn5EeV2PjEBMXp9fGcUw3XmmJXLoSjZuxTg7tNDsuhOlYvqxwzNk6RjDjWF52QK0CC86KpJCAnW1+sBnHNGgn2trRN+ecbT3Nk2mybMYmtzUtDtDT7IY71XZreOs+tQw4S5T14EBEVnWc0cdrwno4cxRs8GPQKgxzFs4TP5peoDCCzPlhx2vtaHorPdfEkzJkdBjeX2RIIUdKjvch71tXjh+ZxvGa8NlxvDfJh3lR08V8AJs4Ztvz1QTc38oLPe5J5Yi8ScDJluWmthCvmaNgKDUMHJPecWI7Bs1+AisGrXCq0eEYPtsdq3si6uwZBOTN55m5N93WOqdAAQwHrG+GW7BnHiZsHI+fH56aLPuTaimdSt3icORPX6drOSWL4OCR1jbIXdvPLDhbnG0Rnyfru8ghe33o7n3DuCY+Z/yzvI7vNybyzTff4Ntvv9Wzt53lsXUf0P6ZOByd4wuf669GZ0FT5efunctZ0BxodWyHPclg4PTHcG/F9uhS4wFPgqcpDDVdvFx9Jnsr4bqlD5GmDLJJpMx8/twh4v3jyfPjLA0+U9TyfOihh5KZ4ErNs2lNmyYDWSaaDHR8T1nDpXbfXX8vPXlm1jPvqn7u2kRej/S0B67y5OQXfgOwH5la565/6q7fkdY83eXHsru7D9juU2CVlrbUHRd3eTIerxm/QRzNZPJdxHPk7ihIc3cfuCtLSud4D/FaUyDCCWCcLEjHfis1byjwSa8JtZTKYD3vrp6Zdb8zf1fXJK33pbVOzvbT0wY5S88Tv7T0y9LbF/SkXBLm1ibgpWb0JTZt1vzWLmUKpYud9KUSNY+Rgf8UOGWl0yLMyUpXS8p6wwjogcgcKQp0boQw54bVOZUZZRdhDlWwqRXhzHGGFrVuMtrdjDwzug63W3pWYY5VwHe7cKBpGJqjcOVcCURNeD5Ho0aN0kJEzvy3Cn9MGNlmbwLbR36BrcNts9Eda1q8W2c0H/Wdo7ccZwABaqbQvIozN3r0aL12mLNz9KNZKK7lwZnfND/TqVMnV0HF34HA/G5dtGaZg7c+bPDZx6jwcF9np8TvFiZALU1OhOHEAK7byFnfL7300i1cYimaEBAC7gjQ1BsFNe3bt8fGjRu1Rs2xY8fsQiT2V6lpRZN5Zn0id+nJOSEgBLInAV8t8VUzceKz8Lo5cbHxuD73MnteKKmVEBACQoBah9FRV+EXIi1edr8buCg7Z2E5cxk9S83kcTPyNHnLNm0EOIOXwggziz1tqWTdWDRpwNlsaXU0pfHYY4/pD2YR5KSVYtaOV1mZbCvfy2auy7Em3v5ZV0PQsS632jHt43P2qzPHGcfuHNs7mjDjeh6O5srcxZNzQMtxE5CgTKY5c37BqZ/p7ywd8buxBDp06KDNHFIrjs8VTdWKEwJCIOsSoOWDfv36aXPNXbt21f18qyYW1/pMabJS1q29lFwICAFPCfjS5EQWluPoetKkT0pDm9vDjmHsamXj+5qrp+wV97bYozf+8l3rUgAAQABJREFUshUCQkAI3MoEYpR5M3HZnwAHs1Ia0MpoCjcjz4yuw+2WHu3YDxky5Hartr2+FGxSoJVWx0Ewcbc3Ad/gHOBP3I0l4GimJjW5c22ewYMHpyaKhL1GwD80l7DIZgS4Jgx/4oSAEMgeBNi35fot4oSAEBAC7gj4UqpLC+CuzOe6i3zLnFN1cOYowKGjEGfG4cNJgvD4tX/+QTc1s0sEO0nQyIEQEAK3MgEX7d2tXGQpmxAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBAC6SOgNXOo2UINnezkJq1Zo4U1pk4U2gxo3ATVixXVXjxPR4GOEex8dNddoq2jqcifEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASFwqxDQmjneSpDjXLflVilm6stBIQ0dhThfdO+eLAFjYo3b56ZPtwt0jH+yCOIhBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgZtAwNfHx0dr5WTXRbSodTNjxAhQ64bOCGvMGjqO5tduwjVAbHwCVu7fh7sqVISvd+o1pJbt3avi+eDO8uVuRvElTyEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCIBMJaM2c+Ph4eHl7Z2I2Nz9po6ljtqZExvyas3V1TBhu/9y6DQ3LlkGBnDmt3hmyf+5KBD5YsgSTixVD/jSkv/f0KQT7BYgwJ0OuhiQiBDKfwKHxb+DChonI33QIivd4XWd4ZsV0hE17AUHFG6PSq79kfiHSmQOX7rkQEYngAD8E+vulMzWJLgSEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAOwJamJPdBTnOABghjllDx1kYq99v27ejSpHCmSLMKRQaigWDB1uzk30hIASyMYGEuKu6dufWTkKx7q9qYfrZlTYBTmJs9C1f82U7D+LFGYtwMSpGl/Xn/h3RsEJJTF6xBUP/spm4tFZi3Zv9kTck2Ool+0JACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAIpIKAr7fSyPHimjmcZn2bOFfr6Liq/mcLF2HeyRM4OWsWmhQrjjfubY8tR47i82VLER4Tg35166FTrZqg6baV/x7AmYgIrDhyBLP698crs35D41IlMWrdOtQqUADPNm+J0SuWY8/5c3i5RXO0qVwFV65eRf/JkzGpT1/ExMXqOHeWKY3xGzeiSv78ePnuNiiaJ7fOc9zq1Vh/6iTuLVsWg5o1Q8GQkCTFZrnGrFiB/y5fwj1ly+GFNnfr62sCzVBpng6/jE1hx3WdXqxVG8+0aoU527fhwpVI9GnSWAddvGcP/jtzFgOa2szTmfiyFQJCIOMIJMZcRvi+9QgsVBbRYWsyLuFMTOnYuUsYMPH/2TsL8KiuJgx/cSchgQAJEtwdAsFdiluB4taWHyjUaSnQYqWFFoqW4u4SJLi7W3BNIGggARII0f/MWe6yu9ndbEKcmefZ3HuPznmvZPfMnTl+mNapAeqVKowXr9+o/3+08S6JRmULq3tfeugsTt55yIYcNRHeYQJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkkjYB4bG6ueiEtaE5m/1oA6dZDH2hp/NG+Obxs2FMaQV2i+aiV+btAIC7p0wZZLl3A3OBhvoiIx5uRJeHt5YVPffogVBjLf+/fgZGOLbf0+R2xsHEZu34ofRBu/is+EffslPCp3+NkzeR6UOnaWllgnjEFu9vbYd/2aLGdnZY0h9eri0MBBcLa1w87Ll+PBJwNTjypVsPWLL9GybBktQw4Vfv46HJcePcH4Vi1xoEcPbBVr9Vx79Ajl8+TFzFMn8TYqWra52d8fJT084rXPCUyACSQjAXNbPD/mi5Az22SjZtZZkrHxlGnK7+xVtCpZAE3KFRNrdZkjexZHuDurjMp2NlbIlsVBflwd7bHlwk108C6RMopwq0yACTABJsAEmAATYAJMgAkwASbABJgAE2ACTOAjImBOHjnkmcNimICNlSWcrKxgJz60f+n+fZQTodGuCQ+ZfVevwcHGGqcCAmQDTXLmQuOSJWU5pcWmpUvD2c4WVfLlRaNChZHbNSsq5vPC5fBwhIq32vVJszJl4WhjA+98+XD18WNZpEhOd0RGxWDpsWM4LoxEF4KC4lWtnT8//hGeP3uvXkFeV7d4+ZTgI4xN2YRHTwHhKdSscBGcEV5EpJOPMN6cuHNbeugcffAAFUTfLEyACaQcAecyLYUhZzWeHVoOxyKNERetCluWcj1+eMuBwjPH3toSnaauhPfo2Zix/Riev3odr+HzAQ9xOzQMdUsVjJfHCUyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJJI6AORlyzD9yWw6FR1vzzhhjCr7ImBhYW1jAzcFBftqVLYdK7wwfNsKjxpBYWbzPsxT1SRIKb0f9KPKfMNJMPbBfeP7kR4/KlRElvKp0pXeNGhjRqDH23biB7ksWI1p4AxmTiKgoRIvxkNA4yMvoxN07+LRESVhbvu/bWBucxwSYQNIIuFVvD8RG4O2TC8heu6vcT1pLqVcrOOw1lp+9jp41ymJJ39Y4cvMe1p/wj6fAptNX0Kl8YWQRhmwWJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwAQ+jIA05kRFqybzP6yp9FV7vDBqGBMy4AxZvRq5J05E0xXLZVFjdXI5OuJZWLgsV9LDEydCQuCexQnVCxdCqdy5kddNvxeMMR0Sm7f9xk30FCHUiubKgXsiLJumkFGITDu0Zk5xTw+MaNZchm4LFuvjXHv4WH6U8vdDQxEjjDxBIaHYIMKslRblSaoUKIAzIuTa6rPn0KBYUaU4b5kAE0ghAvZ5S8DKtTgovJpz6Vop1EvyNutiZ4OqeXKgSfliKObpjvaVimPz+Rtanbx6E4FFp66ghSjDwgSYABNgAkyACTABJsAEmAATYAJMgAkwASbABJjAhxOQriIWwgMjLgEPjg/vKnVb6Fq1KuizRIQkO3XvnpbnDXnhKJ447YVHTR+falK50rk9DSrZoWxZfLVpIyq458D0Th2xuFkzdF+5ErmEdw556sz+tGO8ukr4uvfbeEVkiLv3+WbqkHdKWpxGCLxelSpJHajP8jlzCo8qc9lgsRw58eO2bWhYojiWi3Vvftm2Veo0pHQZ5HR2xuxDh2S54UJnkhNB99F01r8yzNsowaiiCLtGYmlhjq7lymHJuXMoIQxWLEyACaQsAXOYoWD/fxEXGQEzsf6MlHf3dcr2nPTWc7o4ITjsfXhIGxFyLTwySqvBPf634GJnjYoF82il8wETYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkkjYLZz5864WrXrJK12OqkVNmcCbHzn4m2rPnjbpp9BrRTDjlKAjDjGDDhKOWUbHhkJmny1s7aSSeQN8zLiLZxEGKF307BK0RTbRkRFy0XHyfCiKS/Fm/COtjbCwGOGN+8mVhU9o2NiQcHWrEQdCtVmb2WDDhUryuq0BpCmzBJh3KxFOLhe1atrJqf6vs362Sad01RXjDtkAumAgJubi1Etrty4i7IlChktk9TMM3eC8Oms9VjXvx3yZs+K4St3oniubPhfEx91k7SeTu2i+dC/UVV1Wmrt+Pv7o1SpUqnVHffDBJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEUoWAnMknL5CE1m5JFW1SuBPFWyep3ThYW2tVJW7OqbwehK2O8UVRSHNdCsWIo+TpGn4oXdeI8zD0BTZeOIe1ly5jeffuSlXeMgEmwAS0CJTz8sA3dSqi7cy1Mp3WxWntXVJd5ubDYJwKeorfP22gTuMdJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwAQ+jIAlGXHMRBvkucGS+QlUL1gIlmYW8QYaExsLT5esWNSlC9xEGDcWJsAEmIA+AuT9R144fepXRmR0tPRM1CxXSHjp3Bw/UDOJ95kAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAAT+EAC0pgTl9GtOWJykcU0AiU9PPQWzO2aFfRhYQJMIJ0TSCfPO/Lu0/XwS+fkWD0mwASYABNgAkyACTABJsAEmAATYAJMgAkwASaQYQmIl6yFISSDu+VYKAuHZ9jTwIozASbABEwjYG0g1KJptbkUE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAIZkYDKmJMRNdfQ2dIqftgwjWzeZQJMgAlkDgLC+G5rZ5M5xsKjYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkzAZAKWsWKtlIy+aI658MwRo4CFhTDqSE+jDO5qZPLp44JMgAl8FATEc408csiQY2Vp+VEMmQfJBJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmMB7ApZkCMksYm1jBTtXZ73DeXT5FE4v/Ued51HGB+U7/k99zDvpi0CMva000NmJraObS/pSjrVhAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmkIoE5CvecTHknSPWzslkQgYcEjLi3D+5VWt0dHxi7gjkrtwUbNjRQsMHTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkwASbABJhAOiJgGRMTAzMLc8TFZq7QZGdXzpDGGoU1GW0qdhmMnCUqySTKJyGDjmLY8e4zir11JBX+wwSYABNgAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJpBcClnKdmUxmyCG4ZKQhISNOs7GL5b7mHyXEGm23DOumNugo6ZpleZ8JMAEmwAS0CcQJ+39I2GvYi/CWttZWWpmU9yoiAlnsbLXS+SBpBGLjYrHnyg5UK1hD8HZMWiMate4+u43TASdkSolcpVBcfBQJiwjD9sub5WE2h+yoXbS+kpXhtjsv+aFCPm+4OWYzqPvz8GBcvH8+zcdpjLuxPIMDMyHjXMApeT0VyVnMhNIZo8ipu8eRy9kDnlnzfLDCycGd7t3z987iQeg9eOevjuxO2T9Yr4zWwK0nN/A6Mhylc5fLaKonSt/0du0lSvkECgc8u4OHofdRtWBNvSW3XvTF66g3Mq9N+U9hbpZ5QnjrHTAnMgEmwASYABNgAkyACTCBNCSg+radCUOsKUzJ62ZWo2wgTxzFG4fyKAQbGXEoTzcEm1I3I21joiJxdfsqxEZFZSS1WVcmwAQyIIH9l26j8qj/4D12HkqNmIXj1wPUo1h99Dwa/7EAFX6bgx4z1+DcnQfqvMy+ExL+DDX+qYiY2Gj8sG4w9l7dkeCQ5x+ZBYvfzLQ+3n+X0aoXFR2JxqubIig0eViGhIfgfNA5DNsxFFsubtDqKzImQubNPzEb43aN1MrLaAcd1n6K648uG1X7ysNLaLWyldEyqZFpjLuxPFN023RuHeg605XpBydh/fnVuskfdNxgWjWta1nz2qb7IqVl6OavsefqzmTp5kO5kxItZzVE31VdsdF/PZ6FP00Wvf7YPhpHbx5IlrZSo5F1Z1dgyr4JieoqMiYS/ZZ0wZNXjxNVLy0Lp7drzxCLKw/98f3aQYay9abvv7YbI7f9pDePEi+JNvdc34FPN3VGdCrc5wYV4QwmwASYABNgAkyACTABJvAREPhoXp0iTx36kPGGPr5DmkgjDnnutJq8TXrwGDvfZ9f8h1dP7hsrkup5mjqFPX2EQ9N/QHhI8kwWpPpguEMm8BER8J82GLs6O+HKfJUHIQ393s4lMu34z5+kaxJBz16gz2I/jGlVC5fH9MfRn3sifw5XqfPzV6/xk+9BjGhdG1fG9kclLw9M9DucrseTnModv3sUjlYqz5n//OeiUPaiCTYfJ9yYvKw9cG/IffVnS7/dWvWsLW1wZ9AdeGUvoJWe1IPyeStiVIvxqOZZLV4Trg7ZZN6nZT+Ll5cZEyoKz51Lg66k+dCMcTeWZ4ri/g8v4NjdI6YU/eAyK3pulNfxjf9dl22tbblafV1bmMtlGj+4D2MNLOu+DuQZkBzyodyDw4Kx9fEebP18L2Z9thDFcpZIDrWw7dpm3H1+N1naSo1GPq81CL+3/idRXcXERGPerWUIj3iVqHppWTg9XXvGOAS/eoqlV5YZK5LovO8aDcOQuj8muh5XYAJMgAkwASbABJgAE2ACTCDxBN555iS+YkavoRhxKASbso6OsTFd3jgXb0KeGyuS6nmaOjl75EXfjXfh5O6R6npwh0yACSSOQKzwpCN5uHc+YsWkFUnQHlU4yJjI1/I4vf7xO3sVrUoWQJNyxWBpbo7sWRzh7uwk1X38QjXxVipPLlhZWKBUHndcDQ4Rniqx6XU4yaLX2cDTII+EARu/wLHg06g9tQpexYWj1/LOOHbrYIJ9WJlZwcPZU/3RDMU0cuMPqDmlEj5b3A6PQoLUbd17FgDy4Jm25y94jHFD83/r48L9s+r8iTvGoODvntJLgsrtTQZvhal7JkqPI3UnYqfTvNZYd2aVZlKS9gPF5DS15TLKUX4m7/pDtkNhqibv/lOOhfIGreyH12/DZN5vW35C4+k1ZPmhwhOq2HgvtJ/TDKGvQ9Q6LDu9WNYlRstPLFKn0w6dswYzauDLVb210rdc2IDeiz+TfVGfA1b0xlMxAaoIhSerO6WKZEueWJrclTL6tn7+G1FxYnFZj3Slc0fGvJSSUyKUHvX3x8mJWHlzrdyn42fCyKBIYMgdNJlRWzIcv20UiLciK04uRukJhaW+n81vAzJOJCTZREg7upZziQ8JXcvKtU3Hb6MiQOeNzgexHbFpKKLfPQMp3/fcWgxc2Rd/7/xdlqFyxDehc73+7GrpFdd2fjMcvKFtDKXx0fVEY6fxUB+KpNQ5oT5rTFOt0dj0v7qy7zPvQhsaY3Dj8XV5TZNHE42drncK90Yy99AM2c6BkBP4dsfXcr/jvBbKUOQzgJ5FilSbXA43Hl9TDuX1vvr0cnm+qX3iTGJMH8pfdGSOZEt16FlCYdNMESpH90ez/+rjvwNTtarQ+Ry9ZZjea++LZT1QY0pFWb7p3AZynMrzgBJ3Xdku00ifFsLziUKAmSIfcq6NMUjqtUf3U5vZTeX9Rc++Xos6gXQ0RZLyDIoQYdDo/PVc2xWPY55LhnRPkNcNibFrj/KD3zwDXW/EnZ6zpjwPqN6Tl4/QfeGn8n6n596qU8lrSKI+WJgAE2ACTIAJMAEmwASYwMdEwJwmEuIy4Zo5xk6iso6OKUYcameHePs87NEtbB7aHluG90RE2Aus/rIhTsyfiNmf5MaTa+ex7+8fMK9NEcxvVwIXfBfI7qncir51cHzen5jT0kvWCQm8KfMCTuzHsp7VZPqO0f3FOYhFwMn9WPV5fdnmZhEC7tVjlSdQtJj43TPhW1mW+rh9eIdenRZ2LAMKt0ZC7S/tXkW2RfpHvVXFsj61eDKOzBmn7ufkokmyPIVno3Kk56LPKuD++aMyXflDYyF99078VrZJ43zgfwKRb8Jl+bCnD1XtiEkZKsfCBJhAwgRio0Lx/PJxvA15jLBUenM+Ya2MlwgUnjn21pboNHUlvEfPxoztx0AeOSRFPdzRsHBujNuwBxtOXML03SfF27qVYCGMPplZ8mcrgDFN/8QbEaJsUoO/UClXRXTI00qmFc5RPMGh33gbIA0GZDSgjzK5RhW/EG+1z2w/D0dDzyAi+q26rbcxb3H61UUcvLsPm7tthaO1E6bum6jOd7R1xsrP1kuPns5lPkODlY1A68N8iFQvWAt/XZwCCidHclWEMFt9z1eso1D9Q5pFZEwUms1tiPCocGzrshWH+x4R14yFbHPXpa349tCP+LXOaKxutxp+t/3w9ztDz/2QQHg45cbf9SZggtBrVpu5uBN6G4dv7lfrQ+XntV2EH6r+gK5be4i1nF6q82Z9uhD/8/kKBx9r/78jY9DC28vhkcUTO7vtxO67e7DNf5OsR0adigsqo4ZXLVzoJ9ba8aqDXis+U7dpbMdMfN/645NJCPwqEFNbzMDgg99htwmh+Iy1aSyvpFgLaW2vLehboica564r9+nYxd5FXe3fa/PRr2p/rGq7EsOOjxQT9arvKGT86+LXHT/VGobTvU6L9TDCMWn37+p6Sd2ZsGMsll9cjiXtlsG3oy+W+i/Gjit+6uZCXj/DzKtzsff2HllmQetFMBPrbyR0ruuItZ3md1our6XgMNX1qTRKBtZ/T83EpFYz0b1Md/TY2ENtREupczK74yLMbD1bqrC061rJXlmbyhgDCu3Wo3I/3B54W97X+wL34a/dY2U7bSt0ku1UdCotr2c6l5PazlCGiUNPjuPVW5VBnRKPvzgv16pRCpx6fgH9tvRD4yJNcarXKVTJq/quZkyf209voNfOfhhRfxSChgRhVONxkGttKo0a2eYW6xbROanq6YM7z1XXlVKczuevp8bpvfZGNhuHJV1Wy6J0T9M4u1XtI48p7FrjVU3QpPAnONb9CKJEOLYuS9orzRrdJvVcJ8QgqdfezP2TEPQqCIe67EeR7MWw6M5KhIYn/NJYUp9BNpa2WNVjA8Y2GA8nMwf186CyVxXJzdi1RwXOhV9FkWzFcLjrAQS+vIdZB6YY5U2ZZBzuuKAVXkW+wr4e+zCy3ih03tJFyzieYCNcgAkwASbABJgAE2ACTIAJMAEtAtKYY2ZmppXIB9oE6n73F8zFj6BGvy5Eo2Hih3NMDJ7fPosXjwLQbcVFuBUsgRwlKqLr0jNoM3kzjk7/DlERYnJTlHsR6A9LW3t0XXIWtlnFW+rbVT9QD/7zPbx7/oTe62+ibLt+MBOTndb29qj73WT03ngHdo4u8N+oelP/4JSfERJwVbbRdtoOZC9cQpSLr1NEyANpFHrxMBDbfmmHyj1+QqcFJxD25B4OTB4qBxUW8gQ396xBg2H/osXEDTizZKw0yNw+tgtPrpxGr3U30OLPtXDzKqwNQYzl1YPrcBfj7L7yMgrWa4cjM0fA2s5BjL8Mrm5bKcs/8D+J6MgI7bp8xASYgF4CZhb2eLR/FR4dUU0Um1u9n2TVWyEdJAaHvcbys9fRs0ZZLOnbGkdu3sP6E/4qzcS/kk/KFsG6i7cxY89JPA17g3Ii1FpmFxf7rCiWq6R827lTpW54/iYUbUq3F0aOGnATngoJCU2sFXUvof4422VVV/FwyYMi7kXVx7o7Pzf8DRVEqLA+Vb7Alrvb1NlfCiNQYfciYnL+Ojxd8sr0AOHN8yFSPm9llLAvhE3n18tm1oi3/Ft6NJGeFx/S7uk7R3H59U1MajNdLrBd0qMMBtX7Tja56dIGNM1RD918eqNhyaboV/4LLLmo+t9IBWoUqIVqhWrLsrXFhH6FnBXEG+PvvWgGVBoISh/S4Ec5gXlc9KVIQffCyOfqpRzG237f6BdUzu+DT0t2wpG7B2X+louqsXvn9cHd4NuokKeynOS89OBCvPq6CU1Lt0KtovVwT0xkv4mOQGGbfLj+OOVCvNlZ28PLrQDcROg8F1tXuU/HmuHO2udpjnbCSNCoVDOQkeB04HGp9vzjs+Wxs52LWKspED75amL6+VnSWKI7rsQcTzw9CbXy1MAb4SUQJgwP1T2qY8nJ+fGamPvZEtQr3ljqVdqzrMw3dq6z2ruicI4iyGLtGK8tSvja5xvUKlwH/WoOlF5zd4NvyXIpdU7yuOVD3nfXlpdbfsmezgeJMQZ07Xeq3E0aYe6LBedLupXERREmj4TGSOfPwdIOObLkkvv0fEiMfF6qD75uMBQUapHuKRJj+mi27SqeZU1KNpf9aqYb2rexspXnJIdTDr1FDF175MlF4yTJ65pP7ivP0f3X98j0EZ+MlfcmPf/I0P3o5UOZbuxPcpxrfQySeu1turYJQ2p8C59CtfBzk5HGVNfKS+oziH7rEVdP59ywN7eR+3Rsb6O6Z4xde4oCvzQdLZ/Rg3yGYMv1jUqywe31x1dBnmR1C9ZH0Iv7yGKbRf4P2ZjMa3UZVIAzmAATYAJMgAkwASbABJhAJiQgouSIN6bJlhOXCUeXTEOyEsYYM0tLWNs6gPZj3qqMFTUHjYGto7PsxatKPdzcL+KYH9khj4NvXULW3AXlftl2fWFpY4t8VRvizqEtMi1vtcY4PHMY3gqPlyIN2sq0nMUr4tHl0zg293cEXTwMx2yqSdA7hzai0cgFsM2SVX5kYfFHn06UF3TuCBzE2gpF6reWRct1Gow94/uJfVXM8kL12sM1n8pYQ0aq0MBbyF6opAgj90B4AH2D8h2+hF3u/LKu7p+i9dvKsZTv8AWWdZ2JyNdhKNv+C+we9wUqdh2Mm7vXo0TT7rrV+JgJMAE9BLJXbIvHx1bg5e0zcBGTZC+uqiaq9BRNN0kudjaomicHmpQvJnVqX6k4Fh4+jz71vXH5/mN8vWYP9n7XFXmyucD35CW0nrFGrp9DYdcyo5BXyYy9f4s1LG5JY8EsEU5oY4AfstlnQ04x4UqGhIQkp3U2fPXOeJFQWd38IjlU58HNKZs0Jin5P4iwY7RuT5PcDZDdIbtMfism0D9EaDJwoPcg/HdyJrpU7YkZZ2fgvxZzPqRJWfeemLQmg1YhYXzSlfsv76O8RwV1cgnhbXLj+HujlJW5NazMrWR9KkTrC73V8GAqrrFOSQ33KjgbeAINhJEgIanr5gNLC9UaL+6C37Wnl2SVABGWLIeFK3Zc26pu4n/F+mr1qc7Q2Vl6bD4G7BiEqtkqorBbEbyMfgUKfZSWUk54kSni6eSJF+9C1N0MuS7CI0Zh2xXVdxYq061oZxnizloYL5MiL9+8kIaUJ+FP1O06Cw8yd0d3rebIqOSuxwCQ0LnWakTnoLgwkpCQ4ZXk5TsPrdQ+JwkxuHj/HGrOq4EijgVQ2aMS7r+6p16HSyr+gX/qFW2o1UJC+hTIXhh/+IxB07XNZT261ke3+FPNUauxRB4YuvaMNfP4xQNpZCRDEUmxd8+/p6+eyOetsbpJPdcfykDftfdGhFMlz8pi7zw3ba3spJHDmP5K3oc8g5Q29G0TuvbKORSDmnvO4tLzi55fpLshuR9yT2bdeHoN9CGpk7cOnGzT/4srUln+wwSYABNgAkyACTABJsAE0iEBS5qc+djCrOmeh0eXT+H+yfcTM7r5ho4trWxkVsj9O1jzeU1U6j0CNQeNwprLxxATHR2vmqW16scnZdQaMBoFqotQF4v+wqnFf6LbktM4OO0XPLx0HLWG/IksnvlxbetS2UbM29eIiXwfXidewzoJ5Bljaad6A5SyyJAUJ/TRF5ufDEIiA8658qLb8gu47Lcc679qjFqDJ6NoY8OhK6LevPO+ESH6PMtUlRo8unQKN/etQodZB3Q04kMmwAT0EfCs9xmenFiC1w/PofBnI3D+0mZ9xdJVWk4XJ+H58H4C2kaEXAuPjJI6Xgp8jAIujtKQQwmVCuSW6QFPQlAoV8IeKrJwBvxD4c8OBh5EzRw+uPLkshyBu1NORMXG/z+Q3MPT51n7SEx4Uji0m/+7gfzZC8k1LmZcnSO61n5rw05MiFJoM31iI4wir6LC4mW1EV4c/9s3WKzf8S9ex75FgxJNtMoEicm7W8LrIb944zuPq8ojSKuAngN6c5/WGHoQeg+6ngbuDu64HnxVXevOs1vwstbw9hLfYYxJwLO76uwrIVfRv9og9XFSdnI65pLV/vl0FsxF+C9TJTY2Rhpy/m06U3peUPihtWPXaa1RQ20Z4p5QnjE9KExZrIFr0fxdODvd+nmy5IGFmSWmdlSFCtPNT8qxo62TrNaiRGv0qfE/g0242howFiVwrg02aCAjOc6JgaYNJifE4Pedv6Fz4Q6Y2VnlrfT50q4IfKGaEFcapRCEmusMKeluVs7Co0d1z9K9pE9chPFMUxLSh8rS4vZfC8+2w7cOodPKdih/pgJ61+iv2UyS9g1de5qNReust+bmmF0aQWLE9UweZoHPVYZdFw1vRs36yr6p51opr7tNbgbkpUVejjeE5yR5VkaKcHHknagr+p4HSX0GKW3HifuInt26ktC1R2HWFO4Bz+9K/TUNOVaWVrJJWoPJ2sJa7mcX54tkcN3v9RrrZSb/YQJMgAkwASbABJgAE2ACTCBRBMxjRPgsC3PjkyGJajGdFPbuM8qoJmTA2SLWpZnVKBt8h6gmo4zVsXVyR1jwI71tPrl8BvbZPFG+/efCiBOD6Dcv9ZZTEsmoQuvjeJb1QbPfl4DCo718EoTbhzbBu/cw5CpRCc/vvJ+8ylW+Ls6tmYm3r15KT5jQe7dlU4Z08ixXTYZ3ozFSuLeLG+bCo2IDEXfe8Hl+FnAdtDZPhc4DUKb9V7h7bKdcZ+fS5iWIfueJRJ2GPrgry1GbTh5FYO3oJNst02GgWE9nMLLkLCgNQ8pYecsEmIBhAlkKlIJtthKg8Gpu4j7PCFKzeH6xnsUDXAh4KBaaj4DfuRtoXa6oVN27UG7cDg3DCRF6LVI8C7efvwZPJ3vkz+GaEYaWJB2tLawwtMkIOQn/fb1hqOZVAx0LtZNppniAJKnTBCrFvjPahApPCFr/Zeq+CXpr1ChQB1uubcG95yLsl3hTXFO8varKN6/PBZ6R3hhKnrv4X9gxb2v03zsIX4qQTZqTeVRm84X1qLusLjZdWKdUSXBbIV9l6VkzUSx6/0S8YU+TgdveGTZrF6yL7ff3ghaPDxQTiCsvLEXTAk0TbFMpsOT8Ijx4EYSdl/xwN/IBqhSooWQlaVuvWBPpAbXw6GzJjN5M33B2TTx+uo2TQSWPXS7p+UITt0uOztPypFLKG+JO+cbylPr6tmVyl8Oee/uksYyMSKZI61IdsDJwAw7c2CcMQTF4JhZr33je9HOqrw8yfvUt3B3zT8+V6y1RmVtPbmitcaSvXkqlJcc5SaxuCTHwzJJbrHsjvuuJa+TY7cNYdWtDvC6q5PHB1qub8EKEc9Q8n/Xy1MGmi+vkujnzj5hmhEtIn4Bnd0DPADKcVMhTCW42rgiL1G8AjqfoBySQsYM8QbZe2iifB8rLSJXFc4lk6fGF8tk2/9gsGa7Qw0XDwKunX1PPtZ6qSCkGbYu2wb9Hp+LKQ3/h3TlJX9d67/mkPoOUDsi7kYznx24dlPe2km7KtbfixGLxMkcwlp5ZhJZFWipV5Tafa37ptbjmzHKERYRJw09xj1LS+P7P3gni2f5Y9kf93hRGLBYmwASYABNgAkyACTABJsAEkkbAnCb4hXNFppPyHf+HL3YEgww0uStrT/yQFw4ZcGhLea0mb5MfqmNISrXth91je2NF3zoivpnKKELr3JB4+dQXBo83mNemCLaN6AEbF3eV4USnnJmMZwdhlAnF6cUTML9tUSzsUBxe1dvBxdML5Tt9hd1jemFBB/FD61GgaMNCtl//h0l48/wJFnUsgYXti+HuSVUoJkM6ueUrguqD/8Gm71pjXsu8CH98D/W/+1u2pfvH/N3bc0+vnsOK3lWx6LMKwvgzA+VEGLUXwmh0aMoQhATdUVfb9ouYiGlVALcP+KLpqEXq9BKNP5Vr6hRr1k2dxjtMgAkkRMAM5X5cgkq/+sH8XUgnsYBWQpXSNJ/WwPmmTkW0nbkWlUbNgbO9NVp7l5Q65c/hhh8bVMb3K3eixC8zsePSHYxpW1dMBKbvMX0oUFp0nBYbr5S3Evbf2ovaheqZ3KQxIzstvG3xmxnsx9nJ9or9W1Qe0+L0yv8TZavZIa05Mbzij6g0X0y+TnAV67Mob2FrG/SblGoOb09veE3NhxpT3ofborbIo+cPn9Gos6AWnMY7ycl8pY/u3n3kbqdKPZQk9TZETDCTZNMJnaUuoGfHSayjsK3LNvje9EWuv3PI8dKkNEn7Sp+hjVdzVF5QBfmn5pdpvzQZJbfKn3f/auUhTdqKLzZKllxfJM/k3GiyphlGVBoq9FJ5iC0/sUiyrLW0jpzYJM70oXNp7JzQuiyrW6zE17u+hePvDnAYZ4/hu34SDq7GjSTU5piG4/Hbwd9gN8YG045NQa2s3vG8e4xxN5anHrCenZqF66JBvgYoMaU4rEZZyElVKkY66d6Z9NY+ScdKXeQ1RIY5q9GWcP8rO7Zc8pV5iflj/u57j1JnXMu/kNMhJ0rOKil5F5lZJFETu+/Uk81pnmuPMW6qe+PZUfTc0Ufuj/UboXQrvIzeXxOUSGNPjnOi7iARO8YY9KneH1eCL8trpMmSxmiZ75N4LXf17iXXXHL9MyvKTlQZ0qlQtyr9sF7cQy7jsyAwNEDWozFqi+4xYEyfJy8foeL8ipKn8x9OKJq1CHpV/0K7SQNH/Zf3kvWGHhuBebeWyf26U6rI0sauPaW5n+uNxPgjv8vnwY/rh8hkCsU4tfYk9NrRVz7bll5fJb4zL5HGJqWevq2p51pf3YQYJOXao36+qD1Y6G2BUv+Vxu5bu6RRykp4RGqKvns+qc8gpV16Bg4t9w2qL6kl7+3N79ZAM3rtieuIPCJH7P0FOcSz4ELwBfT2+VJpUm6JMYXd/PvwRNC1sv2yn/TQ2dBtC/YF7hPP9pyyv7bLWyMsgZfetBrmAybABJgAE2ACTIAJMAEmwAS0CJht3749rl69+sKgk3EtOjHLpiJ2+XSYC68Si88Mh1A5u3IGHlw4qgZQsctg5BReMKYKecaYWZjD2l7/ArsRL0O01rRJqN2o8FeyiJWDKvQIHUS+CYe5CFVgaaUKUaDZBvVvaWsLC408YzrFxkTL9pR1fTTb0rcfJ8JZvHkRDDvnbGI+WTXFExn2SnrfRLx4LgxPRdBn033R5ivYu6hCJyjthAc/xrLuFdF1xXnYZXFTkpO8NfWcJrkDrsgEMjGBKzfuomyJQik6wrdR4vkiwjc62dnG64f+n7wQXjtZHVRGiHgFUjDB398fpUqVSsEeMk7Tr9+GIVp4VWSx0w6t9KEjmLFvMuaemoXT312J11SDadVwOfQa7vwYpF5fIV4hIwk0cUpeAMqC50pRWtuDwtmRZ1BihTwYyOiVnBzII+KR8Pixs7IX17np//MoTNGz8Gd614RJ7LhSozytCfX4xUO4ObiqF0pPjn7pzf0Xb0KQPUtOMeGrCs+UHO0mpY20OifGGDx6+VBeI4kJ5Udjp/BrLyNC4eqgMlomhochfajNJ68eIqu9G8hjJj0Iee89C3+KnMJwnRhGST3XKcmAdIoUzzbH3x0R+FUgPLPmMQlxUp9BCTVu7NqTfYprk9aDSwx36pM8eqLFOly0HlZi6yakM+czASbABJgAE2ACTIAJMIGPiYBcMydGTOLHf3sv82Egzxtj3jcJjdjGKYvRIrZZDMR5N1BL04ijFLG2c1B242319a8vTalIb/qbasihOmTAsc+qPVFGYdR0RdeQc8lvGc6t+AclW/VPFkOObn98zASYQPojYGNlKSbrVQvE62pHnhFpYcjR1eNjP7a30f/iQVK50Dock/dMlOvxrGu1Jl4zNMF66vkFzGgyPUmGHGrQXUzu6xMyxBj/D6yvlirN2S75F9umyUjd9X0Ma/A+hwxVNJmZUYQMLaaufZSYMTnaOoI+6UHS6pwYY0CT5UkRS/G9LymGHOrLkD7UZlKu9aTob2odG7HeV1J0Suq5TgkGFPpx1dmlKONRHr6X16Gum4/JhhzilNRnUEKMjV17sk9hQEuKKF6RSanLdZgAE2ACTIAJMAEmwASYABN4T8CS4lDTxFvG9ct5PxjeSzkCVsIbqUq/sWJtj/hv0MaJtzZ9+o5E/hqqtYdSTgtumQkwASbABNKKgLkwROTL6oUDXfaheqHa8dSgCdbQEaoF2ONlcgITYAJMgAmoCZTNWxH3QgLwJOwpxjT9E94FqqnzeIcJMAEmwASYABNgAkyACTABJmCIgKWFhYX0ylEWFzVUkNM/bgIU2o3W0dEnpVp015fMaUyACTABJpCJCNAb2wPqfp2JRsRDYQJMgAmkDQHy0Otdo3/adM69MgEmwASYABNgAkyACTABJpBhCZiTEScmJibDDoAVZwJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmEBmJiCNOcpi9xl2oCL0i5ToqAw7BFZch4ByLpVzq5PNh0yACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwAQ+FgLmQmSYtYw8YLNceaT6cacOgNZvYcnYBOgc0rkkUc5txh4Ra88EmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkwg6QQsY2NjkZ7Xy7l6/aZ6dMWKFFLva+6YVakHuOZA3J2riPm6Pcwq1QIsrTSL8H5GISA8cqRRTpxLOqdmVepnFM1ZTybABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAIpQsCSDDlmZmbpzqCzbuM2LF25Id6gu3RsjbYtm2ilm9naw2L4DMSM/p806JBRhyWDExCGHDqnZrZ2GXwgrD4TyJwExL8OhIS9hr2NFWyttY3nsbFxeBnxFi72tplz8AmMitah2759O2rXrg0HBwd1aXp54sKFC3jw4AG8vb2RLVs2dV5G2AkLC8PBgwfRuHFjkFdvYuTcuXOwt7dHkSJFElPN5LKnT59Gzpw54enpaXKdlCyY0c+1Lpvr16/j9evXKFeunFZWREQETp06hZcvX8rrwsLCQiufD4wTCAgIwOXLl1GgQAEULVrUeOFkyjX0fDLWvFKnTp068j42VlY37/bt2/LaKVWqlG5WgscDx8eivrcZ2tQzS7AsF2ACTIAJMAEmwASYABNgAkyACXwMBCzJkGMufiPFiIm59CT6DDmkn6F0ymszayviju9B3MN7QCyHWyMmGU7EGjkUWo08ctiQk+HOHiv8kRDYf+k2vl2zC6FvIuWIl/ZugSpF8sn95YfOYb743A4NQ7lcbpjSrRk8XLN8JGRUw4yKikKzZs1w69YtOUmrDL5ly5YICgpC1apVUbBgQZOMOZGRkRg4cCDGjBkDd3d3pak02ZIR6pNPPgHplFhjzowZM1C4cGF8//33KaL7jz/+iF69eqFLly4p0n5iG03KuTbWR1pfB76+vvJ6/vfff9VqknEvR44cqFu3LvLkyYOGDRsiLY05EyZMQI0aNeDj46PW0ZSdq1evYt68efjzzz9NKZ5sZSZPnozx48eDrhX6pJYxx9DzydjA3r59K59pd+/eRb58qme9sfKaeevWrQMZA//77z/N5AT3r9wBlmyLxfjB79bFTLAGF2ACTIAJMAEmwASYABNgAkyACWR+AtKYExUdk+iJmbREY8ig43/pGkb8NDgtVeO+mQATYAKZmkDQsxfos9gP0zo1QL1ShfHi9Ru1Z+eDkJcYvvkQ1n7ZFgVyuGLU2r34a8sh/NXtk0zNxJTBPXv2DFu2bMGjR4/kBLgpdagMvRE/e/Zs/Pzzz6ZW+SjLLV26FI6Ojuli7Ek918aUT4/XweHDh5E/f35s3rzZmOqplufn54e8efMm2pgTHByMRYsWpboxZ+HChZgzZw6aN2+eaoyS2pGdnR0ePnyI7NmzJ7qJfv36ITo68S9Y/bU4Ft92tYAjO2gnmjlXYAJMgAkwASbABJgAE2ACTCDzEpBxUiwsM0dYjPP+V1LtTF24cAnzFi5Ntf64IybABJhAeiDgd/YqWpUsgCblisFShNrKnsUR7s5OUrWj1+5Kb5yyXh5wsrNF60rF4Cu8eCIio9KD6imqA4URq1y5sgyrNmrUKK2+yJulWrVqMq1JkyYoX748zp49q1VG30H//v3V9Si0GdX7559/1EWpT/KKIA/bWrVq4eLFi+o82mnQoAHorXjqn8p89dVXCAwMlHpSWxT26IcffpDhycjzwlSh8VH4OBrv+fPn1dUeP34svWMoj7wM1q5dq86jHQopRbpQPnlBUCgyEgpJR/qQjlSPvHiUtfw+/fRTbNu2TZajP9QG9RsaGirTSG8ae4cOHWQIOHVBsUPhnZSxU/sHDhxQZ48bN05O4CsJQ4cOlayU440bN0pekyZNknwohJsuX6Ws5tbYuSbvhtGjR8v2iMFvv/0mjXVU/+bNmzJMGTGgvgYPHozw8HDZdELXgWb/ybVPk++//PKL+jxTGDtF7t27J89Xjx49cOnSJblPfGl8psiRI0fkOVPO9+7du2U1Os90jSqyatUqqYNyfOLECdD1QPXIO2Tr1q0ya/78+VKHffv2SW6kS6dOnZRqBrcUIo6uJfLmomuX6uleJ4auAzLM0rlWzhHdi3SP379/32B/SgZdA9QP1RkwYIDcpzEoYqhP8s7q3r27PCfEoHXr1vJ+UOqRUYjaVIT0uXHjhjykdEPPJ6W8oS21W6FCBTRt2lRy0ixH547Gok8fuv/o3mzRooU0SGvWIwbkbajveaCUW7MnFtXKcHg1hQdvmQATYAJMgAkwASbABJgAE2ACREAac+LE+gYsiSNwP+gBjh09lbhKXJoJMAEmkMEJBArPHHtrS3SauhLeo2djxvZjeP7qtRyVk60Nnoa9UY8wPEIVhi0k/H2aOjOT7dAktDIRTOviaMqsWbNAH5IVK1Zgw4YNKFasmGYRvfsjR47E8uXLZR5551C9bt26yWPyJqD+atasKdfcoPV5aKJXU44ePSrLN2rUSBqPqlSpIkOk0Ron06ZNk0UpdNrEiRMxbNgwzapG98moQYaR0qVLY9CgQbIsGWZoAv3Vq1cgjw0y+LRv3x6kpyLTp08HvaVP46CwaDTZS0J1SQeaCKcyNMG9Z88emUd9LFiwQO7TH5rodnZ2houLi0yjcVOIrDdv3oA8YhQhY1DHjh1hbW0t13QhYxiVff78uSxC4aJoAl8RMqZo6hoSEoKpU6di//798hwsXrzYJA9mY+eaxrhkyRLZHhkiSO9du3ZJFSj0FYWJI70ojybJ//77b5ln7DpQ9Ne3JUMUGY10P2QQSUhobSSqTwaVr7/+GitXrlRXyZUrlzyHZACjkGZ0PulDrBMSGl/16tWl4YPCm82dOxcUro2Ezg2tH6MInQ86L4oMGTIElSpVkh4iZKSk64CkTZs2sn/K++mnn+S+wk6pq29rY2ODNWvWgMKz0XpOyjioHUUMXQdklKXxUn9k0KFrrWvXrsidO7dS1eCWjHPUF/VJfdM+jUERQ33SfUJrFp05c0aGLcuaNSs6d+6sVMPevXvVxiVKpPuf7gsSY88nWcDIHwqtR88hMgjRdarIkydPpMGYjD0nT56Uzxbl+URlaP0qusbpuaPc60pdMggOHz5c7/OAyjwTttqIl3HIl1OpwVsmwASYABNgAkyACTABJsAEmAATIAIyEDW9Uae8BctYmAATYAJMgAkYIhAc9ho7b9zHtI4N4OXuijEb9sPG0hx96nvDu3A+BL3aiVVHzqNIruyYd1D1lrhi1DHUZkZPJy8RmvymUE1eXl4yJBq9ua8IrSeiTIKSR4Gtra2SZXRLHhrKhDWFj9Jcq0Jp39vbG3fu3JFvztOb7leuXEHx4sXV7ZKxhSbBSWgiWJkcpwl1elOfJuPpQ22YKjSBXbFiRTlOWgfnxYsXMnwceUaQAYQMRE5OTihZsiQ2bdokjRTUNk14K5PWNGFOk9KFChWSb/yT1wFNFpO3RJEiRaRHQf369dG2bVuMGDFCGsOIBU0Ok3FBETLq0EfhpKSTYYiMVmQcIl2JyR9//AHyCklMWCta5yMxaxUZO9fkDUST3coEe7169UBGIjI0kX7klURri9C6SmXKlFF7Ahm7DpTx6tuSxwkZHXSFjAgJCZ1LMg7S2k8kxF0RS0tLeS3SejnUluZ1qZQxtCVvLapHLGjdJVPXiSFDBhkE6Lsq9UnnVBHlGqAwe8TKVH0UDx8yLND1aqyevuuA0ijMHBlN6Fr/8ssvFZWMbrNly6ZeL4sMHob61dfnN998I+8vMhjTvadp6DTUaULPJ0P1lHQyUL1+rTLYK2m0PXTokDwkDy4yjFEoSDIuk5GUzjGl0f1N+/SM0BVDzwMq9yhY9ZKZ+BfDwgSYABNgAkyACTABJsAEmAATYAIaBMzph3FmD2IQJcKFjPj1d5SrUg+Nm7UXE0aqt6aPnzyN5q06oVb95li+8n04GEPphw4fk/WLlfbBoqXv31Kl8u0+7SHbHz5ynDp0jAZn3mUCTIAJZAoCLnY2qJonB5qUL4Zinu5oX6k4Np9XhfJxcbDF4p7NcfBaIAYv24bGpQrIMbs42GWKsRsahL+/v8wigwtJwYIF5TYl/1C4NJok3blzpwxTRpPv9PY9GUM0hQwGuqJM5tNkK3kX0OS8vsla3XrKMU3QktBENgmF2lLCS1FYJwqbRh8yxtAkuSLkSaQITWArodKWLVsG8jL49ddf5Xho4lcxeNAkORl3aJxkiCKDD4VmSkgULxuqS0JjprZozSJThQxOiTHkGGv35cuXkjF5Myh8smTJovbQomuIWJGxh8KNEU/FY8VYu8byaJ0T4qr70TwnhuqT5xXxUkTTW0VJS8pWCbVHhpzECJUnryYyfpHhjgxyZPhKDTF0HdC1QdcsGQ3JwJnYMRnTXV+fFPqOQqeR8ZU8kxQPQFpPyZik1POJ7iXSk54jJGRcIlHuPXlg5I+h5wFVyZlN9cvkscqRzkgrnMUEmAATYAJMgAkwASbABJgAE/i4CFiSMSeOfjNl4khrR44cx5mz53Hq8E4xkfMYDo4OeCi2rdr1wA6/VcibJzf69BuEShXLiwWUHfSmOzjYo33nvli9bDaqVqmESZNn4uYt1ZvMo8dMwNdDBqB2zWq4dv1Gsv6g/7guRx4tE2AC6Z1AThcnBGuEUrMRIdfCNdbE8SnmBfqQnLgRKLeZ3ZijGDdoop48A8gzJblFdwFxMuSQUCgsY5PIZDBIbiFDg5ubmwx3RW3T+BUjCRmUDBmz9OlJE9EUeo3WDKHwX+SBQSG9NL2FyeOBwtORBwV59pBnQ0JCBgwSMnqR5wZ5RpHRydVV9ao/GTrIwKIIhYmicHSakpTF3jXra+6T1wgJrR9C4dR0Zfz48ejZs6f0JKI8GjPpriu614FuvuYxeSWRkUFXaJxkUDImNEl/V4REU4QMJ8lh2KL7Y+HChUqzWlvyWNMMlad4kSmFaA0oMkxcu3ZNGi4plB8ZeBSxsLBAYvgo9WhL4QENiaHrgDyFaM0p8l6iNY7IoGpKqDlD/Wim6+tzx44d0muL+qWxUugzzXuF7gtlDR/NZ5ApzyfysqHwiLSOluKNpamPvn16BpAhi+5h0kcx6Op6yemrS2n6ngdKWTcRRdE2ixkChe21sMpGrmTxlgkwASbABJgAE2ACTIAJMAEm8FETMKcwE5nZkENnt3Dhgrh5OwCjx0/EG/HWclYXZ5w5fQ5eeT3F5M4VbN22U8aUP3xUGH0MpJ89ewF1a1dDzRo+sLKyEj94i6svnAb1amPs+L+xZesOFCzgpU7nHSbABJhAZiNQs3h+7L39ABcCHiL0dQT8zt1A63JF1cP0v/cIkTGxCAwOxZ9+hzG4dgVYWiTuLXx1YxlkhyaoyYuBwqyRV4kpoY9MHRoZHSg8Gnlr0ALzipGDPG4onBH1SV4s5JHj6+ur9mgxtf2klKPJeBon9U260SQ/rQFEnklTpkwBGbVogvfYsWO4deuW0S5oQpc8fMhLh0KtLV26VGstG6rcqlUrUHguCpNGocNMEQoNRQYvMhKRrsqkvxKei9bx2Lx5M2h9EvL60Wc4MaUfU8vQOMlAQ/qQMYKEJuUp7BuJh4eHNCgQgxMnTkgPFJnx7o+h60CzjO7+999/L5lSm5ofPz8/3aLxjuvUqYPVq1dLb6izZ89i/fr18cokJYFCypFhSLluyYvj+PHjsqmyZctKzyvKJw8v8thShPSn9YXouiJjIV1vukYD8lih9YbofJNR0FShEBXWVU8AAEAASURBVHfkmUbXK7VvitC9SGHCaN0XujbJWDh69GhTqia5DI2J+iWPLfJwmjlzplZbxJbWlKJ8zWeQKc8nChVHayCZcm0onZLBj4SMSsScrm3yhKM1lZJD2tczx5ELmfhNs+SAxG0wASbABJgAE2ACTIAJMAEm8NERUBlzMvmwPXLlxPHD21FIGFpatOmCbdt3y4kNaxsrZMsuYpeLT7duHVHdR7U4tL50QhQXp39yYMjg/vhr/K+y3U9adQaFdWNhAkyACWRGAuW8PPBNnYpoO3MtKo2aA2d7a7T2fh+O6aeVO1Fi2AzUm7gExXK6om+9ypkRQ7wxkaHhxx9/lF4gCRkw4lVOIIHWjKH1cMhzQfG0oLftaYJ9wIABMoQYTfYPGzZMbexRmpQvbCgHYqt5TPvKR6OIwV2lLk22k7cL9ff777/L8uSRQOv47N69WxpRKHRb69at1R4PZMxQ6isdKH3T+ik0RgrXRMYgMiRoli1QoIAMLUXGq4YNGyrV5ZYmqqks9UsL0NM+tUf9UygqWneEdO3du7dc90VZn4T6oHBj5KlDa33QxLRmn1qdJNPB2LFjpecWGSKoLzJKKN4nffr0kWvkEIO6detKLyXdbvVdB7plNI/JW4JePtH9UHpCQnzIQEmhsypUqCDXQkmojin5ZEyjSf8ePXrI65Y8UJT1mug8k9cSraNDRkLSQRHyuKHzS+eVxkMGJvIC0xQy9JFRk843rTlkqpCHCa37QsYgal9Zj8pYfbofSegeoHNGnmOURtdhSgl5JlWtWlWOz8vLSz1G5bqlNY7WrFkjr2vyYiNR8hJ6PinllK0pY6DrlwxKFBqQmNN5JSOdcn3Rs4naI6Pi7Nmz5T5d2ySGngea/X7TxRx/LYmBeGeAhQkwASbABJgAE2ACTIAJMAEmwATeETAToTbi6oq49nGx6evtt3ZdTFtIVvdMrl36r24S7twNgJMIn0YhKGbNWYjAgHvo26cbfGo1w+5ta1CyRDGEhoTCKYsTAu/d15v+MvQFipevhYO7fcVkjDvGjJ+EkGchmDXzb5w4dQbelSpIA1G+whVx+ugOeHp6xNODE5gAE2ACqUHgyo27KFuiUIp29TYqGpFigtXJzlarnxjx9vizV+HIItJtra208lLjgMIwUaigtBB6a57eUDc1HBV5ASieNrr60mQnfRISelufjBxkzKEJ1Q8RY/rQpKwySUt9UJ8UykxfWCkKlUWT7zRRb8oYqD3qm+qZyo7qmCLULulK///16UpeRKb2SeeK2jMkZAgwRSgUFnkiUb9kmNAU0jUx3DTrpsQ+8aHrSh87ff0ZC3NG149iLCCOFJqPriFlDSelvefPn0uvG83rjfKIP3nyEGcljJ5Sx9DWVH0M1U9Kekr3SXwcHBzUa9Vo6khcKXygPj6JfT5ptktGRzLsUTg6JWSgkk/tkk7kCWfq/a7UTWjb6cdYtKlnho6NRRQBFibABJgAE2ACTIAJMAEmwASYABOg310JTxalBacuHVsnultDda5cuY4GzT5F42btMXP2QnzWuT3ye+XD3Jl/oV3HXqhVvzmatOgo1jl4ZDA9q5srJo4fgQ5d+6FytUZ4+UIVa5/CWcyesxg+NZugSq2m6NOjExtyEn3muAITYAIZjYCNlWU8Qw6NwUL8T3F3dkoTQ05aM6Q39E01DJCuNWvWjOc1oXhRzJo1y6Th0P9wCmv0oYYc6ow8WpT+dbcUUkpTaOLW0AQ/eTokdmKXJu4Tw05TF2P71C6FMDOka2L6pDVRdLloHhvTQzOPJuI9PT3jGXKoTGK5ababEvvExxA73f5ool+Th+7++fPn1VXovBADXUMOFSBvKV1DDqWTIYgMXfoMFZSvK4nRR7duUo9To0/iQ88afULcDPFJ7POJ2qe1pMijrHPnzujQoUM8Qw6VoXbpGZQSvydW/GHOhhyCzMIEmAATYAJMgAkwASbABJgAE3hHwEzEio+rVas2/UrO1FDo7eUXwvvGOauL1g9OSifDjLNYR0d5Y5RAGEqPjI5CbHSMDHejCSw8/LU8dHCw10zmfSbABJhAqhNIDc+cVB+UiR2mpWeOiSqqi5F3Bq21oU9owl/fRLe+ssmVRh4jtHaIPqEJfd01SvSVy8xptG4LeV4ZEjI0fMyieM4YYkBGBlO9lwy1kZj0tNAnLfpMDJPElj137pxc14lCqtUXXvypef4SqyuXZwJMgAkwASbABJgAE2ACTIAJfAwEzMSiynH1RBzu9BZm7WOAz2NkAkyACaQEATbmpE2YtZQ4l9wmE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATIALmMpRFOlsvh08NE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkwASbABJiAioBqwZxMHmKNTzYTYAJMgAkwgZQiQKHdWJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmEBKElAZc1KyB26bCTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkwgyQTeeeYkuT5XZAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATSEEC5nFxcYjjNXNSEDE3zQSYABP4uAiIfysIi3j7cQ06jUcbHByM3bt3x9MiNjYW586dg5+fH6hMRpbQ0FDs2rULR44cSTfDMMQ93SjIijABJsAEmAATYAJMgAkwASbABJgAE2ACmYaAJRlzzMSaObRNj3L1+k21WsWKFFLv8w4TYAJMgAmkPoEhCzZj89W7Wh2Xds+K9d90kWnHrwdgwPLtCH0TiUqe2TGl+ydwd3bSKs8HyU/g2rVraNmyJcLDw7Uap7SgoCBUrVoVBQsWRLZs2bTy9R1ERkZi4MCBGDNmDNzd3fUVSfW0Y8eOwcfHB126dEH58uVRrVq1D9bh6tWrmDdvHv78888kt2WIe5Ib5IpMgAkwASbABJgAE2ACTIAJMAEmwASYABMwQMDS3FxEWjMTuenMlrNu4zYsXbkhntpdOrZG25ZN4qVzAhNgAkyACaQ8gd8+bYBfomPUHQ1Z7IcaRfLI44ioaHSZtwnjW9dC7RIFMGjhFvyx8SD+6vaJujzvpB6BZ8+eYcuWLXj06BFy5MhhcscxMTGYPXs2fv75Z5PrpHRBGsePP/6I8ePHJ1tX5FWzaNGiDzLmJJsy3BATYAJMgAkwASbABJgAE2ACTIAJMAEmwAQSIGAuvXLSYZg1fYYcGgulk6FH3yeBsXI2E2ACTIAJfCABZ3tbZMviID+RYtL/2L3HaFK2iGz1zK37ctuqUkmYi7cETgU9he+l2wh7wyHXPhC73uorVqxAzpw5kS9fPixfvlyrzCeffKL2XmnSpIn0Zjl79qxWGX0H/fv3V9dr3LixrPfPP/+oi1LItrp160qP3lq1auHixYvqPNpp0KAB1q1bB+qfvl989dVXCAwMROXKlWVbpUqVwg8//CD19vX11aqr74DCw5Enzt9//42pU6fKfdJREWP6/PXXX5IN6UH979u3T1aLiIiQx+Tl8/jxY9km9XHgwAGlWaNbY9wN9Ukh4kiH69evq9um/ogXGc9YmAATYAJMgAkwASbABJgAE2ACTIAJMAEmkBABS5pEsDA3Q0w6NOgYUt6Qocf/0jWM+GmwoWqczgSYABNgAslIYMf566iaJwe83F1lq09ehIFCrllZWmDS1kP43KcU/jvqj+fhb+BoZ5OMPXNTL168QOfOnTFlyhSULl0aPXr00IIya9Ys3Lp1SxpeyPhga2trUsi0kSNHggwPxYsXl945ZChyclKFySNPFjJ6DB8+HDNmzMCyZcvQvXt3aBqJjh49CvqMHTsW48aNw6VLl0Bh206dOoVDhw7hiy++wIMHDzBx4kQMGzYMrVq10tJb94AMRhs2bJBeOXnz5sWAAQNgY6O6lhLSJ0uWLNKwlD17drklI9Tz58/h4uKCNWvW4Pjx4+jVq5dsn/qlcglJQtwN9Zk1a1bkyZMHK1eulPyon/nz56NChQqwsLBIqFvOZwJMgAkwASbABJgAE2ACTIAJMAEmwASYAKRnTgay4xg9Zef9rxjNT+3M6TNm4+btO6ndLffHBJgAE0hxAjGxsZh/+AI6eJdQ9/VCeOBkEUabEzcCcfXRc/St5y3zwiPYM0cNKZl2Tp48KUOnDRo0CHXq1AFtNYUMB2T8ICGDDH3s7Ow0i+jdVzx9KJPqUz1XV5WxjkKdkXh7e+POnTvSEEGeMVeuaP/vJV2GDBmCcuXKyTVuZCXxp3r16tI7hQw0tP4NtZGQODo6Sh3IAEPGFtKHdCRJSJ9+/fqhUKFC0qhFPEgCAgKkxxC14+HhIQ1VtE8fe3t7WcbYn4S4G+qT2uzduzemT58uPXHIKLRgwQJ89tlnxrrjPCbABJgAE2ACTIAJMAEmwASYABNgAkyACagJWMbFxaXHJXPUCmbkna3bd4tJr4pAgfwmD+Po8ZOwsbISk2TlTK7DBZkAE2ACqU3g9O0gBL16jTolC6q7dhaGnLvPX2K073783rEhYuJiZZ6DLXvlqCEl087p06fV4dCoyWLFiiVTy4aboXBptPbOzp071YUojBqFLdOUevXqaR7KfcVQQl411tbWsLS0xOvXr+OVS0xCQvoMHTpUhmYj7x/F6+bt2w8zLCbE3VifDRs2xKtXr3Dw4EHpnVSyZElp8ErMmLksE2ACTIAJMAEmwASYABNgAkyACTABJvDxErCkWPL0hjVtWdKewLGjJ5EzVw425qT9qWANmAATMEJg4+nL6FS+MGgNHUXcnR2lgadFmdIolScnztwJklmujgl7hCht8NY0AhQGbd68eerC5HGS3BIdHa3VJBlySCZNmgRzc3OtPM0DCjWWGmJMn0ePHuGPP/6Q3j9eXl64ffu2DElHL7BoChlXEiPGuCfUJxmyvvnmGxmejvTR9aYiPY4cOSLVqVatWmLU4rJMgAkwASbABJgAE2ACTIAJMAEmwASYwEdAwJwmNkSstUw91CgxITXi199Rrko9NG7WHufOXUDYqzB06toXs+YslOlde32JgMB7ksPxk6fRudvnKFbaB99+9wsePnos00+fPieP+w/8DjnzlgLVefbsmcxbsmwVatVvjqo1GmPV6vVqnjt37ke9xm1k3qHDx9Tpi5etlGWp/KIlK2T6uvWbMGvuYvw2ZqKs8/r1m3h6qxvgHSbABJhAGhEIDY/AirM30KK8tjdIhQKeUqNcLlkQFR2DFUfOo2WJ/HBkz5xkP1NVq1bF9evXsXv3bunlsXTp0mTrg8KxUYi0bdu2gTxZFAMIedw8fvwYixYtwps3b6RHjq+vr9xPts4T0ZAp+tD6PxTSbOrUqfFaJsMMeQcdO3ZMhj6LV0BPgincjfVJYdVmz54tz1vr1q3j9UCh6OjDwgSYABNgAkyACTABJsAEmAATYAJMgAkwAV0C5rTwbmb3yjly5DjOnD2PU4d3Yu6sKcjnlU+G/9l34JhYQ8AWB3f5wt3VDX7bdkk+NJH16y8/wP/sIWRxdcaGjX4yPVxM+mwRodP6f94L/mf2wdbaFut8tyA0JBTfDR2F9asXYte2tarQau9Ik7Fn7coF6NurK6b/q3qLesfuffjrn1mYP2cqFsydhhn/zsf2nXvRonkTNGtcHz98NxAb1y3ByVNn4umtewL5mAkwASaQ2gT2+t+Ei501KhZUrUOi9G9rbYUFPZth5JbDKP7LTFx5+AzftaipZPM2GQm4u7tj+PDhaNCgATw9PeXaL8nYPEaMGIExY8bA1tYWP/30k2ya1p9Zv349BgwYINeXof+Vw4YNUxt7lP51v1NoHtO+8lHKJ3VrTB9aV+e3335D+fLlQevtKKHgNHVxc3PDL7/8ItfvobBvyho8xvQxxt2UPsmAVKlSJXTo0EGGrNPsiwxkJIrHkWYe7zMBJsAEmAATYAJMgAkwASbABJgAE2ACTMBMxL6Pq1mzFsyMhExJC0ztunyZpG7XLv03Xr0HDx+hXqM26NixNbp26oDChQrgxcuXKFqqGgJvnpHx+9cLr5hdew9g+pQJiBVh5/z9r+DgoSPYuGU78uTOjTmzJuPAwSOYMWseViyZI/vYJgw7CxYvx7JF/6FDp15wdnZG397dULVKRRmCpnmrThg5/AdUrlQBd+4GwKdWMzwK9MfwkeOQ1cUZ33w9QLYz+Z+ZeBr8DGNH/4Ifh41CuTIl0bljO+jTO97gOIEJMAEmoEPgyo27KFuikE5q6h1S6M7QsDdwy+KQep2+68nf3x+lSpVK1X7Tok9lgC/F/zLynKH/P6ZITExMPOOLUo9CpxkLn6aUo/+R5KFDxhwylHyIpLQ+5HlD4eJMDf1mTB8yBNELMCTGuBvrk/Jo/Z61a9eiSZMmWugoxBp55ZDnU7du3bTy+IAJMAEmwASYABNgAkyACTABJsAEmAATYALmj588TXeGnOQ+LR65cuL44e0oVMALLdp0ARlhdIUWZFbkr7+nY9yfk1CzRjX0/6I3IiMjlSyt7Rux6HNUZJSc/Fq+bA46dmgtQqT9gdHj/9IqRwea7VPYGlv792tIWIsQRBF6FmU2Re94HXECE2ACTCCNCVgIo0BaGHLSeNhp0j0ZKUw15JCCNWvWhJWVld7PrFmzTBoDGXxy5cr1wYac1NDH3t7eZEMO6TNu3Di9bIhZx44d1XyMcTfU55o1a9CsWTMUKVJEelSpG3u3c/r0aZmn2Y9uGT5mAkyACTABJsAEmAATYAJMgAkwASbABD5eApbZs7nJkCdKTPzMiIK8YpwcHdDts44iPn6E8Lg5KsKqVDY41E1bt2PcqF/E293FsUuERNOUJ0+fyfV2YuJisWqNL2rV8JHHgfeD0LhRPbhnd0OvL7/GyJ+/16ymte/j442pM+agQ9uWgj2wZt0mDOzfR5bJ7uqKRw9Va/To07uJCMPGwgSYABNgAkwgKQT8/PwQFRWlt6qDQ+p7UqU3fb755ht8+aV+z2DNlzL0AkwgkULW9e3bF02bNgWFddOVQYMGgT4sTIAJMAEmwASYABNgAkyACTABJsAEmAAT0EfA0lhIEX0VUiutiwiJtnTlhkR1R3X0yZUr1/Hzr78jRzZXPA5+jqXzZ8CcrChC1PHz3x1T2v++6IW+wiDj7u6GyuXLaU26PHjwCA2atsPdwCA0b9oAX3zeEwEB9zFwyFCqKhaifoTfR/0s9w39adWiKa5cvo7SFevIIgNFf5RG0qhhXXTvNwgrhaHoq4H98OekGVp6y0L8hwkwASbABJhAEgh8aFi0JHRptEp604cMWill1GrevLlRFpzJBJgAE2ACTIAJMAEmwASYABNgAkyACTABYwTMxIK/cQ0bNTYYQ99Y5YyURzH+X4SEwjmri0lrAtBCxBZWlrC2tFIPU1kzZ8mCWYgQ+Y5Ojuo82gl98RL2DnZadbQK6BwoCzLT27qaQmHdXr+JgItzFrl+T2L01myH95kAE/g4CaT1mjlpST0t1q9Jiz7TkjH3zQSYABNgAkyACTABJsAEmAATYAJMgAkwASaQ+gQsyTPFXDipxMSlfuep2SPF+M/q5mpyl7SwsyGxtLSIZ8ihsmR8SYzoGnGUuhTKRQnnkli9lTZ4ywSYABNgAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJZA4C5jSMqOiYzDGaFB5FwQJe6NO7Wwr3ws0zASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJM4D0BS/L8sBCeJnGxmdw15/2Yk7zn6ekB+rAwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMILUISM8cNuSkFm7uhwkwASbABJhA8hJYfW4VRm3/1WCjMTEx8PPzQ3h4eLwyAQEB2Lp1K65duxYvjxOME6B17w4dOiTZEuPUkuDgYOzevTtFu6NrZf369fJz4MABg32d3bYOftPGaOU/OXUSrx8+kGnP/C/g1d07Wvl8kDQC0eKcPD5xDFFh4YgTHvW0H/H8uVZjswe0R9C1i1pp6eHgY3gGpdXzwNj5NcbdWL3UyqP/P8pz5urVqwa79Z3wM/z3+qnzTbkX1IWTaceUPo3df3/vm4BFJxYkSZu3b9/i8ePHSVrf9saTa2ixoDli42KT1HdaVLp+/TrOnTuXKl1HR77FtJ6NEPLwvsH+DOmTHu95g4NIhxlp9f3z6NGjCAwMTFEip0+fVj/bnj59qreviEigYpcYBKi+Lskyrx8/xJOTJ+R+RMhz+X8+Njpab31OTByBF9evIfS66v9MWMBdPLt4XquB7UeBHiP0PyfDngdjSte6iHwd/3eUViNpcGDoNwGtF07PUfr9R2UysoSGhmLXrl04cuRIuhmGIe7pRUFTnkH6/v99LM+ghJ4H14/tw6rfvtJ7Op++eoLGcxsh/G2Y3vzUTDSPi4sDrZvDwgSYABNgAkwgIQJDFmxGoaHTtD5t/l6qrnbzYTCGr9wh83eev65O552UIRARHYHJx/5Bi5ItDHYQFRWFZs2ayckgzUKTJ09GlSpV5A/OGzduaGal+n5kZCQ+//xzPHnyJNF9T5gwAfTjPDUlLCwMbm5uGD9+PDZt2gT60ZRaQoa3li1bpmh3dD4uXLiAuXPnYuzYsXr7oh8BO2aMQpl62tfejmbNEbRXZWw69tMPuLl6hax/afa/WJIjh95P8PmzuLtlY7y8tVUqyro3li9R521qUBvnJk9UG4y2tmmOVSWLISbijSwbuM1Plr2xcpk83lDLR11X6Z8mSY7+9L1Mp74VOTl6JA5/N1g5lNvt7VvLcmREUST6zet4dZW8hLanxv4aT5+g/Xtltb19e8g8Gs+u7p3x8PB7Q1p40H3sbNEKYfcCEBn2Uu4/u6A94Vm+SXvsmT8pIRVSPT+5n0Fpcc8bg5YSz4MPeSYquhriruSn9TYkJEQ+Z4YOHYotW7boVefJ3Zu4uGM1Cletrc43di/QfaPc57rbWGF0T6v7r1nxFph2aqb48f/+OaIekJEd+h/j6uqKAgUKYODAgUZK6s+adngaWhZtIdbHle9vykILFiyQv/3p97/yqVy5sv4G9KSm9P3n6+uLf//9V0/P+pM+RJ9zO33h7O6BrLly629cpOrTJyXueYMKmJCxefNm0HlNrJAR9YcffkhstQ8un5bfP4cPH47Dhw9/8BiMNXD//n35bGvbti0Mfb9euR3Im9MM+TSCvjw4sB87mqu+Uz2/eEH+n498+RIxwqCr+zxTjul7A31XoOPwoCC1Woe+HYT9/fuqjw3tGPveodTR/R6UkD5Uj76/KToqW/qel9B3wcDtW+PVO/f3n6DvbdSO5piU53notStSVUN9UubFmVNxYepkWe7mutU48v23cl/5U1t83fQ9EIuzet4rcHTNhhyFSuL0llVK8XSzNfSbgH4n9OrVS/5GefbsmUn6Jsf3DpM6SkShY8eOIWvWrPL5lly/9ZLjuWeIeyKGlqJFTXkG6fv/l16fQXTv0v2vGLs/5BlE4BN6HhSo4IPrh7bqfUEuu5M7CmUtgJVnl6foOTSlcUtpzBElOciaKbi4DBNgAkzg4ybw26cN8IvGOmtDFvuhRpE8Ekro6wg0+WcFvqxeGi521ojJQG+CZtSzutnfF9nt3FA+t2rSOzHjWLhwIebMmYPmzZsnplqKlKU3yGfPno2ff/450e3TW2d58+aFj49PousmtQJNBOTPnx80gZIZhX44jRw5EkuWLMHixYv1DvHCns1wyZkXuUuU1Zuvm1ikczcUaN1WJh/o/zlyVK+Ool17yGMbl6wIux8IO6/c+GTzVnVVM2UCUrx45Fy+NBouX4Vw8Tb/qTG/ITIkFN6/jUH0mwhEBofg4dEjyF23Pu5s2iDrx8Wo3mZtun4zIl+9hG+VqqizfCncSpeBjbMLYiIjZLlL/81E7en/yf1YYcSKjYxS9//myWM8PXgU1tmy4snpE/CsXVeVJ/RJqpQZ/C1Kfv4/7Pu8NzxEe0W6dIN1Fmd1cyW/HYLCHTvj0clj2N22A+qvX4Nc1Wqq843tlK7XHBt+H4gHNy7Bo3BJY0XTRV5Sn0Fpcc8bA5YSz4MPeSYa0zU95ZUrVw70uXfvnkG1DiydAZ/O/4ONnYPBMpoZNf+ZgdjoKPFceAPfyt6os2QR3MqVl0XMLSyQVvdf0RzFUMSlINacX4Ue3r00VTa4/+jRI/z000/Sc7Zw4cII0pioNVhJI+P2s1s4EHQEvzUZpZEqfvOL5xf9zzx+/Lg63dLSUr2f0E56u/+Sqk+s+B+xe9Y4tBsxPaEhx8tPiXs+XieJSLh06RLu3r2Lnj17JqIW5Bv7ixYtwp9//pmoeh9aOKnP/g/tN7Xqt2rVCvQxxJV+Rv00PRpLR1uYpJKFjQ3a+V+UZZ+eOY0D3XuitdhaWFvD3MoK9B0q76dtcHbi76gxaZr06Lm7ZJUsY0oHxr536PselJA+Sp/ekyYgT8MmyiGssmRBXFSM0e+CLsWKy7FenT8XwefOosY/02BhZ6f+bnZv3SZEjA6GlZMTbi9TvSwUG/P+hSp9faoVMLJjaw2M7GuBP+bHYsUf743fSpWq7Xrh/+ydB3wVRdfGn/SEBEINvUgJvQnSe0eKoAgoICLYfRVULFixK9ZXXrF8gqJIUar0DtKLtNBbKAmElkAChJDyzTNhL3tvbksPcE5+N7s7ff93d+7unDlnfnuxPxr2fAg+fv5GcJ7cUnnDCRL8DSmuBsDdlbz43MHzePXVV/XkOXfPw1U6WtXkRr/nql1ZGe+qD0rv75+rez47+yByOTZ7pn4Xi1i1HCHq2c5VewyWGe0PvH390GrIS1g1cSwe/vAHozjLdsg9Q/HM38/h4QYD4e8TYAnP6R1tmZOShw1zjoQfh/HJaThSnxAQAkJACFgTCM7nj6IFAvUnQQ3AbzgRhS51Q3WiQD8fbBw1BC/3aI3CfuqpWCTbCawNX4tW5dMO9NK0njNtAwMD8d571gM577//PurXr6/N75999lm9P2HCBLfaeuXKFa1wKVGihJ7RO3DgQPDhn0KlkNk1SrNmzSwzEhOVm4i3334bVatW1fmY1rBmefrpp8G0lM6dO+v2fPPNN/rY2T+2meexcuVKvPDCC3q/f//+Vlk6dOiAGTNm4N5779X1Pv/88+Bsdc6WnDYtdYYdB7YY/umnn1rltXfAQUfWOXjwYHDwhPv80A2OIfbqZNyiRYt0Ws6EJofvvvvO4jZn4cKFug1GGWzbm2++aRxiypQpIPPy5ctj8mT3ZwKRMTnVqlVLn3/btm1B1yYUzizmTG9eIyx33LhxlvZYKnayc3jLGlRuckO54SSdEeUTFIiAYiH645UvAL75C1iOORhhiJGGW/+iRY1gNWDhDf9ChfXAbJWBg3Dg+5+0uzEmqPjoABxfMBfXYqJxbstWlO5xc/DAT1lQBdx4mQ0orPZVuR5qvUhKic7tcOKv2aC5vT05rRRExdo2R+iwoYhYvsxeknSH+Qbl123wVH2krxrYYHv4UmKIj/o+gspXQOU+/VH1uaew+/vvjCiXW7/AIPWddMGxnVtcps3uBNnRB7m65+mKijNReU3zHps+fbrVaVJB+cMPP2grQKZhH8k+jf0O71uGjR492rK1ymznwFV/4Kw9zvqDjPaJbKIz7s7qZF9u5nVBufAjn8OHD9s5c+sgZ78LR44csfS/7CuduW20LjX1aN/Kv1GudkN7UXbD/JQiWvchN+55ff/f6HeYITfvv+blm2PtMfctAvLly6fP8apSTPF3o0wZx9Yj9mBsObEZ5fOXVpNrCqWJ9vf3178p/F3hp6ipr02T+EaAq/svo981nw/4e2fck3QPYwhnij/yyCM6jgx69epl+Q1z1R5n9x/LPx9xHLHnTqJMdesJCc7a4+qeN9rtaEs3Qa1atdLfJ/sow2Wqq2eATZs2oW/fvjoff6/pHpdCVryv+JzHwUnjmYT3rzOhizje3wMGDNBW20Y+8/05Z84c/Vzy1VdfWa6VXbt26UFiPlMZrnvZ5/AZjjPBXYmr509HdTq7Dlins+dPDtz26dNHs3v44YfhrpUCy6U7NubhtcmP+dmU3x252V6XzOdKjigDmgtnUtCwhvuDcLpf43OReo6h5Asprvs6DqJSGrz+NsL/+FNb6Wx6+03c8/knCCrtXp/h7LnD0XOQq/awTb5q4oyRjltvpQRx9SzINEzrExQEL38/vc9+2xA+70WuXoEzWzaiTLeuRrBla69OS6SLnWZ1PDBrSRJMuiFLjjLV6iD+cjTOHjtkCcutHWfvBLw3jXeqLl266Gt027ZtLpvq6rmD9znfIXi9sw9jX2AWe+8+vH/Yz/A+4XsIrQD5e0NrR1dCJT3zffnll/j222/1PttoiLP2fPHFF/q9hm1l/XxPpLjT7+mEDv454+6oTrqIYxvortMQ9rPkZbw/G+H2ttnVBzn6/bPXBiPMuJdzug+iu+6Lu/ah0aef4Miff3JGim6Sq/YwUWb6g/K178GeFdPVeEXqOIfBgds6perhenIiDp3L3f7Ae8D3sTjTydy0vLG/bPlazFu8Mk1junVqg/btmqcJlwAhIASEgBDIWQKLlRu1JmWLo0JIYV2xj5r1WkQpekRyjsD+6ENoVqFFmgqpnOBDMF2VcADTLHwY5uBIjRo1QPckdLUWHHzTMsCc1nafs4Q56MABUc6onjp1qlbKeKnvfsWKFZaXe+ajOTwHoShUqPz444/6gTq/mk23fPlyi+KA7ePDbvXq1bV1DgcqmMaV9O7dG+3atdMv6RyI5CCPj0kpwPxsAz90FfbRRx9pBQzT8IWCljx33303aMJP5YmzNRuMtpQsWRKzZs3SrumYx1Cs+PreVF7aq5P5qVj5/PPPUa1aNezduxcdO3bUA87t27cHB1727NljVKNnyx46lPqAePHiRTz00EP473//i9q1a2tFkiWhix229bHHHtOKmq5du+qZ2LGxsToXZ4wuWbJEWxfxZeFRNaOX30GbNm1clJoaHXVoNyo3bJkmbatfJyA4tKoOrz/yNSuFTJrENgFXw0+Crs4MKVi5Cqo8NNA41NvrsXGI/GelVsR4eKfOai3Vqg02qe+0qJqBX/GBPrh01PUANAvLp77PWq++hL2//IwmH6WdmXxi6SKUad8JRWrWwurHh6Hh26PB2f05JUXr1MPRKVN1dQHqBbjF+J90m73zBer9gupaspWi5SrjbLh7bhM5sMjr0J5wRidfuu3JqlWr0LCh8wH27OiDnN3zvL+ozKX7Q86apwsMDuBxvQJjoJrXOQc9X3pJzbZT52Dcc1z7igMGtH4YP3687svYLz7zzDMoVqyYPQQ6zFl/4Ko9zvqDjPaJbJQz7s7qZH/IwYgHHnhAnxvdR7L/pnsvV+Lod8FTKU379euH0qVLY8uWLfhTvYS3bt1aD6bSdZgruXLxgh48K2zjAsvde8FV+a7is/r+q1CoPH7f9Yerai3xHDzm7+x//vMf/ZuZHusZFnL43GFUKVTJUp55hwNLZrdtVBRwgM6ZOLv/OCkio9/1P//8AyoM+JvK3zsqGJ588kndFF6zZPDGG2+A1xN/x/l7yL7LWXtc3X8s/EJEOPwDC6lPkNVpO2uPs3veqhA7B7Scaa4sUjnLnJbI7JsMxYKzZwAWNXz4cP2Mw+cAWmgZE0j4HMff+bFjx2oLN2NSiqtnOj81geCvv/7SzwRUgLMMirm/oxtEDqJyhjefdajk4nfAAWK2n/f9xx9/rL93TqhxR9no6vnTUZ3OrgO229nzJ5+DIyMj9bMgramN5zbmcyac+MOB8cqVK2ulG5ny2ZVCl8AcjKUSkiw4WWnQoEFuK6uPKr2XfwEP5Ld5ZeKM85a/jNd1FFTKPv7mU9HijgSWKoUGn32kLXoLNaqP0IcecSdbmjTmfo+RmXkOOjR1MmhJZEiNx55AoPo9yIyU79odexWXoHLlUU7tH/nVuk91VGfogMGWQeBynbsi5O60riXL3njkiThDF3jWrfRS7w4FS1bE+ZPhKBVayzrSzhH7NPOkLCMJ3V7zfnb07MU+0Flf7+qdgO9nnIRBxQuVD1Tch4SEGNU73Dp77qBClO+UdFHIiWh//PGHfo80K4nsvftQCcvffj5jsU/nfcj3IPbn7FecCX+P2C+xv6QlKScfst+iuGpPATVRiu+d7M+4JQv2sQULFnTZ7zlqkyvujuqkp4OyZcvq92Xyo3AiAt8/+e7sTLKzD3L0+5cX+6DT69bod75SbdpjzdAnEXP4EPh+6I5kpj8oVCK1r7p05rTyRGHdb/l6+SDYNz+OKgvoWiVru9OUbEmjbKrdnxGQLS1wUKg9RQ6TOgpnnCh5SEFECAgBIZD9BJI443/tTrzYqXH2VyY1OCRw6nIUQoKsH9KpGOFgBGdpVqhQQVvSmNcj4MCmMbjJQTYqT9wRDh5wIGHSpEmWh3B3fa3zRdwQDobwpdcQDhgbAw98YHe3PXwo5ydIzd5jGY7ycSCML04UDgpRmjRpohVZVADRwoYKHZblSviCxXrotoCzptNTJ5UpfLHhbDLODgsNDdWWS1TmOJPNmzfr+ngeFG5tFXSO8vOl7vHHH8dTTz2lk5jbSzcnI0aM0C85jKQ7Nc6Ea+OmMuf0gX+RX/kRt5VyXe61BFHJkl4JUi89hgQUvTmQHr1pm/bBToVPsZZN0Vy53jDEOyAf7urXF5tGjERn5W99zw/uW7NUeXggZtZVswaftV7okuviHJ82EzUef0q/NNCVW/SeMOWmzXoWt9GG7NjSjQjr5QLIdMVWodvNtZLM++a6C6jZukf/XW8Ocrhft25d/aJtm4CzGXl98yXcnpivI3vx2dUHObvnuS4BZ19y8JEDBlQI16xZU/uL52ClIQzjYALFrJBq0aKFHvTgYGKjRo30+fPl3zy4aZRhbJ31Bxwsd9YeZ/1BRvtEV9yd1UklDgf32W72TVwvi4MnvBacibPfBVox8Br63//+hwYNGmhlMQebORDvjnvPS+fUiJqSwELW/Yy794KzdrsTl9X3XzH1W31FrXOXqGZzenuqV3AXwrWEKlWqpCcaUNHGQS0uAs1BJUPp5qyIExePo6Ly625PeH9zYoEhxm+wcWxv6+z+o1VGRr9r3iecYMJBTgoVqoZwIPLFF1/U9zTXcaPC9ZdfftHRztrjTn9w8cwpFFbKb1tx1h5n97xtObbHtHzjswMVUlSK0DLHHeHzE62eqDDj98Z7yZAA5X6K/TGf6Wht66pvNvLxvmZa3qPsK53l40Qc28FghtHVLAdw2acazxhG+Y627j5/2qvT0XXgqC4jnFYAL7/8sn7u42+eo3UAjfTGltcznw+Zn/chhRNeKBycpnCwngPMdBHcsmVLbeXkjlur41EpqFo+bd9aoEJF8EPJV7yk1W++DnTxr0jNOjpFieYtYEx2cZElTbS530u+npCp5yD/YkVhfqYzWyGnqdjNgMI1ayFOKUZPL1qOhm+8nSaXozpDGt5U3hSuYV8ZU+zGHIPT59Iqc1hR4bKVcDEqMk2d9gKolKbi01Z4D/M+sPd8xfvS1QC/q3cCKg6oBKDwvmYf6o44e+4w3iH5bHT06FGtiPjggw/0xDTjnmAdtu9bxqQ0KrFpncJJI/ywDFfCdzt+2M/zOczcR7lqD997+Dv577//akUK66JXAipW3O33bNvniruzOjmpbtiwYbqfYD/N3zCzIsy2LuM4O/sgR79/ea0P8lTv3ccXL0Tpdu21ZTU9KnCNMHeVOZnpD4xnz9jzZ9Ioc/gdlQ4sgVOXThlfV65s1Zo5San6nJRcqT9DlTpS6Bw8cgxPDXs4Q2VKJiEgBISAEHCfwFblIyAi9gra1Ex9wXE/p6TMSgIlA4vjbFyUVZFhYWH6mIoRivESqg8y8Y8uSyjmgQR3i+MgDQdI+NDPFxnO5uQM8pwQWu/YE84SGzlypB5A4iz8rBR7dXImGx/2OTOdA1J80TAsl5zVTTcqhssEpjMPwDnLx7gdO3boWc626TgoRCsFDsIYwoFthrkrJULvxqULZ91N7lY6rplT/dFhdtMGVa2IVt//n1aorFeKlytqwN7sQqRCtx64eOhgupUtgSVKocoTj2H/b79Y1Xtm62Z9TBdsserFk207pRYnzkllDtf64Xo9fJlxVy6pdX4Kl3JPQcuBSb7c2hMONjqKYz5nkl19kLM6DRc/HMQ1FpymotTWyo+z+e0Jrev44eAohfmMARF76V2FuWpPRvsDZ/W64u6sTg7k0LKC1jO0cOKEAO67Eme/C5w9S6FyiMK+n30Orb7ckQJFUycqxKl+xj/QtbWmO2WmJ01W339n487omZzuKHLowopKR/KlBQdd1HCwmH26u4NzZYPLITLW/kADrSjMljnp4WIvbWa+a7qcMSun+FtExSSF1iCcoU1rFLpDvKQWg6fQPY2zQU9X9x/LCA4piQvHUy1geWyIs/YYaTKy5WAiLT3Yt6ZHmJ7r13FSChV8fJ6iJaFxX6WnrPSm5Xdhq8hhGQx79913tZUzZ+qn95yctcNenRm9DugCkgOitK6hsH83P/c4awcnBbDPsvcMzT6M7TQsBfhMR+F94I4yp1xxD+w/lrWDb5z0sfHN11Hh4Qex96tvUbnvQwiumP53NHO/d3rDWn1eGX0OKtOuY7oVUrpCJ/+4lmL1J57EVWUdxYk8tpKZOs9eSC2t5M15RFbFXzhxGME9ra3FrRKYDnit2XuG4nOGs2cvVxMoMvNOYGpeunb5bsDrmtb8hvAdjhPTzGLv3Yf3EIX3inHuvC8zI67aw37SsCo0JuQY1owZrdcVd2d10gqLXhH4XMV+hX2QMbnQWXuysw9y9PvnrD2u4rKjD6L77FMLloJK3KNq3RyuE3Z8wTxUHzzUVXN0fGb6g8vRqc+w+YsWt1tXxOXTKFWglN24nAr09vDwyqm6sr2eA4dca3mzvRFSgRAQAkLgDiAwZ+se9K9fBVxDRyT3CFQrHIpj0cesGmC8tNINBAfo+DCYFWJY89Admb0ZpYw3fKjb1smBUbq64AAEZznSBzkfbs0zuthGvrCnVzig4ywfTd/tCdfG4Awxuueg/3nOWs8qsa2TA09U5NC0nu5sONOWLuqoVKFwcM5wt8JjYzYb98nIPFPZWPOGcRSWbVgaUEHFWWyGcLCHs5lthS+LfDEzz47j92qe+cY8fPEy3LLZllGiSi3lpsb62rNNk5XHPsrFSeEaNfXnsrqmN741Ct3mLbJUUazBPegwcbLlOD071YYMw99Nm2kzfsP/fOSqFQiuXc3iIiTorvI4+vecNBY86aknvWnPbtmMoo1vziZ1J/+Z8P2o3jLtbFB7ebkAOpWL9oSDqbSisye0rOC940iyqw8y6rN3zxsv7BxgsDf4ZuS1N7hixGXl1ll7XPUH5nY469vM6bjvjLs7ddKCieuBUR588EGrQUlH/Yyz3wWDNQde2C9ROcaZ7rYu1tj/2RvcyRdcWLvBij4dgaJlU2er68bl0L+svv+OXghHaKHUQWVXp2AoI/hbwYEfWipwrTfOuqb7HnekStHK2Bix0Z2kVmn4G0P3PJwVTessW7F3/7n7XduWxWMOioermfaG0DrMUCAsXrxYK3JomcJ66SLL/NvJPPba4+z+M+opUqaCduMXfznWSlnorD1G3oxs+TxGi1h74uwZgOnp0ovKWrqPZB9Hd5FU8BjC33TeoxkRR7/xLMvgaFsuvw9aZlOxRBdrK9VkHT4vZIXYq9PVdeDo+ZMDyXwO4v3EiUjsT9kHmYVWNnTNSYWpYR3GeLaD/dKpU6fS/BbSnSeVRGTO68+4X20t3Pjsa28QuWIZtX7HpRRcigMKBJlbk/H9A3/8hgRlWUqXsQHFS2DrB++i3c8T1aTttBZAzmox93t54TnIXlurDnzUXnCmw47dmGdQyo4yJ0n9fsWcOoIiZcq7VQ8tUumK0FY6deqk3Yw5evaiBb+ty2hzGa7eCcxpM7pv+9xhKCj52+NMcWv77pPR+l3lc9YeKlppAcz3mwoVKmirRnqVMN63jLKd9XtGGvPWGXdXdVKRRctCTqhh32l4WjDKd/Sbm519kKPfP6NNGdlmRx8UtXGDntR2TfVtURvXg26mI/5eiHilODevq5qR9rrKE336pE5SoFhaZU5C0nVcTIhFhSI5/2xqbreaGpKCFHurfJlT3Sb7vImnzpinB1Gy85T27DuEnbv3Z2cVUrYQEAJCINcIxFyOx5RtB9GjfrU0bYi+fBVRMbG4pn5XouPi9f71DL5gpilcAtIQaFa+Kf45vsYqnAMGHPyhmzVafxguSawSZeCAL8Wc1c7ZThxQ4CATF9Q2BhA4a5aL1xom5OYqOKOJM2tZBk3tKebBO85g4ywlrsfDF1/bh25zWbb7HFSmMobnyja5I/SbPm7cOD3znANDXFuD7kayS/jyQ5ckHCDnixpd1Rkz2lknXX/Q/RoHsWhVwAd+Q+gSjuFcbJdKMuY1CwdIOSOMHzIwC2fa8zw505hsOIhhDJrRxRwHg/i90H0AlWy2aybQpQLdqHA2uPn7Yh0VGzTH4Y0rzdVlej8p7jKunIq0+tgrtOojj+Litl2IXL7UXrRV2FVlqULlD+Xq2TO6bHXRWqXh7NXy/R7Qbjt0hIo/8scU1B4+Qg+McHCkyYef6TrjTt68TuKVwtTcXq7n40oSLsboPMnXEnDtxn7itZuzGxPiYnHx8CFlKTQBB38cj5qPP+2qSEt8wpXLOLJpiVow/qYbHkuknR3O9Of1aO/DQSl74QzjNelMsqsPMuq0d8/TYo3WiHxppyKb/RLdJ9J3fG6Is/a46g/Y3oz0ic64u1MnZ9VygIOugx599FErbI76GWe/C7T+4KALldjsm4zBZ1vrTl6H/O3ggKittWK1Nj1wfNcWq7Zk5iA37791x9ehWTnHSlDzefH3guzokouKfrrsofB3ymypac5ju393mQY4FhuBmKvRtlFOj/k98PeEi9XbE3v3n7vftb3y2rRpo3+LOYmBrmdmzpxpScbfLT4T8LmCA178PbMVe+1xdv8Z+QuXKof8Rcvg5F7rCQ/O2mPkzciWz0j8LeezGa9zWnFQoU5x9gzAPpfu9dinUVHNc7NVGjA/n8f4jODucxDr5QAlf9vZVxrPcgx3Jvw++GzB9R/oOo59g6NrxVk56YlzdR04e/7kcyufm+g20956OXzG4fVON7Nm4Roh7N/o4pDWcTxvKpUoVPhRWB77NvZxVBrZToBg3WRkPPvpTOrfXWr5hcIhHti6N8UIytSWzzhb1BqFTT4do61Vaj7xDCLnLcbJpantdVW43ecON5+DnJV97cJ5q2ck1uNK6OKWz1V8Prqunmm4n3DJ+tnWWRkZqdMob8POFPTo4AUvNUJqKyf37dSTC4qVd08hT8t/e89QvM6cPXs5U+SwTa7eCWzbnZ5jR88dfDbgO4vRd9Eih+8Mtr/X6akrM2ndaQ/vOd6bfGe1lYz0e+5wd1YnJzFyfS2+y/H9yyyOfnOzsw9y9Ptnbld69rOlD1INOLl8Ccrf39vyLtZcWR3SY8HpjalWg67amJn+4Jh69qzeprdSYHqlqWZn5Hb4KHe5ldWkmdwUz5SUZHjY67Fys1XZVPfRYydARYtZo8wBozhlym5P2AGbH2ziLsfZHWC6pl7IzbJo6WokJVoPFJjjZV8ICAEhcCsTWBGmFp4L8EWDSmXTnMYHM1ag+Se/ahdsb81do/ePRt2wW0+TWgIyS6B7zZ6IVOvm7IzYblUUZyXRvz5nQ2flYCYX2eUsRA4mcMsZoobihT7vuaAuZyIaihHDXQCVORzs4YLOHHTgYrG2A3oMow9mzlC1N5vN6gRNBxzk4osFz7VOnTqmmNRdow1GBB+ae/TooWf3cs0grt1AX8Ysx/ybb6TPyNa2Th5zUI7nyBlaHHDmgJGRjouMc1Y8LZ6o1GKcIZyhzEETzsxle8nXLEYZ5jBjn+dFax3OAOT3ReWM8fLFMrnP74Xh9HlvuyApZ7XR6oeDh/zuOBhiSO223XD26F5E7N9lBGVy66HXh5lRrz7MnxQ+Tyl+ZqH1TK1XX8K2L8aYg632PW6sCbmoTy/83ay5jls58BFddrwaGKCrDrPUePxJy+GF/ft0W0IaNLKEUeFDV2tRG9ZZ2mOUZ7T36JzplvSOdnaO/Vq34fy6zQj75HO9H7VhvSX5ni//i0U9u+PEksXoMFOtsaAshtyVXcvnokqze1HajcV5WSavHQ4c2Psw3l44w5xdc8xHya4+iGXbu+c5K5x+1PmizEFwujHhC7Pt7EtnbbeNsz1m3e6Ks/awXGf9gVFHRvpER9zdqZPfLWePcgDTdi0vZywc/S7wO+Diw7QqYf9Mv/G0MrS1AORALAfkaXViq6ho2f9JrJ/8HRLirxpY0rW1bXdu3X8Hz+zHgZjD6FO3n1vt5/XDyQ1UTNLqgP1vz549dV6ub+aOVFSDDE1LNsSMHX9ZJbdlYhWpDlzF27v/3P2ubeviMX/vOAGFrqq4KDQHOg3h7x4H0Xj9VFC/R8ZvvLmN9trj7P4zyvb08ka7Ya9i/V8/G0F666w9VgnTecBnHg760/qN9xhnXRvWsc6eAThLfuDAgbpP4z1KhRefvczCNSnowo0M+VvP68YdoYUJlbe8//gdGmtROMvL5zQKFzHn8wytuBjGvje7xNV14Oz5c+jQoXpCC8+V7TRcEBttNa4lY2uE81lr+fLlWtHI5zA+m1LpTKFSjYpFrv/Ia5PfKwe6yd4s/J74zEnLNbPCy1sle/9pL4ydmglljvodMeTfTz5A2ft7oHSbdjrIv3BhNPzsY+V2bRTMk0WM9LZbe88dLp+DbAsxtceI2vzya1bPc4enuraejlTubPlMtffrsTi7Yq3e3/1jWiWuUQe35u8uI3WyjITrwJjfkzDyEetnQ8ZRNs/6DW0eGwkfP/c8UvBasPcMxXC2114cw1yJq3cCV/ldxdt77qDVL5XstNRk30WlD+9/4/3PKNP8PTDMfMx942Okz+jWWXs4qYWeF6gI4b1puIIztyUj/Z4z7u7USQUSlcC2Vs+2nMxMsrMPcvT7Z67f5b7pns+OPojvf0d+mYSSzW8+E3iq+6dc715KyWNnMp+pPUbbM9of0BJv/ZTv0WrAM0ZRVtvftkzEsHqPwt8nwCo8pw88CvaYknJm+gPKPidvyYuvfZihBn35yRt2861XC+f+OSN1xoWnUl6NePYxLF72D/YdPIzrCYm4u24NDHyotza/fe2dMWjUsC42bdmBwQPuBxf6nvoXLXqSdFo/fz88OaQ/Yi7G4s9Z89VMjQTUrVlV53/nw6/V7KErYB2ff5jWtNJu4yRQCAgBIZCFBPYeDEfdGrk7UyALTyddRdENBV0l5KTkRp3m8/t143jsPbsXn3S3HtjmLELOSuIDqDtCRYbtg7mRjw/B5pdUlktFAMs2T5BgGfRpb7hcMfJzy/ScYcyZi+ayzGnM++lpjzlfZvazu06WTwaOvhMqSzjj1h4fcuX3Yzsj153z5cuM4cvd9mWRgz58MbNVErlT7vrpv+LMkf24b+RH7iS/I9Jo5ZODM9WTp+y8bDhInu7g/w5si56vfIoKdW4qodJdSBZmyM4+yFkzeY9xAJSDpeb+yVkee3FZ1R84ao+r/sC2Tbz/mceRcDCW4oy7qzrpBpIzzI0BW0d12Qt39rvAWb1USnCQPb3yxxtPokabe1Gv433pzZqj6Z3df+8vHo0i+YrgmRbPpbtNnO1LbhxES6+EndqFJ2c/hX+e/AeeNgrs9JblTnpeX7bfNcMcPVvw/jTuUf4WcfDN3jXC30YqtKgyKSPbAABAAElEQVQ8SK84uv9YDpWEn/Wog2d+Xa7WGitrVbSz9lglvHFg65rInMYYwGUYedAtD5+TbL9TR88A5MffcN7j9p6vzHUZ++62x0ifFdvsrtPZdUCujp4/GUfrGttnVnfPmdc0n51sXUSyr2WbOIHAuI7dLfOKMsgt1SUR2//wRoVS7uZKf7pkde4ejgb6PNUAu7oHRYB5q4FvpyVh4VhrhRzZXDp/Bv/t3xwvz/rXyiVjbnJL7zuBu/2ws3OihRzvBb4zsK/OjGR3e2hxyP7IXddvztpjfgd2xt1ZnYzjMykt9bp0cc8VsplvdvRBzn7/zHVndv9W7IP2rFmCDX+Nx2Nfp1VAR8VGocdvPbH0scUo4B+cWTyZyq+UOVNTzsxQyhz1kJCXJKuVOTy39z79Fj26tEd9pbjh+e7eexA1q1dRMyZO4buf/8DH776MI0ePY+wPv6H7vW3RpkUTXFTOTD8c8z+MfOFxFCtaGC+P+hivv/w0TkWdxdTpc/Hic0ORPygf3vrgK7z7+gvYf/goZs5ZjNGjXshLOKUtQkAI3EEERJlzZylzsurS5qxBzsiyJ1ycmFY3OSm50Z7cqDMnmUpd2UvgunITN7VSRYeVdFOzfAupGegi9gnktfsvr7WH63vZW2DYoJmZd7lNmzbpdc04wzw8PDyN9YxRh2yFQHoJ0NqKrqzsyXfffYenn3bflaS9MvJCGC0AnQ0a0prGnQWvs+pccqM9uVFnVvG6ncuhdfLZf+zff42+/AyhAwbfzqcv53aDQF7rh/Nae7LzeY/vz1xDiRMz6NbamHhzp1yc0gdl3zedOoUr+8rPMyXTlVpM9CVUqVROt4maZc6g4Bo6+w4cVfuppqoHDh5FaJW70K5VqluLY8dPqoezIBQPKYoj4cdBq5yCwfkx7udJKFKoINZt2KrLS1LrQ1y/ngjmr1bF8Yt8ngEiDRECQkAICAEhYCJA9zp0tWVP7M2UtZcuK8Nyoz25UWdWMpOycpeAT2A+9Nm712Ej/Ark7gwuhw3LIxF57f7La+2hKyV33Sel9ytlH9+iRQuMGjVKFDnphSfpnRLgGhFcV8We0NrmdpCgoCCn96a71jRZxSI32pMbdWYVr9u5nLbjf0WyA/f/Pvly10XQ7cw9r51bXuuH81p7svN5jy4a6fa6a9eud5wih/eB9EHZ1xsoZY6yyKEeI28Z5mT5GR9SFjf5lVKGDxrXlcnduJ9+R6AyV+/csRV8ldnsReUyjbL3wGE0anDT5z4VNlQCffj5d7gWfw3DBj+o3K2l6LDOHVrC/4bfzEHleisXJYFKMXRYW/9k+QlIgUJACAgBISAEspEAB1Xy0sBKbrQnN+rMxq9Uis5pAsqFGn3Vi2SMQF67//Jae6hwoZuO7BBaDeSk5UB2nIOUmTcJZNYdT948K+tW0Q1Pdt2b1jW5d5Qb7cmNOt2jcWen8pVJJHf2BXDj7PNaP5zX2pOdz3tcm/VOFumDsu/b91ZebJGilBO3u5w7dwGlSxTXp3nk6AlEnIpSbtVG4nx0DLbv3IN7O7bRfhVPKJdrD/e96ZN58l9z8dTQh1CiZAgKKEUQJV75R6VQkVO3VjVciotDkFIMJSqfpFT8lCheVMfLPyEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAhkloB3jxr+4EyKzPhZzmwj7OXv1qkN5i1eaS/KYRjzOJIiapGu+QdW4m21ts0LzzyqFh9M1uvclCheDHFxV1CpcnkcPxkJH19v5VKtiKWYy2rB5u9/nqwsevLB28cbndq0QJPG9dG5fUv8+vt0BOTzV4sx+uLFZ4foGc1M98W3P6N7F7XmTssmlnJkRwgIASEgBG5PArVq5ewaPbcnRTkrISAEhIAQEAJCQAgIASEgBISAEBACQkAICAFnBDyWLFmS0rpt2zvCOidOWdB4K5dq/n5+ygonSVnSJOp9R4DmLViOK/HxoJIoUSl/Fi3/ByeV5c6I5x7TWej/93rCdeRTPtINoQu3y5evIli5dKOSTEQICAEhkNME9h4MR90alXO62jxRX1hYGES5kie+CmmEEBACQkAICAEhIASEgBAQAkJACAgBISAEhEAWEvD8cEbsHaHIITOul0NFDsXb28uyrwPs/Is4dUYpaxJw9nw09u4/mOqOzWT946MUQ2ZFDovw8fZGweD8osixw1OChIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiB9BPwLKKMSrw8xYLEHrr7uneEj1L+LF+1HjExsXjxuaGoGlrRXlIJEwJCQAgIAUUgRS3BdvFKPOKvJ95xPNo9lYRt+7L+tJOTk7Fs2TJcuXLF7cKZ/vz5826nz4qEW7duxcyZM/Xn7NmzWVFklpSx9yjQeHASlIGtiBAQAkJACAgBISAEhIAQEAJCQAgIASEgBG5ZAt5Pdg5Cshp8E0lLgGvnPNira9oICRECQkAI3KEEhv8yF3P3hVudfe2QQpj54gDsjzyL/0ychyMxcTq+f/0q+E/nZiheML9V+tv1YFBXT3zwf8mY/rlnlp4iXXp26NABBw8eROXK1u7zxowZgxYtWqBp06ZWdfbs2ROLFy9G8+bNrcKz8+DkyZPYuXMn3n33XaxduxbFihXLzurcLvuzX5MxsIunmrjidhZJKASEgBAQAkJACAgBISAEhIAQEAJCQAgIgTxHwHP6ussQu5w8971Ig4SAEBACeZLA6L4dsGHUEMunSdni6Fy7km4rLUhe7tIU2995HGteewQnLsTij7Xb8+R5ZEejHujogXnLk7DzYNaW7uvri2PHjqFChQppCp4/fz6OHz+eJjw3Au677z688847yJfv5jpyudEOc50HFZrJc5IwsJs86Zi5yL4QEAJCQAgIASEgBISAEBACQkAICAEhcOsR8Jy69ZpyPSK+R269r05aLASEgBDIeQLB+fxRtECg/iQkJWHDiSh0qRuqG1K9THF0qlcVQQF+KFGwALrVrYJZ27NYs5Hzp+x2jQWUDqN9C0+s3+GeuevLL7+M6dOnpymf4TNmzNDhVI60bt0aAwcOxKlTpyxpJ0yYgPr162PlypV44YUX9H7//v0t8dxZsWKFDq9VqxbmzJljFefsgMqhhx9+GIGBgfrzzTffWJLTfRvr9fDwQK9evbSSyRLpZOejjz7CxIkTLSlee+01yzl27txZWx6xvtGjR+s6uaVQWTVs2DB9jox/7rnncO7cOUs5mzZtQt++fXV7ypcvjwULFljiuLNhF9CgnhcKFbAKlgMhIASEgBAQAkJACAgBISAEhIAQEAJCQAjccgQ8hzUPgKcalBERAkJACAgBIZAeAot3HAAtcyqEFLabbcOhk2hdpazduNs1sFoFD+w54p4yJyQkBEuXLrVCkaIWHRo3bhzKlCmjw5966il9/M8//+DatWuWtL1798asWbPQsGFDvP7663r/yy+/tMRz57fffsPYsWPx6KOP4qGHHlLrGbluF1263XvvvXp9HiputmzZAm9vb13umTNntNKle/fu2Lx5MxISEjBo0CCrOh0dhIeHIyoqyhJ96NAhi1JmzZo1ePDBB/HII49g/PjxWglFV21cdycmJgY///wzSpUqpRVXS5YswaJFiyzlDB8+XDOgoosKsODgYEscd/YfS0HNivKMYwVFDoSAEBACQkAICAEhIASEgBAQAkJACAiBW5KAd9u6+fSMVncGeXLjDPcdOGSptlqo9VoBlgjZEQJCQAgIgRwlQIvOCWt34sVOje3Wu3DbPszZcxTrXh9sN/52DSxdzAMrtrpn7XrPPfdoRQVZDBkyBG3atNGfK1eugNY0lJIlS6Jw4bTKsoIFC4KfoKAglChRArRKsZWXXnpJr5nDskaOHOnQVZs5H5U3u3fvxuzZs1GpUqr7vOrVq+skVLpQ3nzzTfj5+WHUqFFo2bKlVtIUL15cx2X0H9f98ff3R3R0NBo1aqRdtV24cMFSHK2VvLy8tMXQunXrMGDAANCt35EjR7SSiq7dGjRoYElv7IRHpKBKeVHmGDxkKwSEgBAQAkJACAgBISAEhIAQEAJCQAjcugS8Hx13ASfaJsHD0zNPncWMOQsxaeqsNG0a0K8X7u/ZJU24BAgBISAEhEDOEdh6JAIRsVfQpmbqgL+5ZsY9N3UppjzeCyHB+c1Rt/1+xNkUVCrtnvKA7soOHDig17yZNm2atkQpUqSIVpBkxbozNWrU0LwNa5VLly655B8ZGakVKYYix5zh9OnT2gqGihxKlSpV9JZuzzKrzOG6QPwEBAToMvPnzw9aCVHat2+vFTncL1asGPbu3ctdeKrnlt9//x20zqHbtm7duoHWSaGhqW7/mKaC+i5OnKZFknvfCfOICAEhIASEgBAQAkJACAgBISAEhIAQEAJCIC8S8L6u3K7kNUUOQdlT5DgLZ5woeUhBRAgIASGQ/QTmbN2D/vWrgGvomOVA5Fn0+3EmfhzQBQ0rpboKM8ff7vu7lYu13m3STo6gVcvatWu1xQ2VDhRa1tSsWVO7QhsxYoR2lcY1cNq2bes2JlqrJCYm2k3PdW3SK1SW0DKIbstoFWQWKppouZOk1kpivSdPntTRhrLISEtFjNklHMOppDErk+imrVOnTkaWDG87dOiAsLAw7N+/H88//zzee+89reAxCqymrHJWbHHtXs5IL1shIASEgBAQAkJACAgBISAEhIAQEAJCQAjkVQKeKR6e2s1aXm2gvXZR0WPv897HNxdptpdPwoSAEBACQiDzBGIux2PKtoPoUb+aVWER5y/i4Z9m4rlW9VCjbAhOx1zSH6tEt/FB7FVg5bpkNK6dVomyfv16bT0yf/58KwJdunTBmDFjtPUJ18H54osv0KRJE6s0zg6aNm2KBQsW4OLFi9rtmLO07sTRWohWQWwH16yhUmbx4sU6K9fnoUyePFnXN2HCBG0FY6v04XlMnz5dr3fDdXUojRs3xty5c7UbNa57c/z4cR2emX8sm2sOUblES6Jq1aqlWTOnUW1g6/YkRLs2SspMUySvEBACQkAICAEhIASEgBAQAkJACAgBISAEsp2Ap0dKsluLImd7S7Kggh1hqa5XsqAoKUIICAEhIAQcEFgRdggFA3zRoFJZqxTbj51CzNUEjF29HS0+mWj5cH2dO0GmLwE6tvJEvappz9awkjG2RgoqYyhUdnTs2FHvU6FC4XowTM+1ZCh0a8ZjWu8YwrVj4uPjtZVPnTp1jGC9ta3L9tgq8Y0DWtUsX74cf/75J0JCQnTdc+bM0bFUmIwbNw6DBg3S9VGZM3HiRIsLNKM8WsjQaqdQoUJ4//33dTDXA2LZXP+Ha+1QMWTbHnvHtmFGHdzSImngwIHw9vaGj48Ptm3bpq1zzGlCywF9unph8gKxzjFzkX0hIASEgBAQAkJACAgBISAEhIAQEAJC4NYj4BHcfXLK2ZkP5jmFzgMDnsoQzemTvrebb+q0GWph6ZYoHlLMbryjQM74/Xbsjxj+wtOOkki4EBACQiBPEdh7MBx1a1TOU23KqcbQ5VatWrVyqjqreur0S8L3o7zQrK5VcJ464G9ainKvak+4Bg0/hkRFRWklCRUwZqG1zoULF/Q6Oeb05jSO9s+cOaOVRI7i0xvOc+GaPVToUHlkT3YcALo+n4gT873hdfP07CWVMCEgBISAEBACQkAICAEhIASEgBAQAkJACORZAp6c9eqZ1iNMnm1wRhv2x5QZiIm+mO7sXDvgky/+l+58kkEICAEhIATuLAI7p+ZtRQ6/jZYtW2oFDS1ZbD8//PCD1RdWvHhxbUljFagO/Pz89Ho66VXksBxa+2Sl8BmG6/w4UuSwrrqhQORCUeRkJXcpSwgIASEgBISAEBACQkAICAEhIASEgBDIeQJ6jur1xKScrzkHa3z73Y+xcct2DB76LF557R1d88bNW9H9vv5o1b47Jk+drsMiIk/hyWdeRLXaTfHIkGdw+vQZ9Ok/RMe169wbU6ZNB/M90Hcw6jVuh7fe+ShL1ijIQRRSlRAQAkJACNzBBLhmD61j7H0GDx58B5ORUxcCQkAICAEhIASEgBAQAkJACAgBISAEhEDeJuANeMDL2wspyfbdruTt5rvXulGvjcC06XPw/dgxaoHkUJw6HYX7HhiMxfOnoVzZMhj6+H/QsEF9zJ49H5XuqoAfvvsSYXv2qtm+RfDNlx+jTcfemDPjd/j5+qJ3n0EYMfxZtG7ZDPsPHLRySeNeaySVEBACQkAICIHcIVCwYMHcqVhqFQJCQAgIASEgBISAEBACQkAICAEhIASEgBDIFAGlzMFtrcjh+XHxaP98AQgIyKf3/926ChXKlcbu3Xv1JzAwEGvXb0SjRnfjiWdeQnChYPTp3V0v6hyYLx+LQJBKQ+nQrjU+/ORLxMXFoXPHtjpM/gkBISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkIguwgoN2spoM/5O0kSEhLg6+eDosWK6s+gQf3QvGljtFLWNkvm/4VLMZfQvE13hB87ngbL8BeexhefvIuFi5bh3vsewvXExDRpJEAICAEhIATuHAJhYWF3zsnKmQoBISAEhIAQEAJCQAgIASEgBISAEBACQkAI5AoBvWbOnaDKKVMiBGfPndOQ69WvgwMHw1GqRHF0VJY299Svi4p3lceOHWHatdrIl5XbtYZ1EbZrL4LyB+k8sbGxSElJ0Wvm1KtXB19/8SH27D2IM1FncuWLk0qFgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACQkAICIE7g4D3pKfyI4XanDy2ZM6Afr0waeqsdH0LzONIHhnYD8OeGoF6dWtiyu//h5/HfYEH+g1BSEgRJFy7jj8nj8eixcvRb+DjOqxQcEG0aNkUBYML4JGHH8A9zTph0MMP4mj4cbwwYhTir1/H0MH9Ubp0KUdVSrgQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEMk3AY/78+SkdOnbSVieZLi2PF8B1bjw9vZBPrZ9DSU5OxqWLlxBcMNjiai4h8TquXL6qlTjm04mJjkG+/IHw9fbB5ctXdFRgYOp6OuZ0si8EhIAQyG0Ce5XlYd0alXOlGcnKgjHmcjzy+XrD39cnx9tAl2e1atXK0Xpzo07jBJOSk9D0+2b6cGDN/ni+9Qi9f2bLZgSVLo18JUvhfNhO+AblR/4KdxnZbqttclISEi5ehH/hwnn6vC4e2K/mzaSgYGg1xB0Lx7VLF1Gkdt1MtTnx8mWc370LhWvUhrdaH/DMv5sRXDk0DQvN6MIF+BYqBE9vvVxipuq9EzJfiTqFuOMnEHJPI8RHX8DFgwdQ7O6Gmebn7nWQcDEGHp6e8Mlf4E7Anavn6Oq7fmTKQOy7cBD1Q+rghz4/5WpbpXIhIASEgBAQAkJACAgBISAE7mwCnkruGAJBQUEWRQ5PmudesFBBiyKHYVTW0BrHVpiOcRQqcUSRY0tIjoWAELgTCAz/ZS4qvzbW6tP7y0n61I9GnUej935Cow9+Rq23f8DI3xcgMvrSnYAl186RyoHryYmYeP8veK7VC5Z2LO7WHRErlunjDa+/gkN/TrHEbXr7DfxevLj+zGrVFDu//RrxN9yQGokW9eml46/HXTaCcHDy75Z8f3doje1ff44rpyJ1/NJHHrLEGWUbWyoStnz4bpr4iFUrQKWTkc52u2/C/+H4ogVp4rd/+ZmlTeHzZuOPUqXwV/Xq4LnEHDqo46bVrAZ+zO1n/KG/bnKwFGKzs2LYYIR9960l9KTiyLZFbdqAuIiTadrDOIZv/XA0FvW/Hylqoogh28Z8jHk9uuiwXeO+1awZd2jGn1g38iUjWYa3l1W9S3rch7gTx5AQd0nvn9+53VJeslrXj23QjJSS8w+l4Du3Y5uOZ7tPLl9qSbv5/Xew4c3X9PE/zz9jOU9eC3vH/4TEa/GWtI52zqm6je+R18jWTz7A9VjrPoDHTLPk4b6WYi5HRuqw0+vWWMKunDmtwyJWLreE2dtxdu1d2BNmaQ+vh03vvAm2kcJrnu04sWShpVheH0yXEBeLyNWrsLh7Dx13YddOzTbhkvW5WDKmY8fVdRC9ezfIblpoVUytXAX8LiiH/5qKv7t0sNR0+XQqs9jjxxC9b6/D87RksLPDe9P4vqY3boA1I57DpfAjaVLa9gfMx7bsGvu1JS3DeK3zenMlh6dPs9Rr1L+gd3edzZ1rj30W853ZvMlS1cXDh3SYuS/jPR/+9yy4Ok9X3/WEvr/ipaYjcDE+89+/pcGyIwSEgBAQAkJACAgBISAEhIAQyAAB7yT18oU86GYtA+ciWYSAEBACQiCbCYzu2wFvJqrfjRsy/Lf5aBFaVh8VDMqH34beh0oliiL2Sjze/mspfv/nX7zSs42RXLbZRMDbyxueHu5NzkhJSUbFwQ/j7tfewsVDB7Bp1Ku6VXX+M1xvr56Jwtl/1sO3aCGc2boJpVu3TW21sroKrl8bHSdPw+Vjx7Dlg9FIUFarjUZ/gJbffIdkZdmaePUqZitLhja/T0SRevV1Pk8vL9R54SXUfOIZrHziMZRS5YUOGATfAsHq+cMDD4Tt0un2/fKzqm8zWn37vT72yRcIeHvp+H0Tfsa57dvQ4pux8ApIta6NP3sWax57Aq1+nYAy7TtqxcHaEf9Bt78XIuFctC7j6Oy/VF2D9X7StQSkXE/U+y7/qXOlRK1fh5X9H0abKX+geKMmiDt5Qod3WbwQgaVK633+8ytcBLWeeg5/1qiBCKUgKdOhEzjIvvvzr9Fp3lxtYWFJnIM7e37+Ecf+noMe6jyCy1fAeaXc8Pbzd9yCG4ooXiNVn3sKtZ/+D6gQWf5gP+QrURLl700dcHdYwA1u923coC2Pdnw5BsuHPIJO02ZYGERtSL22opatQryyFqJFVaBSyNV963Vsfu9ddJu3CLxmwv43FiU6t7t5/Tmo1Nm1Zwzs91R1UsnGa2zNc0+j14o18C9aFI2/+hyb3nwDJVu0QmJ8PP595100/fprbcnmoLpsDU5Q1lrz2rVDvffeQbV5jyFZufSNVEpPi6h7zBCPG+6RPcj8Bnd75wnF0pXwHgquWEkrGec0booH9+yBX5EiOpu9/oDfT6N33sOSXr1RsU9fBJYoheML5+HykXDU+G2yq+p0e4OqVkTn6bMtaT1uWIy5c+0dmz1T908Rq5ZryykWwnUt7Yk52Nl52strhHkpq34fT7FoM3jIVggIASEgBISAEBACQkAICIHcI6Dex1y/5OVe86RmISAEhIAQyEsEgvP5o2iBQP1JUJMBNpyIQpe6obqJhQIDUL1McWXF6IUiKk3Du0ph/aGIvNR8acsNAt4BgXoQnQqKKoMGY9/3qQoURp9WA//F2jZH6LChSjGRat1jgPP0Ue7zChXWipoqAwfhwPc/IUUp9/yU+66AYiEIULPlKRwI1scqjEI3bzz29PNVSpwCet/Lzw9evr6WdL5qrTpv/wDLsXdgoFY8MJ+Psqz18vfTcSyLErFmlR7QLdupCzx9fBDa72FEb9qmlSiML9OrO3b9979IunaNh+mWs9v/1YPVLZRVSpm27a3y+xctZmmnPi/1LMVzvueLT7FFDcQnJSRg53+/RIWBfRHS8B6rvDl1QKuc7W+PRt2XXtED9RzUp1u3YGXx4Y6QORUepVq1QcVHB2gLB3fyMU1ASAiK1qmHph+P0YrBc9u2WrLS0qn6M0+jUKP6iNqwzhJe7dHHcfXESRyf/7e2sOK1dc+b72qFnyWRnR1X1x6zME1wpcqoPvRxxO0/ggv79+qSKvd9GP4hxbBPKTN2jf0GxVu1QNmOXezUkjNB4XNnI6BCGdQY9qS+9nmtV+jW0+3KHZ2nqwL8Cio+6rpoMPJ1BNeuhsPKcswQR/1B8abNULbPfYrbf7XV1tb3RuPu0e+CZbkj5nuf9xD7FUOcXXux4Udxcdc+NPr0Exz5U7XTrK0xCnCwdXaeDrJIsBAQAkJACAgBISAEhIAQEAJCIE8R8OZMtpQk5RJEzY4VEQJCQAgIASHgLoHFOw6gSdniqBBycxCOeRdu34cjUTEYv2EnPujZyt3iJF0WEtAz0G8M2tcf+ZoelLdXPN0Pnd26BYUbpFrRMM2JpYuUpUsnFKlZC6sfH4aGSiHAmfhmuR4bh8h/VmrLCQ+lvMsNuRoVhUJ161gsPgKUdQfl2vlzeluucxdcjoxQFgPzcdd9vXWYu/9Ob1yP7e99qC0k7A2m7/hqDKh8onh4eqDhG+/qfSoHDvwyARvffBVHf5uCXv/eVGJoC6EbA8/lOndFyN2ZV/IElCgBKpvylSwJb2XJxP2C1arptsSfPaO3havX0NuM/qO7s1MrV6Ha0GHpLoJrNtHC65KyUirW4B5lvZWI47PnoM2vv+lB+BPLFlmsfXyCAvUA/db330fB6tVQXbkXc1fx5E7DWHfkqpU6af5yd+ktr90mH32KBcqSinK/sv4yhGvltPxlvD4sWLWqZuujFIyZFWfXwcXDh1G8RbM091t66rR3nm7nV/d5sUaNlTLtgCWLs/7gbqX8md24CZLir+r1mCr1etCSz9UOFTJ0e2dIeeUakspls9i79uiKjxZbpdq0x5qhTyLm8CEUVO7o0iU255ld33W62iSJhYAQEAJCQAgIASEgBISAEBACbhDQbtY8vDyV+wn77gncKEOSCAEhIASEwB1GIEm5LJqwdide7NQ4zZkvCzuKTcdOoaSy1AktVSxNvARkP4FyXe61VELLCls5sXABEi7FIGrdeiSpdXFa/1/qoHXi1Ss4Pm0majz+lB4gpbuyaOVmixYdFFq+cG2Nq+EnUaxlUzRXbs9yS7hAvE/+VCsdtsHL1083JeFyXGqT1Lp4dZ4fjq3vj0b57u5bNzDz6UXLQTdQEUsWo6YaMLZVWAWWLqOtPZjWw+TejtYGDZTyi27J6qm1iYJUOkPMFjqFa9QygjO1pas6s7LJvH8tJkaX7X3Dkim9FYV98jkOT5miv2taYFR5eGB6i9DpA8qWUQq283qf6/nwmipSu45W5ux4/2M0/ehz0EqLUq5rD+z9+f9wasFSNP/q5rpFOjIT/+Z27qDPg4qlLkq5R8WRIQUqpCp26ELQPyTVsoxxBSpU1B/u5yte0oozwzIqzq4DujSjlUpGxdl5ulsmrVfoWo/iqj/Ir9jVeu1l8FrpOHtWmvvEWZ38LgpUqmRJ4pv/5nqVzq6948rFYel27bW1H5U6p9auTr8yR9VqPs/s+q4tJyc7QkAICAEhIASEgBAQAkJACAiBLCKQ6mZNFDlZhFOKEQJCQAjcGQS2HolAROwVtKl5czDOOPMxA7tixetD0EnFvTRpoREs2zxEgIOoZTp0RKsffsKDO3aDLpMoXLOGcvHAfrUw/GLt8umUWgjeECo42k6YiKb/+692n3UlMtKIyvGtrxp0vnYxdW0cVp6UkOpOzcekvCjTtqNuV6Ry7ZUeqTx0MLrOnIuLe/dh/28T0mSt3PchVH90mP5UG/yYVTxn+VNKNm9pFZ7TB76FUi2HEuNi7VbNwXRb8TBZYNG1WpufJ6C6WocoauVq99cbsimUrtP8i6UqdSNWr9RKMlpLcb0myrlt/1py0AKsbMfOKNWtk5XbLUuCDO5wraW206bASylxorakXuNGUTvHfqPdCiZduZwuV3JG/qzcBihl0rXoC3aL9FDKSXuSYrKsd3ae9vLaC4tX9dOiiuKqP2Aa4zovduO6Z5g7ElCyOKo9MsTyKWSyIHN07V2LidaKPq6XdVStm0Pl6fEF83R1jviYdK1WzTKfp1WEHAgBISAEhIAQEAJCQAgIASEgBPIwgdTVPPkimA6f0zl5PjPmLMSkqbOsqqxbqzr6PtBNh1ULrWwVJwdCQAgIASGQ/QTmbN2D/vWrgGvo2BNP5XqqcZWy+GbVv4i5HI+CgfbT2csrYdlPILhKqLI0uC9NRVxsnWtmnL3hHizorvI4+vcc1Hr2eZ3WJzgYhWvU1J/LSpGz8a1RlgXr0xSWzQH51Po8F3ftUVqcJGWW44UrESd1jWbLBlrU1Bn+InYp5RMtkNwVWtRwDRyuy0FXTiVbt01dd8bdAjKYbt261DVkmjVLVa5lsBidLaBoiHZxdm7XDrvuyjiYnqzW9jGE+1xzxZB8JUqiSK06KFS9Js6p9YPCvh+LBq+/ZUS7tY1V7tVoiZO/fAWdPnzGdARVqIAo5caOQuVgpFLwFG/SVB9n1z+6nqMlRrOvvsay3n20lU2gcst3Pmwn9n49Fj3+Wa3XWlr3wvN6fSTDhZ6r9uzevRsxygKqTp06yG+yEnOVz1F8QbWuz7YpU/U6VLbWYLRc4VpMhtBFIoXhiZdTr21H52nkcbVlmVFr16Dq4CE6qav+wFV5GY13dO1Fbdygr+lr0dH6GqJrwYi/FyL+3DnFIdVKLynxJqOkawkqPFWpaW6L7Xma4zKyn9XXQUbaIHmEgBAQAkJACAgBISAEhIAQuDMI2J/ml4fO3VaRY27aG6M/x74Dh8xBsi8EhIAQEALZTIDKmSnbDqJH/dS1OYzqdoRHYveJ00hITMLxczGYsm4nCgb4okC+VBdKRjrZ5lECaiD3yB9TUHv4CLWOyGepnw8/w8VtuxB38kSaRld95FEdF7l8aZo42wC6RLtyKhLJanD12o39xGvxtsnSHNPNE/Mxz3VlOcH9hEsXdbpSzVtpRUH4wnl6kPvAH5NQpNk9Vq7NmLBctx6IVc8KVCqkV8rf21NbiWx45SUYg+cs4+rpU7otbA8/5kH29NZhTt+8eXPwkxXi6e2NGs8/j+2ffarWQDmo239erQkTs3+vLj64enUcX7JAL16v1yZZtRL5y5VPUzWtZeq98LJWelw+7Z4l1uVTp3BGWcCse2WEtnopVrc+Lh09grj9R9D4g08s11dt5QbvyPS/cmxCUclmLXV79v36s1aYbHj9FdR8ebhWdpVu10EpMmtg13fuu3d7X63v06JFCxxWa91khdAdIK/TsO+/1d/L9dhLODondUJTYJmymt95pZzjtci1bGhd5VPgpnsyow3m8zTCnG3jL5xXrtV2Y8vot3Udd93fRytJ09MfOCs/o3G2197J5UtQ/v7eluuHrvjI4PTGtVpZx/0I1R+Rz7ltW7VrvcAyN10d2j3PjDbOlC+rrwNT0bIrBISAEBACQkAICAEhIASEgBCwIuB5ITpGOXy3CsszB+4oakShk2e+LmmIEBACdwiBFWFqwWmlpGlQqazVGZ+KvoT7/vcXarw5Du0+/12tJeKBXx7rCU+TGyCrDHKQKwTMa7yYG3Bh/z49kBzSINVNGOOCK1bSrtaiNiiLEZvvkZYOtV59Cdu+GGMuRu/zuzfLzrFfY0a9+ji/brNeX4P7URtSrTPM6Wz3I5WLN6al9cTZFWv1/u4fx+lkdN3V/KcfsOaxxzG5bFlwHaBmn35hWwS8/fxR+5WRacLdCaDrpkbvfaRdyh38Y6KFwaJ7u+u2sG38GGuMmMtMsUZgjrK7f/XqVR1eXFkcZZXUUGwq9O6Nuc1b4A9libKgcxckXU1VotV76RVE79iJKUqBM0OtiVS4bl1U6NFLV217jdByplCj+jjw26/Om3bje/+7WXNsVGupFKvfAG3/T+VR4afXr9GWOGaFUYha8J7rL3ERe7M4cpllTuNo3+ras7kOmaf208/r62nP+J9w+Ug4aj79nC6KdTZ84x0dRzeD7sg5ZRFCKVTopkWTO/kcpeEaSF2XLcHhaVP19zK1chXl7jDVVSXdkNV9exQWdOikv8tdYz5Hyx9/BBUetvcmyzfOky7JXMk/Q4ZixZBHkBB7Efcp6xf/QoXhsj9wVaizeDvfi5Hc0bW3/9cJOPLLJItbN6bnuZfr3QsnlQLH08cHzf/3HbZ/+JHms1CtG3b3B6MRrKydDLF3nkZcZrZZfR1kpi2SVwgIASEgBISAEBACQkAICIHbm4DHvHnzUjp07JQnz5LKHCprbMVws7Zn382X//t7drFNJsdCQAgIgTuSwN6D4ahb4+YAVk5CuK5mRMdcvoogtaB5gJ9PTlat6woLC0OtWrVytN7cqNM4wcTkRNzzXWN9+FCNB/FKu9eMqDtmm6IsweKjzyOgaDG7g9q2IDhr3yPFNvTGsXIPmBlFgoNS3QqmizVa5UycOBGDBg1yK4+7iZKvX8fV82fhX7ioXmfEyJeSnIxr58/Dy98PPspdl0tRLnlTkpIdJrN1DeYwYXoicqNON9p35coVBAYGYsiQIRg/frwbOdKXJP7CBa0QN7u+YwlJ8Ve1pZq/cqOnFTkuis2N6533pCPx8FJOAZwocxzlczecdV89fwZcU4uK3KyQB37tjSOxx1GjUBVMGjDFqsjsvg6sKpMDISAEhIAQEAJCQAgIASEgBO54At4kwFmMKXl0zRx739COsL1pgmtUq4zMrJ9zXQ10LFm6Eh07toWPck1iFmdx5nSyLwSEgBC40wn4qJnSxQoE3ekYcuz8vT29se25rTlWX16siAoE8zo5rtq4pN8D2tLGXrpGX36G0AGD7UVle9jWrVsRGhqKfv36ZXldtFoILFEqTblUXNHCyV2hNdWSXr0dJh8YFeUwLqMRuVGnO23lOimUUaNGuZM83Wn8Cxe2m8fLPwD51Mddyenr/bpam2pqpYoOm9dt+XIUqlnTYXxmI9gf5CteMrPFWOWfPnim1bH5ILuvA3Ndsi8EhIAQEAJCQAgIASEgBISAEPCYP39+SodOnZCS7Giaau5BcmSZY69FH77zcqaUORGRp9Ct9wAsnjsNIcWKYuq0GWjTpiWKhxSDbZy9+iVMCAgBIZBXCOSmZU5uM8gNK5ncqDO3Od/K9XPNnWQHlgM++QKUlYr7A+W3MoeMtJ0WPgmxsQ6zOlJAOMzgRkRu1OlGs26ZJDl+vavJYfHRjten8lOu5LLFguuW+UakoUJACAgBISAEhIAQEAJCQAgIgYwT8PZSs6jzoiIn46eUsZylS5XE9o3LLZn/mDID9erW0coc2zhLItkRAkJACAgBISAEbikCXJdEJGMEaOGTHQobZ63JjTqdtedWi8vx611Z++f0NXKrfSfSXiEgBISAEBACQkAICAEhIASEQEYJeCYmJsJL+YjP68J1cmh9Y/4wLCMycdJUNGnRGdVqN0Wr9t3xxFMjEBcbh3ade4Mu1d5+92Ns3LIdg4c+i1dee8cqjvU5yt9/4DD8oBb6rde4HQYOeQrHjp/QzUtISMDb73+q67vv/oFYv3GzDmedTPfT+Ik67mj4MZw6HYXHHn9eH3/19XeIdTIDVhci/4SAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgduagDfXy8mDHtbSQLe3To69sDQZbQJOnIjAK6+/j73bVuPS5cto3KIr5s+ZiiS1IPKevQf12kGjXhuBadPn4PuxY1CtWiiuKWWMEecs/8rVG3Bv1474Z+lsvPPuJ5i/cCmefmIIPhvzLU4ej8CqZXOwS6330/vBIdi6YQmCggKxdNkaVKp0FzavW6wX0u3Q9QE8MXQgvvv2M3z+xf+wQJXR90HH/ultTk8OhYAQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAiB24yAZ4rybZ337XIAWuHUqlnV6pMRy5w4pcApGJwfgepTuFBB/XWmJCdbfa3+/v7wV37zAwLygftmcZW/v1K85M+fHy1bNEFY2B6d9a858zBk8EPaZVuHdq3QuGE9bPt3p6XYkS88q/PQKodKo4SE65g5ex6SPJKVsme1JZ3sCAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACdx4BbZmTpJQZtNC5E6RqaGVUrVIJPe57CNfVAshvvPK8VqRcvHTJrdN3N7+vr6+lvPgrV+Hnf/M4IJ8/Eq4nWOJ9/VLj6I6NUqRwYfj6+6FosaII7hRkSSc7QkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBITAnUfAm5Y5nkqRk5LHzz0jLtWMU7p27RoWLl6Orp3b45JS2hyLiMTKhTPg7eOtXJ3ZV5aUKRGCs+fOoWrVykYxenvhwgW38psz9ezRBVOnzUKdWjVx6MhR0B3bxx+8ZU6i98uXK4sSJUMQFxeHPqqtdP1mKHjSJJYAISAEhIAQuOMJJCUnoen3zTSHgTX74/nWI+54JgJACAgBISAEhIAQEAJCQAgIASEgBISAEBACtyMBbyXaKodKnbwuzhQ61ZTFjSM5rtbJefLZkViz8m+UK1MatJRp0qorSpUqoaxgCuHpJx/DPQ3q6uyGhdIjA/th2FMjUK9uTfw07itLXIECBdzKr6BamvPW6y/i6edHokJoQ+3i7Yf/jcFdFcojNjbWUi53PD09MXXij3j8meH4+IuxOm7Mx++gY7vWel/+CQEhIARym8DwX+Zi7r5wq2bUDimEmS8OsAr7bdW/GL1gHaY83gsNK5WxipODrCOQoqZiXE9OxOQ+vyO0eNWsK1hKEgJCQAgIASEgBISAEBACQkAICAEhIASEgBDIUwS8k5WLNVqAeChFQl4TKmgG9OuFSVNnOW0a0ziTKpUr4tDejQgKDMSyFf+gm7J6efedV5Go1qZZsXotRr35PjasWYTTx8MsxfRVa9/c27WjUrB4IZ9aP8eIczd/t3s7gR8K19D5fcL3iIuNg39AALy9vSzhRrk6QP2jJdDqZXMRc/GSbq+R1oiXrRAQAkIgNwmM7tsBbyoXlYYM/20+WoSWNQ719sS5GPy2/ua6YFaRcpAtBLy9vJWVbd77Hc+Wk5VChYAQEAJCQAgIASEgBISAEBACQkAICAEhcAcS0G7W8qIix/gu7u/ZBfxkVqjIoeRT69WE7d2H/fsPwcvLUyl3VqPrvR3sFm/PBVt68tsWGpTfvks323Q8LhhcwF6whAkBISAEcpVAsOpDDYmMvoQNJ6LwwYPtjSDQyPOj2SvxevcWePz3hZZw2RECQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCIOMEvL28vG4ZN2sZP82bOZs2vgevjhyOFSvXaIuknt27omOHNjcTuNjLbH4XxUu0EBACQuCWIbB4xwE0KVscFUIKW9q8ZMd+vd+qRkVLmOwIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIZA5At50sXYrrJeTudO0zt2uTQvwk1HJbP6M1iv5hIAQEAJ5hUCSctE5Ye1OvNipsaVJMVfiMWr2Kvz1dB94qD8RISAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASyhoAnFTkeHjLoljU4pRQhIASEwJ1BYOuRCETEXkGbmpUsJzxhxWY0VpY6V9V6ZHsjonT40TPncUGlExECQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCIOMEvKnI8VS6nCS1zoGIEBACQkAICAF3CMzZugf961eBeQ0dWuscv3AJr0xZbCli7PKtyB/ghy71qlnCZEcICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIgfQR8Gby64lJ8PT0TF9OSS0EhIAQEAJ3JIGYy/GYsu0gJj3Ww+r8X+7RGi/fCEpOTkHoqP/hi/6d0LBSGat0ciAEhIAQEAJCQAgIASEgBISAEBACQkAICAEhIASEQPoIeFOJ4+XthRQ18JYXZcachZg0dZZV0+rWqo6+D3TTYdVCK1vFyYEQEAJCQAhkL4EVYYdQMMAXDSqVzd6KpHQhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBDQBbY6TVxU5bKGtIsf8vb0x+nPsO3DIHCT7QkAICAEhkM0EejeuhS3vPAFvL8cWnZ7Kf+ehT54Tq5xs/i6M4h+c2h+fLf/EOJStEBACQkAICAEhIASEgBAQAkJACAgBISAEhMBtRsA7JSUFXDeH27wm7ihqqND58J2XIRY6ee3bk/YIASEgBIRAdhPw9vTGtue2Znc1Ur4QEAJCQAgIASEgBISAEBACQkAICAEhIASEQC4TSFXmqEbkPVWOazID+vXSifbsOyTKHNe4JIUQEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIXALEtDKnBQP1fJbSJuzI2xvGtQ1qlUWhY6isnPnbmzZth2PDR6QhpEECAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBISAEBACtx4BT7pYu5UUOQZiKnTMHyPc0bZEuVqoVrspuG3VvjumTpuhk+7avUeHMdz4zP57gaWYTVu26vC16zdZwsx56jVuh1dGjcbZs+cs8Sxn3I8TLMfceaDvYPxn+Ks6zJzfXp1WGdN5cDIiEhvWb0lnLkkuBISAEBACQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAjkVQKeSvJq27K8XcsWzcDJIzvw5afv44WX38aJExG6jgrlSuP08TDL574eXS11L1i8HC2bN8L8+YstYdwx8ixb8Kdec+iB/o8iIfG6Jc3kqdMt6xCdPBmJtRus1zQw8hv1muu0FCI7QkAICAEhIATsEAgLC7MTKkFCQAgIASEgBISAEBACQkAICAEhIASEgBAQArcrAc+kpCSAbtbyuNStVR0fvvOy1Ydh6RVvby80aFAPJUqG4GRkpNPsVM5MnjwDb772In7+dQquXbuWJn2RwkVU/AgcOBiO1avXW+JLlSyBsD2p7uAWLF6KNq2aWOLc2YmLjUP/gcPw3Q/jtUXRgw89pl2oPTToCdAaaM7cm9ZDa9ZuQOdufXS6iZOmulO8pBECQkAICAEhIASEgBAQAkJACAgBISAEhIAQEAJCQAgIASEgBG4RAt5eXl63RFPtrZNjL8zZyRw9egxnz5zDylVrcPrUGdSvWxsHDx9B+PEIfPTxVzproUIF8PRTQ/X+1q3bUbN6KOrWrYXGDeth46ataNWyWZoq8ufPj07tW+HwkaPo0K6Vju9+bycsXLAMtWvWwOSpMzF4YF9sUeUZ4qhOIz4pJRkrV29Aj26dsWH1Agx98gUMH/kmxv/4DQ4dDsfLr7+Lnt27IvLUafR5aBj+/OMnNGncEF99PU7FHzWKka0QEAJCQAgIASEgBISAEBACQkAICAEhIASEgBAQAkJACAgBIXCLE/BMSUlBSlJynj8NWuHUqlnV6pNey5wf/28iXnz1bUz5cxb+WfE3/P399XkXDM6Pxk0a6k8dpeAxZMGCpahUsQK4bk5ltZ27YIkRlWbr6+uL5OSbHDt2aItJf87Enr37lUu2sihVupRVHkd1WiVSBw8+cB8KFiqoXL01QY+uHVGhfDm0aNZIK6OiL0Rj27adaNu6GVq2aAofHx/UyoC1km2dciwEhIAQEAJCQAgAs8eMQtiK+Q5RnDt3DsuWLUsTz+eB7du3Kxet88E0IukjEBMTg6VLl2LdunXpy5jJ1OvXr8fx48czWYrz7MeOHcPMmTP1Z9++fQ4TP/dJMmYuT7HEJ16+jKhNG3A97jJSEpP0fvyFC5Z42ck4gStRp3Bmc+ramPHRFzTb5MRES4GLlOH94LdvPuNbIm7jnQMHDug+LCdOMT4BaDAgCcecOExw1J74+HisWbNG97Xa20RONPg2qoP90YIFC7B///4cPauc6Gu3bt1q6WvPnj1r9/ziE+Nx74R7ceLCzX7fVX9gtyAJdIvAxQP7EXMg9Xcv7lg4zu/aYZVvxcHleH7Gs1ZhxsEZ9XNXp18SYq8aIdbbn57tg4j9u6wD5UgICAEhIASEwG1KQLtZ8/C6M9bN+fjDt/D7L+O0JY5a0MbylRYMLoD2bVvqT/OmjXT49evXMW36HK0g4bo5fv5+mPj7n+BLg63ExcUpRY9S/FS6yxIVXCA/2rdujtffeB99+9xnCTd27NVpxNnb+vn5WoK9vX30fjJSXyxTlBWPiBAQAkIgJwgM/2UuKr821urT+8tJuuroy1etwplu1kZZ2yUnvpecqiMwMFCvE+fh4WHZctD9VhQOpL/yyisOm34m/BB2Lf4TVZq0dpiGA2A9e/ZME8+wIUOG4O+//8b58+fTxOdkwNy5c/HLL7+ku8qEhAQ88cQTOHPmTLrzZibDhg0bUKhQId1mDvjlpLz11ltYu3ZttlYZHR2t3ObuxGuvvYZ58+bZrWuvMrD+fWEyOja96Qf5csRJLOlxH+JOHENC3CW9f35nqsX30kcewu/Fi9v9JCt3ypvefiNNHMMo5nyrnh6GY/Pn6vDI1St13N5ff9bHKUpB+XeH1jqMARzwNOfl/rweXXTaaTWrgR8qngyZ1aopDv01xTjE9dhLOv+Sh/tawrhDhRXLYrvTK6zDtk1UzrAsI3x64wZYM+I5XAo/Yik+cvUqLO7eQx9f2LVTs024dMkS37qBUuyuTsY2x7o3S1p3d3hPmvtR7t9zzz3uZseYMWOQnffH7Nmz8f333+dIe6YuAsqV8EB563lvVnXbaw/fv4oUKYJPPvlE97XmSXVWmXPoIKN9ravfouxq/tdff43GjRtrhcfBgwezqxq75eZEX3vy5End195///1wdH6zds1E8XxFUbZwOUs7HfUHScrdutGP2G5XDBuMU2tX6/jLERGWsta89B+wX3UlzM8y2W+yP2dZtrLz2691GkPx7Ko9zM/+zrat4fPmYPdP36cJN9Kd27ENxxctSBO//cvPwP6U6czntOXDd3VYzP5U9/KO6mR7do37FjwPyqEZf2LdyJf0vvGv6V3NsOH0FuyMuOnNxIgLKQzUreKB3+bcHMMx4rit36UPlk9I9bRiDpd9ISAEhIAQEAK3I4FUN2vJ9n8U89IJp9elmqO2cy2bt994EW+P/gR/TPzBUTLtUq1UqRL48P03LWk2bP4X6zZsQbFi6mnihkSfv4CvvvsJoVUqoG2r5kaw3t7fuwce6PcYpkxqhjXrU2f8WSWwOeCaPAuV4qhr5/Y2MY4PmynXakOfelE9pB5GiRIhWLUmZwc+HLdMYoSAELgdCYzu2wFvqlnhhgz/bT5ahJbVh4aOfMHz/VEoKECHBfnfVEQbeWR76xK4cuUKxo8fj65du1pOomDBgpb9W2mHFjMTJ07EZ599ZrfZqyd9h6YPPQO/gEC78Y4CqbzhIP3p06dRXA165Lbs3r0b4eHhePTRR9PVFM5y/+mnnzBq1Kh05ctsYrJ79dVX9QBtZsvKi/nr1asHfk6cOOGweV/8loyXBnrhRjfqMJ0R0fKb75Cs1nlMvHoVs+9phDa/T0SRevV1tKdyp8xJP3cN6o+7X01V4DDC+4Z1OvdbjP8Rxerfg5PLF+OfIUNR5N+toPKGcmjyZFQfPBTR+/bg4q6b2gz/oiF4IGwXzm7dgtWDh+D+7dvg6Zdq8Z5wLlrnPTr7L4QOGKz3k64lIOX6TWuXqA3r4Vu0EKKWrQItjPwL33i2zsQ7SdeZc5GglESzGzdBm8mTUKR2HfgFF1Tnn/qe0+rXCQiuWEkPIs5p3BQP7tkDP6UMcCX8GXtnmBc+/X/2zgM+p+uN40+GiCB2EBGxV+y9atSqUbNGrVKqaBV/2mqVqlaL0hal1Ra1ilpVe+9RI/YWMRKSWDEiQpL/+Z035+a+b96VSGR4ns/nzb337PO99573zXnO85w50bR4QtIsgEObvL296eDBg1r1zs7O2rmtE1j9IX+tWrVsJX0p8YltD35OjPz5OS0c55TgdkLxWrhwYYISJTVIYsdaW99FydW3P//8k37//Xdq1apVclWRouW2adOG8LH0Hf886jlNOzidJjT51q52OmXMKMc8JA4VY+Sunu9QW3F0Et45HDNkoIzZc5B31hSqBAAAQABJREFUp3bk9/23VPeH6VIxHbBgqUxjTwVl/zeEinfuSrcOHaCt7d+i11cuo/y162lZr/6zUo6ZgTu3kYcY5221R2Ws/sMkKtjEoGhHWAZ3dzEWR1GRtu1lkl0D3qO8depQye6GsRr9yF6qtOzruTl/0G0xttf9aTo5ZcpE0ZHPZJ7rK/6liHG3KYNwNe+/yKCkj9Z5ejFXp8xo44+rsyv1rtCTpu+bTrPe+j1e6g86OVKzwc+pd1tnypTROLpco1a06tsPKOjiafIsXtY4kq+YABNgAkyACaQzAob/SMRqsLQgUOiYflS7S5Uopk5tHnuLFS9nL1yiTVt2yFVx2L8mn7ev9pn5yx+0fsMW6tjesEpPFdihTQvasGGzUZ6GLTrS04intGLJXGnFo9LiWKNaFTq0dyNlEj9+xBpmLQqr78zVee16IPUfNIKu3Qgkx9h7grSQGDP3yJEcKUeunPT9d6Ppre79qFrtpvQg7IFWD58wASbABJKaQDY3V8rtnll+IsVk74HrwdS8QgmjanKKGcicWd1kGleXDEZxfJH2CWAldL58+bSPcllqq2dwmfXaa6/J79CSJUtq7smwuvqDDz4gWP0UKlSIZs6cqU2+YoKwb9++9NFHH8l4pNO7LYNyCcoGtAffl927dyflamfy5MmyPLXifceOHbKJsLDFCvhu3bpRcHAwVapUSX527TJeCXtux7/kXa5qvG4tXrxY1oe2/iUmuvXSokULql27tgxq3ry5LNfPz0+fxOI53Hu9/fbbsp9g8dNPP8m0WF2MMmEpA8EqbnBU8t9//1GnTp1k/9EmuMyBwMUM+vbVV19JpZXq5107XHMNGDBA60ezZs1kOao9KBvKITBEXSgX7QULuOxBuHIfFhYWRo0bN6bNmzcjm1XBvUZZU6ZMoWnTpslztEOJpToRb+leIw4TlXB5pwQs1SptPEsdO3aU7MA+IVZU1p49f39/wrOAZw99Mn22VFssHZdti6ba5eN+N1pKp8IzCkumTHk8KFOs8hAKCnktwpRkyJxVC0NchqzuKopcsmajzJ6eVFIoXqBgCdxmuF/ZypUilyxZKMz/Ml3ftJGKvNNNywMlEcrJGKuEcfXIG6eQEam82raik1OnElaPm5Mb27dS6YEDKEf1ShR8YJ+5JAkOk/2OZZApp4GBg2Oc8gWTlNlKlKQqI0YS+nZ5xd9214H7sWpzFOnmK+3Oaykhxk79WJo7d25LSbXwOXPmyGcK4xnGRTxfXbp00eIT++w9F27lRo0aJd9lvMMYP5Rg7OnZs6eMwzPdtm1b+a4j3lZ7MMbCShFjBMb95cuXq2Ll0V8YMdwNiaGqZYyfd2vtgSIU/e7VqxdBgYJzfLAozh6x9F20YcMGGjx4sFbE0qVLJRMVkNRjrT3fRatXr5Zt+uGHH7Rn5eTJk3LBAMaYx8L9IgRjHMY2fF/YknHjxkleyDNo0CB5jvuoxFKd1p4D5E2usdbSdyPqhJtT3HvT5xJxtuTavQAKF27WKngZFN+20iNejauuYnyBuIlxT46D2XPI6yojR1PAor+lZc1/o0dRte+/oywFvGScrT8ZxDuSpZAPFevYhUp+8D6d/mWGluVhwBWpTK8+4Tvy/1uMW7EKalvtQQEuQqGt0uHoLJTuGbJk1sKc3DKJ7wB37RqKKaRB2gxi/HcS3klw7pIlq9YefBcE7dpOIYcPklfLuMU9KoG5OlWcrWM17+p0KNiPos14HqlUmijiQQxduBq/lIyZs1Cxms3p6onD8SM5hAkwASbABJhAOiNg/xKwFOg4FDTdOrelhUtWWa0daWzJrWuntCRQrhw7uE271sdpgWZOBg3sp4Vay6OPK1iwgMzTuNFrhA/Et0xp0qeRgbF/Lp09SFnEjzmIPs3A/n1iU4jVlM5ORnHdhYuKTmIlULRY3mbvpJpWGJ8wASbABBJJYNPxC1SzYF7yge8DndQYb5gUeKt8UfqkTUPKntmwWluXhE/TMIGpYoJ206ZNsgfYLw6T77YEE/F1xMpPWFzA2gP+69XEOVbNYrIfq6sxafOOsCApXbo0NWjQgLB3yh9//CGtNDB5CWUNVqJDEQMZOXKkWGSxgX799Vdp7bBkyRK5f52TmGh2F6tPV6xYIaxp88hjw4YNCYoMWBItW7ZMrojHJOOqVYbfGEinJDzsLkU8vkc58xtPwkA50bVrVwKDcuXKyclElQdHtOPy5cuEuqD0wXeyh0fchLo+rf4crl0xMVesWDE5OZUtWzbats3wOwUTlHCnpFwIPRHWF7t379ayDxkyRE6uok2Bwr2LmtAsU6aM7Nv06dOlFciECRNkHpRtS8aMGSPZ4z7gfkFJlFWswFWCOg4fPiwVabgHRYoUkWyRDkoRKEgOHTpE//vf/yinmOx//fXXVVaLRyiocC/wjMDiAJOMGTPGLb21VCcKtHSv4a5t+/bt2oQn0oIlGELgRiooKEiG4fkzVc7JRBb+WHr2HIXyoHPnzlSgQAHJ6G8x8Va/fn35vIOFLblz3zBZVSifccpMQmFZd/Zv5JY/Pzm7ZZbn2UuVMk5k5Sp47246NG6MlsK7cTPKW8ugeJSBYnLw9rGjBKuaHKXK0rPHj2RwYeGi6PrmjcJCZxHV+HYC+c9dqJVh7cS7WXN6HBRI1zaso8Jt2hklxX401/5ZTQ3+nC8nJa9v3UiFWrxE6wAxPuSpXoPuX7og24VV7vXmzpbn2YXCAZwxsaqXgrH3I1B4HfQ2uTf6dAk5xz4wUFArgVJWr6hV4fpju3btqFGjRvIdw3gIxQr2zITA2iexzx7GFCgMoMDAOIcxtn///rJcjD2wJvv8888Jz/f48ePlOAiliLX2IB8UTVgAACsauKXE2IDxXymurgjdg6u7A2U1xi3HOEvtyS/eAYwV2HsK7VXvLb6PbIm17yJ8P5wR1lpKoOy9dOmSuqSkHmsxvtn6LoJbRii3YWGCfkLJhXuAxQIYmzEOffvtt/K+Q7nn5WX8naU1XncCJTmUc/iOgLs+uFrTfy9YqtPac4Dik2OstfbdCBegWCwAJSRYjB49mnr06GG38vzK3SuUwdGZsmaM+25DP+wZD5DOnEApXmXieGlZA0V1ia49zSWzGZa7fEW6sniJlu7Wvj2Ur1kj8mzwOu15tz/dv3yJshcrrsVbO7m05C9pSaTSlOnzHmUW308vIoXeaEVnxTiZxbsQeYtz/z8XGRVnqU5pqRmriPJu9gZ5VI7vWtIrm+EZDgoLJK/sBst/VTjWh+X3cqBL12OoQgljBTDS5PYuRqEBF1VyPjIBJsAEmAATSLcEDMocfBfGpM4+tn+zOeHzqohS5CS0vy7YRyd2L52E5uX0TIAJMIGEEogSkzRz9p6gYU1raFndXJzpt+7NqWi+3HTuRjB9v2E/rfjvJPVpGP+fNS0Tn6Q5AphoLxU7iawmEW11Aqux4XIMk4CYiMIKbSVw9TJ06FCpAEHY/Pnz5WbWDYQyR8nw4cMJChooCjCBiIlGTO5DgbFw4UI50YW0+j1w+vXrJycljx49SgULGiYEYDmCCX4oHbC6GwoKnJvKg9uGfWIy5zBeKQ8FBfrx4Ycfyiw4QvGhBPVg8gmCcu1dYAHFCFaYY1+IokWLyvxQpNgSTK5hJT4mcd3c3KhKFbG5R6xg4QragElTWD+Z66dKa3qEtYCa3MP9tpT366+/ppYtWxplx8p2KOcwKQ3G6BfuuS3JIlYA4wNlGxRrCanT2r22Vi9449mqWbMmVahQgb755htrybU4a88e+oz7+fPPP8v7gfsIRRqeW3vcGd26bfhB7mGi93Fxz0Y+LeP2Z9Kfaw2zcuIsnvUsse8BkmUQ+0Uq2TPgfXkKRU7lr8dS7spV6ObunTKsQP3XaWXlyuTZsim5iefCbhH3vPzgIXRk3Fgq1Cqu3ciPvX5QF9ygYYX58XHfUq3x30u3QXaX/4IJYaVz94xhoZe7TxHCB+KWN78RZ1WN8rB863bSKXPwzqqxFPWod07Vae6I9wMfvCt4T/XvCawyEvvsQVmOCX71PsOdphKMY8OGDZOKT+z3VLx4cZo7d66MttYeWMChXCgjoDTFeFu2bFm5vw0U6ZBrwTFUslD8SVlr7YE7OvQbYzEY6hnIQq38sfZdZCWbVKYn9VgLaxK03dp3kWrTrFmz4i0MQBjczEFBDa7vv294j1UeS0d8JyhlGpTOlviZq9PSc2CpLhWe2LHW2nfjnj17ZPFQ5kAxBivdevXqSYtbe1ycBoUFif1y4hZxqLbaMx6otOaOucqKcU1Ivjp1ycHZyVwSm2FwX4YxEopvR/G8X9u0gQo0el1ax0Cpgz117FXmuObJbTT2wz3bi0rOsr70KCCAbm3cRlU/Hx2vOEt1elSN+38gZxnfePkQkCuL4XdXyMOQeMocxJf0dqAbt3AWX9yFpdSVo/vjR3AIE2ACTIAJMIF0RsAZEwExL+CfOp3x4O4wASbABJiAHQSOCN8ogQ/DqUFZw8QzssClWkPfYjK3d+7sdD88gn7f5UfvNKiquY60o2hOksoJYCX4m28aT87aajKUKLA8MZ3UhxIC1jiYiFJStWpVGaauYdUBRQ4Ek/xnz56V53DfA9ErMGRA7B9sMK9WNCurG0zC2yPuuQ3WNI/uhpKrcE+lBK6HlBs1hOknYlWaxBwx0YlJSaXIsbcM8FywYIFcMY7+YiIWllIlSpSwt4gXSgdrK1PBvcIK/rp16xI22Maq/KQUc3Um5l7DTRomCmENBYHyS/8cWmuztWdPuQFU9wD3FeViDyV7JF9uw8R28F1hcZTFnhz2pcklVnqXfqev2cTlhTVUztJl6dTMaWKScDeV6dtfS4cV3EV6vU1ejZpoYfaeeDVsIpU5QcKlml4Cd+2gLCWLSKud5+GPZdRtv6OUt+bL2/8FG3m75ffUN8vqeai4H5D88ed+DRGJ+AsrCr1lTiKKMMryIs8eXAF26NBBKw/jMCwjIbAGgXIWln9wu/jggcGlM1xaqrFZy6g7US6/oNRRrg0xnuut/LzzOtD5q/FXFFprj66KBJ9a+i6yVVBKjrW4F+YsPBH25ZdfykUMM2bMiPf9aqtP1uLN1ZnY5+BFxlpr340YU9FOZcEJJSME74E9yhzPbJ4UHB5qDUOC46B8OThqJPm8/Rad/WEaFevUVe7TldCCsPcXXF5CkfP0/j26uX4LQYFyReybgz16rq1fK/cys6dcjN0JVf7bKtfBwZFKv9efngjrKOdMbvGSv0iddx4JjbmQfFnzxisXAeevxdB77c1G0YOQYMrpGX+BjvnUHMoEmAATYAJMIO0SkEslsTKIhQkwASbABJiAvQRWHzlDXSoVJ+yhY0kyCz/b/vcf0XNeMGAJUboLh5UMrBDg018vWEEONzumgt8fmHS5cuWKFoX9VpTyRQs0c6JWFqv9WfRJMMmDdsAqZNGiRXJvCcRDeaSXhw8f6i+1c7dsOYUSJwfduxWoheEEVhYoUwkmBpNC0F9MeN28eTNecWqiCvEQ0zrhZubUqVNynxpYBWGPHL2AsdpHSB9u7zkm8CwJrANMBftAwB0RFEtYKQ1lXVKKaZ227jWeE7WvBCYGlUDJAoWLmnBGP/X3FunAGs8RrGz0Yu3Zg+UXRPUb9wTlmrpYg7WDuqf6snNlN7idumaf7kefNdHn7j6FpWuh2hOmyEnDG1sMbhRVgbUn/kDezVuoS7uPWJVefsgwOvmz2DvnkUFpg8wBK5ZTFh8fCj64n+6cPCEVO0FCwfOyJFooIYL37rF7ZTvadTX2fniaUebg/mJ8szSeJKZflp49VRaUKKbvpr3PnipDf8SkeIBYaa8ELuCUwK0mFDmwTIG1Blx+QfTjqbn2qHEc1nrYc0t94GpNSRHhUQl7YDx4pEIMR2vtMU6ZsCtL30UoBe+kcv+Ja72LNVwn51hr7dlRHNEGveB+wBoVYy1crKl91fRpEnturk5bz0FyjLXWvhuxUAAKefX9psZyUws3KA/NLeQonKsIPYt+Tg8iDMrJxLLS57uwaD5FCtd4NcdPpNJDP6QjX38prQ/1aew5Dz18iHLXqCaTBh88IBU7T0W5GDPhZjN0+16KEEqrlJSS3d+hisM+TvIm3Lh/XZaZTyjbTCVSGD7fvBFDRYWrNXMSEnCechcqFi8K1skYo02/4+Ml5AAmwASYABNgAmmEgKNU5Jj/PkwjXeBmMgEmwASYwMskcP9xBC32u0itK5UyqvascK12ISiUnon9u3A+f+9xalLci1yc5LoBo7R8kT4JYBNlWEko6xnVS6zmxuTgvHnz5H4lWDl78OBBGQ1LH1iXYLIQbszgjsXWvhHIiMl47NcA6xvsxQBL440bN2oTO0iDleXY/wFpTAWKGUymHzhwwCiPSleqQWu6dvKwupRHuONCP7DpMhQDUF4lhWADZ/Rn8uTJcj8JTDypfYngBgdx69evlxONYKgEk3dbtmyR7YdVDyyFTCey4D4MXNBeMLJXYKmCfTKwJxHao5+4tVYG9i1AXuxpATd02NdDuZ6zlu9F4yzdazx72NAbkznKNZSqC88P7iH2ylD7bqg4HDE5iOcZG4brxdqzB2sLKCjxLuDZw7MNMbUggzsgtAt1qD18VB0dGznSvhPGikcVl9hj5KMwCr8ZpH2e3rkTryhXoVSsMPoz8ps8SVjtR8WL1wdAIYLynoQaXBLiPELshWIq3i1b08MLl6TLIMQ9uOJPj877U42vv5MTnpj0LCfcsfkvX2Y06alvK86jY90Xmpavv34iVmU/jlXYoV3IJ14OLUnE3TvCtdppOjx2tGxD4fZxSgUtkYWTA+J+tG7sROa+zvB8wBIN+2UllVh69lT52DsMYwKeMfVe2/vsqTL0xwYNGhD2d4ICw8/PT+5Ho+JRPsYAvENQMs2cOVNFaUdz7cF4BDeNcIeJ/U0w6Y7xVs+pcAGinB4OdOSs8fNurT1apYk4sfZdhLHy2LFjcoyHJREWAihJzrHW1neRaoP+iPuB/ZG++OILgus4jLGm45Q+fVKc23oOkmOstfbdCIUfBGM33gOMuVDQY08lvWCcByN8R+gVXt7ZC5GbsyudCDymT57oc4w9h0d8SjUnTJLWKmXfG0hBazeRqXLcUgWRjx5S2OVLdH7+HLo4azaV7TdAJr2xbTMVat9OGy/rCIsfWO3cOhh/gYy5sp+KcU8/nqIeW/L8SbjM8zTsPj0T1pPIH/kgzFY2LT4xdarMh64foqoeFYRFf/z/HfyEYTb22CpRSKWOO0aKdvr/t5m8y1WJC4w9g+ITY/TYsWPjxXEAE2ACTIAJMIG0SMARK6nYzVpavHXcZibABJhAyhDYfkpsvJrJhaoULWjUgKuh96jF1CVUetRMaj39b8ooVmV/0b6RURq+SNsEMImdGMFENiZaevXqJRUTWG2rrHEwGYXJbExEVq9eXfr9Vyu/bVkOT58+Xbr5waQhfs9gBTiUDlh9jX/aMRGEPR1gLQLRl4dVvfC1j0lI7MGwdu1ao67V69Kf9v81gyIjnmjhcGuD9mKFNpQsendBWqJEnKCcbdu2yclU1IEV4pjoh6DNUPJAKYKVz+iPEqzMRzjaj/2LMAkLBnqBWzK4uIMLGjDCpKq9AsUM9sVBe7DRtqnoeSIOSiNsqI19j9Am7CcERcl3331nmjXR16Z12rrX2AcEm4yDMfamgKgy3n33XblZNp4F9BMTz3pR6fRh6tzSs4d+r1ixQlow4F716dOHsP+I6b4UmPjEs4d9lvSu+1D+sG6ONHmBUJYYHltVpd1H03bDJU7AgqW0omIl7bN3xBCz5RXv3I3C/E4Ki5mTZuNVYITYVwrl7enTTwatqlKVNvfoqqK1o3NGVyr38Qjt+tb+PdISJ6vYOFuJR/Wa9CTghtzUW8zgyWCUp29vmM5SROUzPW7s2Jb+rW1w/beje0+ZP0I3Abm797u0vXdPinwYRm3EanfXHDlNizB7jdXgk8T9GNEz/uQiMij3ZsoyxmwhJoGm98gkWntGTcPVNfYNw7iGZ6x8+fIy2N5nT5WhP0J5AneAGCcqiz2SoGxUgvEOimzU5ePjo9Wn74O59rgId1AYV6H8hoIT7YPyXm+FIn4m0LgBTjR9SXxljqX2qHYl5mjtu6hIkSKEvXywpxsU2WCiJDnHWlvfRaoN+iPGKwhcWsJ6c/HixXIMA+vkElvPQXKMtda+G7GAAYrFHj16yGcTvzGw2AHfc3rBdyKUo3g/9QovZydnGlj1fZp9OG5/KH0+u87F97OSo999TQXbt6YCDQy/e11z5qSqE78Vbtc+o+dPbQ/mZ6ZMpY1vtqLrmzdR45Vin8FatSlGLI7yn7uQ8teJex/F5A15t2tLN7ZtUVXHHXXtUYGHhn9qNJZeXvKXirJ4DNq1U+Y5++N0aQWEsfj0rPhKXH0B+vEgMXWirMioZ7Tg5CIaUGuQvmjt/JcV0TS2nxNlyqgFaScnt62h4rVbUIESvlqYOlGuIc25K1Rp+MgEmAATYAJMIC0RcBA/smPwD2UUu8FJS/eN28oEmAATsEjg7MUAqlAmvpsBixmSMCLi2XO6/zic3DK6kHsm1yQs2b6i4G7K1zf+P3L25U5cqlelzsTRMc6Fldlwi4VJFVPFEJQMsOhIjIIEq3KhEMI/6vp9eWB5g0k4d3d344bYebXo8/5UpkELqtjE4FZIZcPEAJRGplYwKt70iH5bsmxBe/Vtxn4sUMyYuuXCqnhMUoGRXlAuJpMxUWrvZHJC2qOv60XOk7tOa/cadeOemeODuFBhUWL67NjbV0vPHsrFvYQCDpPaCZUun0RTu0YO1LlZ3GRhQstIV+nFcx4TZdmyLLEbjdvDaO0uomlLo2jDdONJYuTFc5c5c2apBIDSLjWIuWcPYfaMQRiHobQx98xCMYu+KtePCekr3JdhLIYiXz/eoQwoLT2bP6dji5zJx8SzkrX2mKsfdVgSjJ9qwhk8LH0XoZ8Y202VAmllrLWXgSVOtsKtPQfgmlxjraXvRlgpoU1QGJo+W7b6EvHsCb32WwNa1mUpeeeMUzDbypfQeFgyOhjrK+OKEApsB/E7gIVo07kN9OeRubSw2+J4OG7dFvsUdnxO19Y4m91Pbmr3hvTmxxPIp3z1eHm///57GjFihHRHC2UtCxNgAkyACTCBtE7AYd26dTGNmzS1+AM/pTu4YvUGWrhklVEzKviWpk4dWsqwUiVSZsLSqEF8wQSYABNIRQRSUpmT0hheFcVKSvQzpe9tWq4flhf79+832wVsXD1ggMGditkEyRCYEu1JiTqTAR0XmUIEgvfvo81t21msvbtQnKWEwDUkLArhlqtYsdT7P8mr8P7B4sea4h6Wi7C4eZnysrmnRgYvk3dqrQtWg6G7zf8GqD5lIpXo1iu1Nj1dtKt9+/bk6elJsKhlYQJMgAkwASaQHgg4Y5UR1vxZWiyS0p00VeTo2/P52O/pmzHDiRU6eip8zgSYABNgAkyACaQmAmLhjMV9Y7DS/WVLSrQnJep82Vy5vuQjkKdqNep4VmyYkMqkWrVqqXZBnB7Vq/D+ZcmSxaobSXOWeXpGyXH+srmnRgbJwTWtldlw9p8ULVymmZMMbsbWtubScNiLEYDrUxYmwASYABNgAumJgDPMzaPExpbK7Dw1de6c2DDVlrBCxxYhjmcCTIAJMAEmwARSkgDcFqUmSYn2pESdqYk5t+XFCDgK14PYg4IlcQRehfcP/8vCjVtqkpfNPTUySE33I6Xa4uKeLaWq5nqZABNgAkyACTCBdEhAWuY4ih+/qdUyxxrzbp3byugz5y6xdY41UBzHBJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAmkWQKO2DA3NVrlWCN6/NRZWrp8LZ06fV772GPFo8o8ceI0zf5zobw8f/4SzZw1R0Wl2HHnrr10787dFKvftOLw8Cf08Wdj6ZmVjURN8/A1E2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkwASaQ9AQco4WLtago8z5ck766pCsRCh39JyEl3wgMogP7D8sswSEhBEWKOVmydAUFh4Sai0rysPETfqCTZ84luNwbN4Jo5T9rE5zPVoZnz5/RvAV/U4x4PliYABNgAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMIGUI+AYExNDDo6OKdeCVFzzosUr6P69sJfSwo1rl9Fr9WonuK6Aq9doy9YdCc7HGZgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkwgbRBwNHJySlNuFmr4Fuavhkz3OiDMHtlz94D1KxlRypVrhbNW7jEKFvQzVs0aPAIyuftS917v0+3b9+m0V9+SwcPH6Ne7w6ijz8dY5Te9OLDIZ/Qjz/NpJp1m8ny//57lUxy5MgxmjhpKg373+dUsUYjGTZ/0RKZDmnnLVisFfXRsJEE92+Qm7eCqU+/wbKsH36cQQ8fPpThoaG3acAHw2V4h069aNuOPTT8kzG0fNV6atSsHZ04dUamwx+c9+w9kKCsg1wJuEpduvelhw8eyuOMX2fLct7q2kfW27XHe7KNq9esl+n5DxNgAkzgRQiEhUfQgycRL1IE52UCyU7geeRTmv5OU7p384bFui5cuEDHjh2LFx8REUF79uyhdevWpUkL53gdeskBV69epfXr19P58+dfWs2wRMf9evz4cbLWeeTIEVq5cqX8hIaat/COiCSq0i2KrgbFNSU8+CaFHPpPBkTcu0vB/x2gaHZ3GwfoBc7CLpyn+xcMFvCPrgbQnZPHjUrbuJ+o12jz1uiP7t6mqd0bUmR48j43Rg16wYuQgEs04903KDo6Yd4X4LFh69atFB4e/oItSB3ZX9Y7j97+NqgjBZ4/mTo6zq1gAkyACTABJsAEmAATSLcEHPEjV034p+Zeqn1ysFeO+iDMHoGypmPXvjRq5P/o5NFdVLlCeaNsISF3qP97venU0R3k6uJKK1evo88+HUrZs2WlX6ZPoq++HGmU3vTiypWr9PDRY9qycQVN/2kCffi/UfT06VN6LP4RmjJtFtV7rTYd2LmONgkLmsk//Upzfp9Gc/+YTjN+mUMbN2+XxQUEXKcnTw0Tn916vU9Nm9SnY4e2iwmHJ7R+wxaZpnP3fuRbpiSdOLKTxoz6mGrVqEpDB/enNq2a0uoVC6hMqZJa03B+QrhtO3nawGizqLtKxQoUTTG0Y9cByuaelQ7sWk/R4v4PGTGKvv16FH3/7Zc0etwkrQw+YQJMgAmYEhgydw0V+3S60afdFMMeZEgbEHKXcF3lq9+p8tjfadbmg6ZF8HUaJpA5c2a5AAR77anPli2G76jU2K01a9bQ3LlzLTbt2OZ/KJuHJ+XI72UxzT///EO//PKLUfyjR48oV65c9N1339G///4rJkzNTwIbZUrGi0mTJtH+/WI2OoFy7tw5+vjjjxOY68WT//jjj1SjRg2p7Lh48eKLF2hnCc+ePaOWLVtScHCwnTkSl+zGjRtiocwJat++PVnq35KNRN75HKiQZ1wdQbt20qZWrWXA3ZMnaHPrNhT54AFFid+UC/LmNfvZ3reXTL+8RpV48QFrV8s4fd6dA/rS1XVrZPixH7+XeW4f95PXjwMD5fWe/30or69tXB+vzGNTJlLY5UsyHGUpeRR4Q4YphQnCb+3bI8NO/TpDJZPHUzOmkWq3UYSNCyi79H3B+drWzWWu2yeOaXH/Nq5PR777mp49fKCVeHLmNDox7Ud5fWnF37RvxP+0OJzUr0L0z65o8jPoe4zisuTMTXmLlaUja5cahafmi13zp1OFph3I0dEpQc3EO9K4cWMKCtJpGRNUQupKnNB3PjIykt577z0KEW64EyqVmnekbXN+SGg2Ts8EmAATYAJMgAkwASbABBJEwFm6WROTMqldoQMrHN+yccoK1Ut7FDp+fieoYf3aVK9uLZnNV5R16fIVVQRVrFCWyvuWkdcd27emufP/on59epKrWybKlMmNXF1dtbSWTpo3a0RZxCRX40avkY93ATpx0mBlU6NqRWrXpqXMtnvXPurZpQOVLlVCXnd5qy3tEvv1NGvSUCs2MOgmnTl7kSIjn8m9cKIcooUbtV1Up05NGb7h317k4uJC5cuXlXlcM2UiZ2cnWbdWiDhB2MD3etE//6yTfVu+4l+aNOErLclbHdrIcuqJcnHvfQp5U768HnTrZgjdu3uPHEV+FibABJiAKYGxnRrTqOdxK32HzF9HdUsUlMmixIT2e7NX0xvlitL8gR1lWGjYI9Mi+DoNE8Bq7dmzZ9Mbb7yh9SJ79uzaeWo7OX36NAUEBNA777wTr2nRUc9p66/jqcPon+PF2QrYu3cvFS5cmKAsSg0CaxNvb2+qVcvwO8feNsESed68eTRx4kR7syRJuj///JN+//13atWqVZKUl9oKadOmDeFjiSuG0JE/P6eF4+z7reWUMSN1OGVY8R969Ajt6vkOtRVHJ/F70DFDBq371X+YRAWbGJQbCMzg7q7F1Z09i/JUqkY3tm2i3b3fpVwif4yYuIdc37iBcleoRDe2b5bX0eI3KMSzQUNZ77k5f9DtY35U96fp5CR+d4bfuiXjr4vflvc+OE05ypalmNj9N2OiDRbhSBC4czu55M5BV1auIN/+A2Ue+SfWajwuwL4z19wesj2hRw7Trl69qb1ok2PG2N/osWW2OXiAnj4Io+NTJtG23j2pqdj/0h530q4uRGP6OtGEOdG0eEJ899M1O/Sm+cO6UNU3u1IGVad9zX7pqW5f96dj6xdQi48uJbhu/I8BqzlPT52WMcGlpN0MWOT422+/0WeffZbgTpRr1IpWffsBBV08TZ7FDf+nJbgQzsAEmAATYAJMgAkwASbABGwQcMTKWkcHG6nSQXRMjH2rZp8ItynPYv+JTUy3sTo3Qvxz/Dz2n9pMbnGKIFjrQEGkxMU1I0WIML1gRRgkV86clDtPbqpdszr17dtdWPoYwlW8Po+l83ZvtqSFi5cLFyaXCP0qV7Z0vKQZM4r/XmPF2dkwIRAt7HdYmAATYALmCGQTY1pu98zyEynGuQPXg6l5BYOC2u9KEN0VY9WgZrXJTUwIZRFjXOG8ucwVw2FpmAAsUvLly6d97FnwgO7u27ePXnvtNWnRU7JkSenKB+Gwcvnggw8IVj+FChWimTNnagtMNmzYQIMHD0YyKUuXLqVRo0bJ8+vXr1O1atVoxowZsi1QDJw8aZjwhpurSpUq0VdffSWVFTjH5+7du7ElEd0JvEYPb98gr9IVtDCcPBdurVAH2oPyUZYS1IlyevXqRVAUqXLx/W6PWGJgrZ8o97///qNOnTpJdmAE92SQOXPmyDbs2LGDPvroI3nepUsXGWftD1zEoW/dunWTViqqH7t27dKyrV69WrL/4YcftHsNvmvXrqUWLVporsrggq527doEaxRbMm7cONlG5Bk0aJA8Rx+UWKoTv3169uwp7wl+t7Zt21ZOOKt8uPd6V3hoj7KIQTj6ivuJ5yEhcu3aNXr77bdlXuT/6aeftOxwRQVu5tqjJbJw4h9IdDckhqqWsf8HeKY8HoSPa07DmOrmkVdeZ8yeQ6vFJVt2GabSOuuUDi5Zs1FmMUFfsptYFCQULIHbDIobn+6dyH/5MmmpjWORd7pp5SE/ysqQJQs5ifEc5y5ZsmrxXm1b0enZxlZrKjJG/B4OWLWKqgtFYZjfSYLVz4uK8A1t6LP4jQxxFQxcY89V2Zk8PCh3+YpU69tJFLp7P932i3t/VRpLx9rlHWjV5iiKMvMz2KtUeYp4fI9Cr9qvIPH395fvCp4RPCvq/YLrPTyTgTomePbxrCnBWOfr6yufr+7du9OdO3dUlFRQIz/GAZSLZ/Ovv/7S4q+dOkoFfcX3sHucon348OG0fPlyLY06QfiKFSvk5ZgxY6h+/fqE+m7evKmSkLWxVktk4QT/F+EdV31p2LCh9u6OHz9ejs8q66effqq1BWGWxgOV3tLR2ju/ceNG7b3F9xC+P9SCxgEDBsixDOU2a9ZMptO/8ygX7cf9xHeZ+r5R7ciYOQsVq9mcrp44rIL4yASYABNgAkyACTABJsAEkpyAXHr2TLfKOslrSKICYYFz6vR5o4+9RdcW7sjgWuzixcty/5mde/YbZQ0JvUOPHj6iMOHKYumyf+i1WAser3weFCpWrdoj164ZJjG2bN8lrVtK61yeqfy1alWnZWIVI/a+wWpYnNepXUNFy2Mh74KUL7+HnNxqVL8u1Rdtgcu0Qt5e0u3bkmWrxERTFMGCB23Ons1dTKDE/cN1KziENm/bKcvKI5RBzZo0oM++GEddO3eQ/3wYVWbHRUq7jrGjiZyECTCBFCKw6fgFqlkwL/l4GCbWgu4+oFJiknCU8B9U4rOf6ctlW+jSTfvG0BTqAlebCAJTp06VyhcoYIYNG2ZXCbCOqVOnjpwog2uvP/74Q37PITOsFzZv3iytXDDZPnDgQNq50/A9BuXLmTNx+8Hhu/PSJcNkKib4Dx8WK/SFAgKTmu7CCmHatGmyPWXKlKFVYiIZZbVu3Vqe4zpbtmxae+8GBpBr5hzik0ULw8nu3bsJCgxMpg4dOpSWLFmixefPn1+WhUlHWMGgTHywmt2WWGNgrZ8od8iQIVS1alU5wYqJV9WPdu3ayfoRN3LkSHk+ZcoUW02hjMLSY9myZQT3bG5ublo/UI6Se/fuSZ64F5gonj9/vnDZ5EjNmzeX/UV92Humc+fOcvLXy8tLZbV4xGQpeKFO1I1z9EGJpTrxW6RixYp09OhRwh5GOXLkoK5du6pstH073NLG7WcCl3NPnjyR8VAGqol0uD6zV+CeCUorWKNBcYNnzdnZWWaHCya4ooIS6dChQ8KaOpJ69Ohhb9F0RfxkdHV3oKyZjbN4VKtO9ebOloHZxURz3dm/UQYxUW+vXFryFx0aN0b7xFOgCOuV28eOUuTte5SjlMFywM0jH+WpXo38V/5Nz8U+ZznLlrO3Oirduy8FLFhKDwP84+W5f/4cPQkQytJGjSlPvVp0a/+eeGmSM8Atv6dUWj24dlVWU0IosUr17CPPvZu9QVVGGpTC+jYUzGe4CjTjYctJWEBlz1+E7twI0GexeA4FAd4NjA14dqAcgKIE73qePHkogygPilElsHjEcwqBchZ5P//8c6mkxDMI14RKoDxGmbAewXuIdxRKdiW3r16mPIUNiyxUmIdQcpm6xEQboTxX7+77778vrzEG6hXU1sZaVb6lI97xPn36yO8MjIEYA9ReoLjWuzzE2I4xXoml8UDFWzpae+cxlnz//fdS+fzzzz9LpfK2bdtkUVBmKaUYrHPQdvVeo124P/Xq1ZPfSbiXUDCbSm7vYhQacNE0mK+ZABNgAkyACTABJsAEmECSEXDGP+ZOwqWW3i1CkpWexAVZc6lWqkQxi7XlyJWTvv9uNL0l9pyJCH8iXK7VMUqbQfS/RdsudOFiALV6o7HYP+cdGd+ze2fq+/5Q6YZt8YLfjfKYXvz86xz6fMy3MnjB3BlSyWKapk3rN+jsmQtUrkoDGfVB/96EML3gfiyZN4v6DRxC306eLqMmfTuGmjSqT8uWzKa+7w2hSZN/lhY+88S+O5UriZWCYq+dijUa0cTxo+m+cJE2+quJdPbEPqm8ebtrR2rToRd9P9GwGlWYYskysaoMEhN7lBexfxzJUeyp404livvQnHl/0QCxnxALE2ACTEBPAC7V5uw9QcOaximk74vxFZY6HxauSJuHdqX5u4/RN6t30pz+HfRZ+TyNE4A7r1KlSsleYELSHsGK8LxifwusxMb3HFZEK4HLLShNsOIZAqUB3IY1aNBAXtv6gwnN8uXLywlDrCifNWuWcJGaSVr55M6dWyqNYM1iKmEhNymnmHgzFUykYpIOe6tAMMmqBJP5KAt9gULCXLkqrenRGgPTtPprTD5ihT8mXlFnlSpVtGi4uMMni7CcgLWUve3BbwCkxYr7rFmzWs0HnpgI1gvC4GYOSpOywsUWJoHtEdwPfCAFChSwWK+5OqE4xD4eUMgUL16c5s6dK8ux9uf+/ftSOQdXcj4+PnLyWz+Bbi0vJsthfYU9k4oWLSqTli5tsHDes8egmIAFFxRjeAYxyYuJaTwbtuRacAyVLGT4HaZP6+5ThPCBuOXNTz4t39RH2zx3FYt4shQ0uL1EYrhnU7JngOEeQZFT+euxlLtyFQrcsVVGF2rRmna/04eqjB8nfjuqHLaPmfLlpdKDB9LZObOp9Lv9jDLc3LubCoj9bJyFu2Kvps3o+uZNVLRjZ6M0yX2RqaAXPY21aPGoWk2rLmcZX+1cf5LHsC6Bbgl9gnesYkcfn7NgUQoLDtIHWTyHpRqeISgM8M7i2ZkwYYK0UIQSsG/fvvIZxv4sUBTgOUM8BGMiFKtQ2sJ6B4rjL78U+1qOHi2VQKrSr7/+WhunVBiOd4OuEpQKeoElD5TokN69e8vxFWMsFEWwmoFAWZ3TxNJJRsT+MTfW6uPNnf/666/Ur18/bYywd4zSl2VuPNDH689tvfNwEQrlFKxsYKFYokQJacX3+uuvyzFUKcrxPadvqxo3qlevTleuXKHKlSsT+J89e1beW9UGd2EtduXofnXJRybABJgAE2ACTIAJMAEmkOQEnFFialXkQEHTrXNbWrhkldWOI40t6f52J+GipB1FC6sWvUuY1+rVJnxg7RIhVnFmyZpFK6rTW+2oxRtN5Oahl/yvyL1ktMjYk/LlDCsbJ3zzBZUqWVzuseMslEMQVXZsUjmB9dnIoTRs6AAZpG8HFDJK0VKyZDHatXUN3Q97IPfCUeX5lilNB/ZspHv3w4SyJassDwVtWPO3XOmn/gFr1bK5ZoXzRKyyrFOzChX2MUxkYdLm1rVTqkk0sH8f7Rz16OO2bFxJT0V+FibABJiAKYEjwk9Q4MNwalDWMMmJeHfhhgfSp2FVyprJlXrUq0hNfviL7op0ObO6yTj+k/YJwMXVm28mbJIZezDAygGKHL1AQQFXVlAIKMEkJsLsFUzsQ7AyXb/K21b+bB756e61S/GSwdKnQ4c4BSTagwnCFxVLDGyVC2YLFiyQ1jmwCIKSCdY3mIRMbkHfTRU5qBNhmFz++OOPpZsi0/v6Iu0yVydc38GtESa2YeHwQFhSQ7C/hZNwvWVJTp0y/N7BxCxEKWUspdeHQ3EE5Zm5PLfEnjFoJxQ5EPUMYlLeHmWOd14HOn81bm8Zfb0vcu7VqIlFBVD5Tz6hnKXL0qmZ0wiKljJ9+2tV5a/3GuWqXY28Xm9CQbt3aOH2nJTo8Q79IyyKCrVsZZT86tp/yU0oGK/8s5Ii7tymG6vWUOTkh0Zu2owyJMPFk+s3yFVYwdgroXcNKfNbyHL3+mXK9mZ3u4pTFibqPcWzhHEOzw4E4+G7774rXY5BOQjLM6XkPn/+vHT3CJdgSqD8geJFKRsQDmtHc5LTsxDdD75hFAWrEli1YWyF1SFcvWHMhBISbbNH1HOekLH2+PHj0p2jPeWbS2NuPDCXToXZeucXLVoklUuwrEF/wsLCNCs+VYa5I7jh3YYVqRJYAEEhpJcHIcEE/ixMgAkwASbABJgAE2ACTCC5CDhjIgUrNHFMjdL+zeaET1KIi3MGInzMCBQZekWOSoLVrpDr1wPpslDomEqxYnETmVCU2CN6JQ72CtiwYSsdP3lO/FNhvIoOLtTMSY7scW5iEI/7p3ev4OaWiZ6JiY/f/phHs2YvoJlTDSv9zJVlLQy8XLKa52UtH8cxASaQ/gmsPnKGulQqTthDR0kusZcOJIOzXCdAzrGTrJFio3mWV4PAwoULpfsaTFSWKxfnrglWI1htbir4/sIEGVY6K4EbNrUiGt+X+r0ilIs1lRZHlGFJEIcJf3OSy8tH7oER8fihcLUW9/2NycOAgAAtCyZAzSk0tAR2nlhigOy2+gmXXpikxCQvJhDhjg4KHiVQaEDhkRhRLo/M5YU7KHMCSyEocqBYwl49sGayx9WcubJMw8zVuWnTJqnIQb3oK1whwf2d+u0Kax/lZg1KGCXFihl+V8EtGvjr41QaTKTv3btXWicoayzEoR2YPMfeIbBY0At+c8HqQimT1H5B+ol2pMfvQr27KlVGES+iiAcx9OCRUILHrSFS0clydPcpTHDjVttnCi0Tlhg3tmzS6sE+OG+sXGO4TqAyJ6t3ISrS6206M2umVl548E26s+8QZRX78QQf3K+Fh/x3ULpd0wKS8eShcK8GK6SshXzsruWqQc9CnmYe+yjhdu/+TX/K5WU8UY9nAG67IP3795eWcjiHK0AIlACwnoPbPlh6qYVXeB5hJQKLjzVr1khLHZlB/IHyEVaA+v1aVJz+qP5H0YfhPLdPMWEdstcoGG2AMmn69OnSEhIuxPDeKotIo8QWLqyNtRaySKWzJfeGsKBUilnkh8vCpk2bGhVlbjwwSmByYe2dx72ClRD28MEeZLB61I8j+qJMx1OlpIULTmvK65CA81S6Xvz/W/H/HhRb6j7o6+JzJsAEmAATYAJMgAkwASaQEAKOUpmTkByvaNqGYv+avr17xPtAsfLBwH7iH6+CiSLz6HG43P9m47+LzbpmS1ShIhMmD2C9M3/2dKpVo1pii+F8TIAJMIF4BO4/jqDFfhepdaVSRnGVCxeQ1//8d5qePH1Ga/3OUdUCeShfdvOKaaPMfJEuCGCSDNYjcD2jF1hTQCkCd1fYywSr1g8ePCiTwNIHiglYXWAyD+6GYIUBqVChgnSHg7zY0B6rqhMiyI/V7ZjEx8SdXnJ6elPW3F5046zxPipwPfT333/LvXn8/Pxo5cqV+myJPrfGwFo/4RIIe11gIhJWInBxZ6o0gBsm7BuEVeam/bTWYLh+gsLiwIEDFpVepvnx+wL7eXzxxRdyQ3VMUo8bN840WZJeo0+oFxOisHDCPh96AVtslo54vfs1TJhjAhvPHdjo41R+uIrDMwvXfnqBJQMsFiZPniytGFA/lEoQKPwgUCqhXDz3sMAwVfpgPyC414NlF+6jEgyVOT0c6MjZpF1I9fTuHQq/GaR9Ih89VFVqR1iqVBj9GflNnqQpw7RIk5PnT8JlWU/D7tOz8MfyPPJBmEkqotJ93qPAfzdo4Tf37aVMPl5U9/upVHP8RPkp3KMLBW7fqqVB2/RtxbktiRbvANI9CTVsaoPzCGFhopfHQvkWcvgQ7ft4KOVpWIfyVDDsQ6NPY+n8wIkYat3YiZyMDQhl8hvnTsg9tvIUMl54hecfzw8+eBaUYB8aKADwbCBcKV/1bhKxHwsUs3h3sbeXEjw3UIxDyYj3HvvsQOFjrxQsU4mun9pH4Q+MLQqx3xX2qoJLMdSBZ7tmzZr2FpuodBgr8L7C4hHvMRRaSlleo0YN2S/sjQOLl4RYZFpqjLV3HkoYuIdU7yMYm1pzQsEEK6kNGzbIMUcpjBs1aiTTqu8wWOTgu0rtzYX2RIp3xP+/zeRdLs4VpmonFNF169alsWPHqiA+MgEmwASYABNgAkyACTCBRBGQypwYy4taE1Xoq5apebPXKa+HmWV8doDIl9eDPhr8vpiw8rUjtf1JsogNc7t1fYvKlS1jfyZOyQSYABOwg8D2U5coeyYXqlLUWImd2dWFfuv+Bn3+724qN+ZXOihcsY1oWdeOEjlJWiFgrzse0/5gAhOTmr169ZIT5FhtraxxoBTAhBgmP7EfAfZfadOmjSyiSJEicn8HuB/CBBsULUrUKnF1VOH6I9wQwUoI7nRg0QELDSWOTs7UqO8ntH/ZHypIHlEHFADIg30R4IYoKcQaA2v9xApx7AWElfrYowgKJljn6KVbt27S3Q9WfWP/IHsFFibY9wXKIJSv9oWwlh/7RECwOTvcjC1evFjuHbF1a9xEvbX8iYmDZRImndE/Hx8frY/q3mOPo2XLlklLmOvXr8sqVBz2IflEuBhD3suXL8erXqVTR5UAVjXYGB2KPVhmwXoKCiMIlGqYoMZkPMrFs41JXlOXb7hPsNqBlYZe4SWMwWncACeavuQFlDnC6sxUDg3/lFZUrKR9Li/5yzSJvC7euRuF+Z2kR0IxZk2Cdu2UZZ39cTqFbt8rz08LCxxTVjlKlSavtq20ogK3bSFvsS+MSKiFFajfkK6uWElQyCBcladvr5bYwknE7RDZhj19+skUq6pUpc09uhpSx9b1b+06dPDT4ZSnUhVq+PufRm2wUKwMjnxGNGlBFI3oaUaTI1IcWjWfGvQZQRkyxlmjIqMpC1mY+IP3acWKFXIPLzwjffr0kftvKatDpINyBcoEjDnKFSDCO3bsKCf9MfmPcvCemns3LdWdx7sI+TbuRMeFu2S94D2HQInSpEkTeQ6lJQTKBpSnvAdg/MM1rHdUPeooM9j5B+7hYLEEt2Z4PzDGKwUI+o33DNZK2I8HStLE1GHaFEvvPMrGvm3Yewhj19SpUyV70zoRj3EOLEaOHCmLh8UPFPuDBg2S32FQ+mAMVMoeJDq5bQ0Vr92CCpSI/z+dskBKCitP0/7yNRNgAkyACTABJsAEmMCrRcBBrESMadykqdGP0VcLAfeWCTABJpC+CJy9GEAVyhivHn6ZPYwSq2/DhPVOSuyTA1dUajPnl9XnV6XOpOCJVebYMwKT26aKIShaMEFmzmUpVqbDGsV0svxF2xQZ8YQmti5PA//cJvY5KGhUHNqDSVh73YeZuuXRF4Z2qwlDawws9RMThrBmwsSuct+kL9/cub3tMZc3sWHJXSf4ZBaLVdReNfp2gismTM3xgVUNrCMSO5GKCXco0pSLLFUvykWbYIFhzfWSSq8/houtNjybP6dji5zJx1Mf8wqfi3toyeszFp45ivcouWTtLqJpS6Now/T4dTy4E0JTu9Sh4auOGrlktKcteC7x/MAVoL1jiSoXVj/Ii+fOdLxUaSwdgy6covnDu9OIVUfEsxm/T5byJTTc3ncelixqTym8S3rBWGvvu4mxEEwtCcZIiLV3HvnhvtPeOvV1wboI9wTfVfh+0MvU7g3pzY8nkE/56vpgeQ5XfCNGjCC4EVV7I8VLxAFMgAkwASbABJgAE2ACTMAOAg7CjDym0euNWZljByxOwgSYABNICwRSWpmTkoxeFcVKSvQzJe9raq8b+864u1t2JwhrGlgWvSxJifakRJ0viyfX83IInJz+Ix0f963Zygp2bEP1f55lNo4DU4ZASrzz27dvJ7g8syR6SxlLaVIivH379uTp6Sn3LEqJ+rlOJsAEmAATYAJMgAkwgfRDwFmuboIXhBfw9JB+cHBPmAATYAJMgAkwASaQMALYiFzvws00tzlrEdM0SXmdEu1JiTqTkhmXlfIESgv3acXf7mm2IY4uxtYcZhNx4EslkBLvPFxnWhtrXyqABFQGl3ssTIAJMAEmwASYABNgAkwgKQg4J7XLkqRoFJfBBJgAE2ACTIAJMIG0QgAu1LAPUGqRlGhPStSZWnhzO5KGgLNbZsKHJW0QSIl3Hq7qUtNYmzbuFLeSCTABJsAEmAATYAJMID0RcIQ5ekxUdHrqE/eFCTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAumGgCPcrDk4OaabDnFHmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJpCeCDhKN2vRvGFOerqp3BcmwASYABNgAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTCD9EDCY5Ahf7yxMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAKpjwD7V0t994RbxASYABNgAkyACSSAgN+GFbRu+tcWc8Cl7Lp16+jx48fx0ly9epXWr5UM/4gAAEAASURBVF9P58+fjxfHAdYJRERE0J49eyRbMH5Zcvv2bdq6dWuyVodnZeXKlfKza9cui3UtXEf0yU/Ge0+GHD5E4TeDZJ47p07Qw4ArFvOn1whbDMb9HkO/LTfvGeDCgR20dOzgNIUmJOASzXj3DYqOTth7cO/ePbL2fKUpCKKx1sbapOzLo7u3aWr3hhQZHn9MT8p6uCwmwASYABNgAkyACTABJpDaCMRa5qS2ZnF7mAATYAJMIDUSGDJ3DRX7dLrRp92UhbKpi3YfMwpX6e4+DE+NXeE2JYJA5syZyUFY8+o/W7ZsSURJSZfleeRT2jTjKyrfqLXFQp89e0YtW7ak4OBgozQ//vgj1ahRQ07YX7x40SjuZV9ERkbSe++9RyEhIQmues2aNTR37twE53uRDI8ePaJcuXLRd999R//++6+YxDZWaLxI2bbyQvH25ptv2kr2QvG4HydOnKA//viDvvnmG7NlRUQSjZj6nN5qYrw2alPLVhS43aBsOjDyY7r092KZ//Rvv9CCvHnNfkKPHaWNHdvSkW/GanWFXTgv00IhZEv2fTw0Xrknpv4gs+nr3DmgL11dtyZecagb6Z49ipsc3zv8I/Kb+K2W9tqGdbS0bCl5fXbu71p969u1ovML5lK0TqFniYEqrENDBxoxLYoePVEhcccilWvRhT3rKfD8ybjAVH62a/50qtC0Azk6OiWopWfPnqU33ngjQXlSc2JLY62lNp87d44+/vhjS9EWw7PkzE15i5WlI2uXWkzDEUyACTABJsAEmAATYAJMID0ScMY/3zG8Z056vLfcJybABJhAkhMY26kxjXoet/J4yPx1VLdEQVlPu+plqWmF4lqdC/f40aErNylnVjctjE/SNoHw8HCaPXu20eRj9uzZU7RTJ7atoez5vMmrTIUEt+PPP/+k33//nVq1apXgvEmdASvaf/vtN/rss88SXPTp06cpICCA3nnnnQTnTWyGvXv3UuHChQmKpPQoOXLkoDFjxtCCBQto/vz5Zru4bDNRYU9HqlrGbHS8wBJde1CRtu1l+K4B71HeOnWoZPde8jpj9hxU7atvaF3DRlS0YyfKVrwkHfr6Syo9eCDl8i0fryzTgBjxe75Yv95U4aNhWpSza9zYW3f2LMpTqRrd2LaJdvd+l3IdPUJZCnjJtE9Cgil0935yyZ2DQo78RwXqN5ThMTHifwTxMScOwqgmV+1qVH/GLLp/8QLtH/E/enr3HpUfPNRc8nhhZYoS1SnvQIvWxdB7HYzdPTu7ZKTXev+Pds6bTm9/82u8vKkt4PZ1fzq2fgG1+OhSgptWuXJlunDhQoLzpZcMsLKbN28eTZw4McFdqtmhN80f1oWqvtmVMmR0TXB+zsAEmAATYAJMgAkwASbABNIiAbmUECtsWZgAE2ACTIAJ2CKQzc2Vcrtnlp9IMfl84HowNa9QQmbLlDGDFpczixutPXGJ3qpu5yynrYo5PtUQgDVGvnz5tI+rq+1JtOfPiUZPICpbnchD/ORo9TYJSw5Dl9YLA4YPR8Z1b8kqolGxxgDNOhI16UCUrwDR2Elxx7jURJcP76FiNQ2Tz/rwY8eOUbVq1QjWRF999ZU+isaNG0eVKlUipBk0aJA8nzNnjlEaSxdQaEHhAgb4/dS9e3fpWgjpoRRCmUpq165NyuLnuYAwevRoKlmypMyHtMqaZcCAAYS0kGbNmsn2/PTTT6oYi8cjR47ItOgfJkTRJ3zu3r2r5WncuDGtWLGCWrRoIesdPHgwYfV8+/btaenSpTJdTEwMIXzCBHGTbMj169dlHb169SIokVSdT58+1XKaqxORGzdulOnBDRxmzJghlAUGV1sbNmyQbVCFoG2jRo1Sl7R48WLJvFChQvTXX39p4bZOwBj31tfXV/a/YcOGBNd6EFgXffDBB/IZQbkzZ87U2mOrXMRvOxRNzWvb/xs6Q5bMlCmPh/w4uWUil6zu2rVjhgyUs0xZKjNsMB3+5iuCFUzY+QtUTqecsdWmDFmyaOWhngxZs2hZXLJmo8yenlSyWy+ptAncJjRRsXJr/z7K07AOlej7LgVuM1gUqThrR8eMLuSW35M8X2tA1caOoxPffEfPE+D2qnF1R9r2n+H+m9ZTqFw1OrN9eYLclvn7+2vPOZ5L5b4sNDRUjgWBgYFaNatXr6a33xYDUazgeVPPCN7pO3fuqCipKMVYAneMKBdjiv4ZvHbqKBX0rU1u7gbFNhSzeJ9NlTQqXI0JeE+aNm0qxyCtMnECl5B9+/aljz76SNaFZxRKD3vE2vM+fvx4OU6ocj799FM5NqhrMME48MMPP2jj+8mTtq2jrI21lt55uGgE027dukmLSTWOqHuGNlm7J4j3KlWeIh7fo9CrCVeiIT8LE2ACTIAJMAEmwASYABNIiwQcpSLH/v9D02Ifuc1MgAkwASaQDAQ2Hb9ANQvmJR+PnPFKP371Jvnff0QNfcXya5Z0RWDq1KlyAhwTjMOGxVkBWOvkcmG88edsomULiPzEViKd2pKYNDfkEIv56ZxuYfptoYe4dNkQd3w/UQfhPa1tV6L5Iu9qUc7PwiNPaNw8KwVfOk05PQvFqx6TkmpCF+6y9ALlyapVq8jNzY0mTZokz9u1a6dPYvF85MiRtHz5cvr111/lJG/58uU1pcz27duN9uXZv38/PXli8CMFhcqsWbPon3/+oRs3blDnzp01xQEsQNTkMKxz0LYePXpYbIOKKFOmjEw7cOBAat26tTxH3mzZsqkkhDagLEwa+/n5SbdyGYTiAK6N0IZLly7RwoUL5cRp//79tXyWTvLnzy/rwURwrVq1tDpdXFy0LObqRCQmmr///nvZ/59//llOYm/btk3mgwLqzJkzWhmYvEbbIGFhYdS1a1f6/PPPCdZUcOtmr4BHnz595DML6yXc+4cPH8rssAbYvHmztC6CQgwcd+7caW/RdPxiDBXxjP8j+rU/55BHTYNyrtKIT6lQS8suAE0r8x00mO4e8ZPWMzW+nUAuWbKaJrF4HbRlM/03ZpT2CQ++aZxWvHS3hTu3yNv3KEepslrc9S0byev1ppSvRi0KWLbMyF2alsjGSY5SpWWK8FhXhvYwKCKUtLuOm7f8yQENrpAHIbfk0dYfKAXxPOM5PHz4sFSK1q9fXyo28+TJQ3jm165dqxUDC0OMD5AdO3bIvHi+oJiAwhYuGJVAUYkyocTF+49nBEptJbevXqY8hQ2LGhDm5OQkx5ajR4+qJPKI5xnvhre3t7zGeIBnDs+gXu7fvy/d+3kK5RvahngoRewRa887nn+9q0m0R68kwv4906ZNk/3DeASLNEdHYxeC5tpgbay19M5nzJiRlolnDeMvxmG0G5+qVavKKmzdEyRyEvc0e/4idOdGgMzDf5gAE2ACTIAJMAEmwASYwKtAwBn/cLCbtVfhVnMfmQATYAJJRyAKq933nqBhTWuYLfTfI2epS6Xi5J7JttWG2QI4MNUSwERkqVKlZPswQWqPKCscpM2fl6hnJ3tyGdLUrUmUKRORmN+k6mLu1dGTCAqgPLFzqbcuHKWsYv8EvWAydPfu3XIVuo+Pj5yE1U/k5s6dm/CBFChQgGCVYY9gUhfKLCg/2rRpI7PYu98DJjWVQCGiV9bAykcpYMDX3vZkEmCQFn2BlYmlfB9++CENGTJEVl+xYkV5rFmzppxIbdu2rbSwOXDgANnjMs/Z2VnWk1fsr4JJ2ITUib1BsBcNJsyxMr9EiRLScun1119XaMweDx06RKgP/YDgCAWYPQKlW79+/ej999+XyfXthWJo6NChBGsdCCavYRXRoEEDeW3rz+mz0ZQ3l1O8ZN7NW2hhsFpJiLhkzkI5q1SiWxu3Cfdq5RKSVVjc5CL3onEKdMcMGbX8ewYY+g9FTuWvx1LuylVk3PMn4XRt6Uoq0+99yl6suFT03DtzinKVq6DlteckQ6zSKfK+eDmF2MPAI5cD3Q2JIXjudDbBmDmH4f18eCdEuFE0KHastQMKUihcoCSsUqUKlS5dWlqa7du3T1rMwdJl7ty5cl8qKDCgVFWWaHgOoETAOwjrHSgpv/zyS2lJpx/jvv76a7n3lmk77gZdpdzexYyC8QyhPRgn8M5BcYG9nvCsQ5EBKVKkCN26dcson/5i+PDhUjEECyL0A1YstsTa824rr4qHksnDw0NdWj3aGmutvfN4F2HplzVr1njjiL33JGfBohQWHGS1jRzJBJgAE2ACTIAJMAEmwATSEwFHuP1wcoy/qjA9dZL7wgSYABNgAklL4Ih/IAU+DKcGZeMmDlUND59E0LzDZ6l1JcOEvwrnY/oggMl/WOXgY48lB3rdqilRc7EtTf2SRJ4FiX6aZT8L4cmJMjgTuQqFDiSj8Bz17LnhHH/zlahMD+6GxgWIs1OnTslrtQK+qG6C2yhhAi/UqnZMFidUWrZsSWCHSWZMXkIp9LKkUaNGZqvC/YOrNLStRg3zilmzGe0INFfnokWLCHvRYKIc1gawuFGWS9aKhDs55YYO6ZQy0VoeFXf8+HGqW7euutSOsOS4du0alS0bZ6GCCX0oBeyVsqUd6ZZ93q/sLZJubNkkLXO82rYiv8m23d7pC85dsTKV6tlb+7jmjLOaLP/JJ9Rg7jzybNmUbu7drVlchBw5JIsIu3Cerm/eRJl8vOjmrp0yzNFJvHgm4iRcxZmTZ48eyOCM4v7aKyF3Yii/l0M8RQ7yP75nAJs1t9D+2iHKwgQKQggUjbi3SlkCN4NQ8MLFHqxcoGCBqz8IlCz4fwjh+OAZgPIHFjp6qSP2ODInsAy8H2z83OB9ggUPnl24W4MFGpQ7SnForhx9GJQ+WHAHgWWR3u2bPp3puaXn3TSdpWu8A/YqclCGrbE2se+8vffk7vXLlC2vbWWfpf5yOBNgAkyACTABJsAEmAATSGsEnOFmLTrW1Ulaazy3lwkwASbABFKGwOojZ6TlDfbQMZVtpy5T9kwuVKWomLVneaUIwGIFE6GYOC1XLs6qAFt3/DqZaMo4on/WEw3pKPbCaUBURsy7Yssd3fYUdNk/YcjyFfelu4FXjTIVK1ZMXoeEhMi9H4KCgoziE3uhrHnOnTunTQTry0L848ePZZBpnVDg/PLLLzRlyhRpFYDV9k2aNJHKHX0ZmFROqOC3HPbjsCTu7u5mo8aOHSutEOAeDvuBYBV9UolpnWgfLGSwf02nTp2ky7UlS5Zoruaw95J+wlq5WEN7oACDWywlas8bdY2jpWcPk/umbvaQHsxg7XPlyhVcSsF91VvuIBBuu5RbNkOquL+VSjqQfxB+RCfNoqjIRw9p35CPqIq4L/nr1KMVFStR8c5vU57KVeMqTeSZu09h8qhWnWr7TKFlYv8gKI28mjSjoJ3bKVu5UhR69IgsOUvhQnTl39UEd28Zc+SkKGFJpSQ66hm5euRRl0bHO6dPyutMefMZhVu7uCz0HzWEQsyc3LtlUI645zFW5uA5gqs+CJSRypoMSkIIFHQIw75QUFTmjFVowfoNzzcs9NasWSOVNTKD+AOlLyzObO1TlUXsSWROcvsUoytH9xpFQVkE5Q1ch8HSBc86lEOm+3cZZUqCC0vPO4qGJd+DBwalG65h8Qb3i3qB4ighYm2stfXOq3rMvV/23JMocY/v3/SnXF6FVFF8ZAJMgAkwASbABJgAE2AC6Z6AI1YmJs2/oOmeFXeQCTABJsAEBIH7jyNosd9Fi5Y3fx04Re/WKi9WW5ufpGOI6ZcAJuqxl8rZs2eNOnn4GFHgTaLMbsJVWmVDlFr0XtGX6IYwBLhwmeiiUOQs/9soq82LIlXq0OWDO4zSYeIWq/LnzZsnrT/gXikpBKv9sbcO9pXAynG4TsNKfqVIadasGWETcbg8M60TK/ThwgllYONviH7lPyZaMQG8YcMGgjs3/D6zVypUqCDbAQWS3p2btfyY0J45cyb9/fffcqK5Y8eO0uWRtTwvEoe9NwoXLizc5d2XrtagfFGWTigXfYD7NVgxYIN4rOhXApdwCN+6dSuhj8hrKpaePeyjgn5iY3WwwQR/QECAzA5LqQULFsj7goltuN567bXXjIquXr263OcEFg/6+4VEDao40sb99t8no4LNXJyc/hNlLVGMCrfrSG75PanC6M/k/jcx8EOWROIqJutRrt/kSRT9LJL8Fy2mckOGUs3xEw2fbyZSmN9JenTjOrkX8qFbO3dQRGgoPX8aQdfFs5491poFzYl+GinT3di8kY6IPYdQrnMm8ZLbKVsPRVODqub/C7l68jCVbtBOWBAZ+1+DkgZjDD6w7FLi5eUllXN4DhCO+wrRW9HBtSGUKVBcYo8pJXin8Uzt3btXvsvYvwnvh71SsEwlun5qH4U/EL4gYwVKEShWJk+eLPfjQZuwXw7e8eQUa887rIXQL+yNA8s4KL5eVKyNtbbeedQNRS3eK7h5VOMowu25JzfOnSDXzDkoTyGD8h75WJgAE2ACTIAJMAEmwASYQHon4ChXc+r8uKf3DnP/mAATYAJM4MUIbD91yaLlzaWbt+lwYCg1r1D8xSrh3KmSABQRiZEjx4kqib1usPUFPF4N+JaoauycZhGxqLrlhyJczMfVq0dUS3xMRRhRWJRyDVtS6JWzFHjeYBmgEmI/jE+Eayms0r98WWiKkkimT58u3R/B1RfcIGHzb6V46dmzp9wbA1Y42AsCgt9ZEChzMOGcOXNmqbgYPXq00UQz0iAM+3LASgUbrdsrcP8Ea6jixYvLNsEiSS+qDSoM1lOYzIa1APYMatWqlbRUwJ4c+glVlT4xR9M6cT1+/HjZR+wZAjdz2FdEpcP+Ib1795YWT5jwRpwSuH364osvqHHjxrK94GuvwF0WLDjq168v2UA5o1y7oUyc474gHPvqqL2QVPk+Pj7SEgRu3nDvMNGvpENjotP+0eR3ToUk/njv7Bk6+8M0qj5uPDnGutcq1fNdeuwfQP6rltks2MHRfuV58c7dpMLmwl8L5B45HlWqa+VnK1JUuloLPrCPirTvSO7imYIlz2Jv4UpMKNTKDx4m08aIx/rOvkO0qkpVOjljGpX76CMq+/4HWjm2Ts5eIdp7Iobebhn/5YbFxf7Fv9Br3QbGK0Y9L6YRsKxZsWKFtILBO9+nTx9pzaW3tGrevLlUIOLZUi4YUQ4UmbBSgzs+lJMrVy5pwWNah6W683gXId/Gnej4xpVGWaDcheULrNSgnIByR1n34d1DeXh3oczAOT5QBFuqx6hwCxfWnnf0G+8OrJU+++wzuU/Qi9SlmmBprEXZ1t555AfrUaNGSQtBsFd7m9lzTw6tmk8N+oygDBnjWwirtvGRCTABJsAEmAATYAJMgAmkNwIO4kdzTJMmTSnp1hWmN0TcHybABJhA2iJw9mIAVSjzaq5Uhf9+XzHx+DLlVanzRZmKrZTojpgHzy+8JsXOVRsVeVcsas8m5ujNxRklNHOxf/mfFOJ/ntqMGG8UCwsXrIi3dw8IKDKUYsaoIHGBiUm1hwXiUC4UASgbK9CVoAy4MlJun1Q4jkgPV2L58+c3KkufRn+OtlhTrmDyM6klIQwSUzfKBwNL9wTKEmxEr2et6gFXMEF8QiUiIoKwrwpcq+k3tUc5UH7BMiohSiJV/6/LYujkpRia/mncM6Dikuwo+hwTFW2xOAdnY+sViwkTGRH5IIyiI4WLNTHxLl6ERJZinG3ktBjKk51oWI/45Z3Zs5kOLJtNfX78yziTHVd4vmDxBaUJXOQlRGD1g7xQdiRUcR104RTNH96dRqw6Es+aKCFtsJY2IeOBrefd0vtnWr+9dVoba22986Z16q8t3ZMHd0Joapc6NHzVUWGdY79yV182nzMBJsAEmAATYAJMgAkwgbRIwEG4B4lp1Oh1sW8Oq3PS4g3kNjMBJsAETAmwMoeVOabPBF/bR2DcuHHScsRc6g4dOkirG3NxyRWGvWwaNWpksXhMtCa1pDYGSd2/tFhe8P59tLltO4tN7y4UECzpn0BKjAcpUWf6v5PcQybABJgAE2ACTIAJMAEmkHgCDsJvdEzDho0oIe4ZEl8d52QCTIAJMIHkJsDKHFbmJPczll7Lf/z4cbx9UVRfsco/MRYhKn9ijpFi83lYAFmShG5WbqkcfXhqY6Bv26t6Hi0sRiIfPrTYfVdhScKS/gmkxHiQEnWm/zvJPWQCTIAJMAEmwASYABNgAokn4IxVnazISTxAzskEmAATYAJMgAmkDwLYEwWf1CJQICWHwsZa/1IbA2ttfVXiHDNkIFbYvCp323I/U2I8SIk6LRPgGCbABJgAE2ACTIAJMAEmwATEHqtOL7TRJiNkAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNIPgKO1ja6Tb5quWQmwASYABNgAkwgsQR8fV+uK7nEtpPzMQEmwASYABNgAkyACTABJsAEmAATYAJMgAkkDQFH6WbNwSFpSuNSmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEkpSAo4NQ5DiyLidJoXJhTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkwASbABJgAE0gqAo4o6NnzqKQqj8thAkyACTCBV5xATAzRgycRrziF5O/+z3umUfUZNeQnMupZ8lfINTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJpBgBZ0dHR3JydqKYaDH7xsIEmAATYAJMwAqBIXPX0JpzAUYpynnkoJXDusmwv/cfp992+pH//UdUp1A+Gtq8NlUs7GmUni+ShsCAOoOoaYmm1Gnp2xQTE500hXIpTIAJMAEmwASYABNgAkyACTABJsAEmAATYAKpkoAzWsWKnFR5b7hRTIAJMIFUR2Bsp8Y0SmfNOWT+OqpboqBs592H4TTyn900952WVKO4N/2y6SB9v24vLRj0VqrrR3pokKODI2VwdkkPXeE+MAEmwASYABNgAkyACTABJsAEmAATYAJMgAnYIOAYI/zhYN8cFibABJgAE2ACtghkc3Ol3O6Z5ScyKooOXA+m5hVKyGzBYQ/l0bdgfsrg5ES+BT3o3O17FBXNViO2uHI8E2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATsEbAWSpzRAp2smYNE8cxASbABJiAKYFNxy9QzYJ5yccjp4wq6elBTYp70fhV26h28UK0YP8JGtKwKjkJd54sTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkknoC0zIlhw5zEE+ScTIAJMIFXkACsbebsPUFvVS8T13vxXdJCWOmsOOlPM7YdotBHT6iiD++XEweIz5gAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmEDiCDhLF2tslpM4epyLCTABJvCKEjjiH0iBYo+cBmWLagTO3Aimocu20fbh3alg7uz0z6HT1HbGMjr7zQDpdk1LyCdMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACSSIgKOQBGXgxEyACTABJsAEVh85Q10qFSfsoaPk9LVgKpI9i1TkIKxqES8ZdTXknkrCRybABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEEkHAMUpsYE3sZi0R6DgLE2ACTODVJHD/cQQt9rtIrSuVMgJQvZgX+d9/RP9duk6Rz6No4/HzVCCrGxXOa9hTxygxXzABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmYDcBZycnJ7sTc0ImwASYABNgAttPXaLsmVyoStGCRjAK581FnzSuRiOWbJYu2KoWyENft29ITmwBasSJL5gAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmEBCCTjHxMRQTFS0sM5h85yEwuP0TIAJMIFXkUC7Gr6Ejznp17gGvft6dQoLj6AcmTOZS8JhSURgyo5JNP/U4iQqjYthAkyACTABJsAEmAATYAJMgAkwASbABJgAE0jNBJzhZs3ByZFiomNSczu5bUyACTABJpBGCDiKxQGsyEn+mzWswQjCh4UJMAEmwASYABNgAkyACTABJsAEmAATYAJMIP0TcJRu1liRk/7vNPeQCTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNIkwQcZavZxVqavHncaCbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMIP0TMChz0n8/uYdMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATSJMEYi1z0mTbudFMgAkwASbABFKcgK+vb4q3gRvABJgAE2ACTIAJMAEmwASYABNgAkyACTABJpC+CThGR0dTDO+Zk77vMveOCTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNIswSkZY4D75mTZm8gN5wJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkwASbABJgAE0jfBBylIschfXeSe8cEmAATYAIvj0C0sPa8Hx7x8ipMJTU1ej+K/M4lfWNgQbt161YKDw+3u3Ckv3Pnjt3pkyLhkSNHaOXKlfITGhqaFEUmSRlnrxDV6BVFUdFJUhwXwgSYABNgAkyACTABJsAEmAATYAJMgAkwgRQh4Ojk5MRu1lIEPVfKBJgAE0h7BIbMXUPFPp1u9Gk3ZaHWkb/2HKPmE/+kql/9Th1/+ouC7j7Q4tL7SY83HOnr35NeY/Ds2TNq3LgxBQUFxUM4adIk2r9/f7zwN998k86dSwbNUrya4gJu3LhBJ06coPbt29PFixfjIlL4bOKf0dS9uSM5GXYJTOHWcPVMgAkwASbABJgAE2ACTIAJMAEmwASYABNIHAHH58+fiwkONs1JHD7OxQSYABN4tQiM7dSYDnzWW/vULJiXmpUrKiEE3XtAX6zZQ5O6NCW/MX2pcK7sNHntnlcGUIcmDrR2WxSdSGI9houLC129epV8fHzisVy3bh1du3YtXnhKBLRp04bGjBlDbm5uKVG92TovCjR/rY6i7i35d45ZQBzIBJgAE2ACTIAJMAEmwASYABNgAkyACaQZAtLNmvCIw8IEmAATYAJMwCaBbG6ulNs9s/xERkXRgf+3dx6AUVRNHJ8Uaui9Su9I70URERQQQQWpiqCAShXwo4mAdBVBuvQmNkCUooiAgIAgSu8gvRfpNck3/xf2uBx3l0vPJf/Ry+3uq/t7u7fLmzczJ87J8yULmnIb9x+VUlnTS8nc2SRlsqTSsFxhWbz7iNy5dz/MeuNDhlSqw3i2mq9s3O7ZQ7VHjx6yYMGCx04dxxcuXGiOQzny9NNPS8uWLeXMmTO2vDNmzJDSpUvLmjVrpEuXLma7adOmtnRsrF692hwvXry4/Pjjj6HS3O1AOdS8eXMJCAgwnzFjxtiyw30b2oWL1oYNGxolky3RzcbQoUNl9uzZthy9evWynWOdOnWM5RHaGzhwoGkT3xAoq9566y1zjkjv2LGjXLx40VbP5s2bpUmTJqY/uXLlkuXLl9vSsLFpp0jZUn6SNlWow9whARIgARIgARIgARIgARIgARIgARIgAa8j4BscHCxcr+p148YOkwAJkECsE1ix/YDAMid3pnSmLymTJpELN27b+nXzzj2zfeXmo2O2xHi6UTi3j+w54pkyJ1OmTLJy5cpQJPBMnjhxouTIkcMc79Chg9lft26d3L1715a3UaNG8sMPP0i5cuWkd+/eZnvUqFG2dGzMmTNHxo0bJ61bt5ZmzZoJ6g5L4NKtbt26Jj4PFDd//fWX+Pv7m2Lnz583Spf69evLli1b5N69e9KqVauwqjTpR48elXPnztnyHjp0yKaUWb9+vTRu3Fhef/11mT59ulFCDRgwQBB357///pNp06ZJtmzZjOLq119/lV9++cVWT9euXQ0DKLqgAEudOrUtDRv7jwVLsbx8ywkFhTskQAIkQAIkQAIkQAIkQAIkQAIkQAJeScAfq2sDNbgyvikkQAIkQAIk4AkBPDdm/LFD3q9d0Za9QoFccur6r/Lthu1SMGtGmb5um0mzlDq2jPF4I3tGH1m91bO4OeXLlzeKCuB48803pUaNGuZz69YtgTUNJGvWrJIuXYiyzBx4+CdNmjSCT4oUKSRLliwCqxRH6d69u1StWtXU1bNnT5eu2uzLQXmze/duWbx4seTLF+I+r0iRIiYLlC6Qfv36SZIkSaRPnz5SvXp1o6TJnDmzSYvon2rVqknSpEnlypUrUqFCBeOq7fLly7bqYK2EGH+wGNqwYYO0aNFCgvQaPHLkiFFSwbVb2bJlbfmtjaOngqVALr7fWDz4TQIkQAIkQAIkQAIkQAIkQAIkQAIk4L0EfJYuXRr83HO1Jez1ut57kuw5CZAACSQkAnsPHk1Ip8tzJQESIAESIAESIAESIAESIAESIAESIAESIIF4T0C9p/gbqxxP3K/Eexo8QRIgARKIJwTy5coeT86Ep0ECJEACJEACkSdw/fpNSZkyIPIVsQYSIAESIAESIAESIAESIAESiCUCvnBTEqhBrCkkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJxj4AvLHJ8fH3jXs/YIxIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgAfFFQGEfHwYH5rVAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAnGRgC9crDFeTlwcGvaJBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABERC3KzRMofXAgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnESQL+cLHmq17WAoPjZP/YKRIgARIgARIggQgQoNVtBKBFU5HIurMNCgqKpp4lvGqtsYjO+wNtWO1ElHB09i+ifYrtcpFlGtv9Z/skQAIkQAIkQAIkQAIkQAIkEFkC/qjg/oNA8fX1jWxdLE8CJEACJBAPCFy9dkNu3Lwtd+/fpxvOWBhPTFgmSZRIUgQkk9SpUoS7B5gEXr9xi+zYtV9Onz0vgfqMp8QOAT9/P8mWJZOUKF5IqlUuH+4J/pOnzsiWv7bLkWMn5cLFy7FzEvGs1YL5csmBw8ei7aww5tmzYswLS5WKZcP9fs379/Ghiex99HiNPEICJEACJEACJEACJEACJEAC3knA5+effw6uWauWBAfRNMc7h5C9JgESIIHQBPYePCr5cmUPfdCDvfv3H8j5i1ckceJEkjZNSkmWNEm4J589aIZZwiCAydzbd+7Klf+uy7179yVThrSSKJFZexFGSZHLl6/I/O+XSLbMGaValbLyRM7s4ufnF2Y5ZogeAohLePzEKVm/YaucPndBmr1aX9KlSxtmY7gG/j16XBb99KvkyJpZSpUqKmVLFQ+zHDO4JwCuHbsPlPGjBrjPGIlUxzFv+kp9SZ8+7DFHk7x/nYN3ZOrpfeRY2/XrNyVlygDHw9wnARIgARIgARIgARIgARIgAa8hYMxxqMjxmvFiR0mABEgg2ghAkZM6VYCuKs8oyZMlpSIn2ki7rxiWOeCPccB4YFw8keDgIKPIqVSupLRq3kjy5H6CihxPwEVjHijSMA4YD4wLFG0Yp7AEFjlQ5GRTRU7b1k2oyAkLWBxKtx/zdOlSydcLlkhQUNjWcbx/XQ+iPdPw3Eeua2QKCZAACZAACZAACZAACZAACXgnAV+sUqQPau8cPPaaBEiABKKKAFyrwSInXdrUUVUl64kCAhgPjAvGx53gWb5OrT9gkfN09YrusjItlghgXDA+GCeMlytBfJzNW7ZLjmyZ5W1V5FCimoBr9lHd0ttvNJUsOubrN21VhY5rJR7vX8/Je3ofeV4jc5IACZAACZAACZAACZAACZCA9xAIUeZ4T3/ZUxIgARIggWgggBg5cK1GiXsEMC4YH3eCyeCdu/ca12ru8jEtdgnA9R3GKSxlztHjp9S1WrHY7SxbjxICT2HMNX5VWMoc3r+e4/bkPvK8NuYkARIgARIgARIgARIgARIgAe8hYJQ5wT7e02H2lARIgARIIOoJ3L1/38TIifqaWWNkCSB2EcbHlUAxgM/psxdMjBxX+Xg89gkghhHGyRozxx5hwj9I3bBduHRZypakMseRjzfuh4z5eZdjbl0LvH89H92w7iPPa2JOEiABEiABEiABEiABEiABEvAuAr7GxVrMeZzwLjrsLQmQAAkkEAKYUKTLzbg52BgXjE9YEvggkDFywoIUy+mI/YFxoiQcAtaYq8rV7X3M+9fza8Ji6nkJ5iQBEiABEiABEiABEiABEiCB+EHAVyV+nAnPggRIgARIgAQSKAFPlD0JFE2cPG134xUcFLbiLk6eFDvlnoAbhay768F9pQk7ldwS9vjz7EmABEiABEiABEiABEggIRLwDQzUFaJ0s5YQx57nTAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4AUE/OGqgEICJEACJEACkSVw5N/jsuK3dXLg0NFwVVUwf26p/Wx1yZvniXCVY2YSIIHwEdi5a59Mm/2tKbTpr3/M93tvtZRWzV8JX0XMTQIkQAIkQAIkQAIkQAIkQAIkQAIkEOMEfOGiIDgwKMYbZoMkQAIkQALxi0BEFDkgAOUPylK8g0Clmo0ESoH4JpcuX5G7d+/Ft9MKdT5Q5ECJYylykDh+6lzp+sGgWB9Td/xhRX7x4mUx1uShzog7JEACYRG4ePGS/rbdDStbvE7Hb8f5ixflwYMHceI8b9++IxcvXY4TfYmvnbh6/Zpcv3EjQqeHsbl163aEynpSCP26eu26J1ljNQ/ul/Ub/nTK8bfV66Rj1958LsfqCLFxEiABEiCBhErAuFnz8WPcnIR6AfC8SYAESCCqCITXIse+XU/L7tt/WP7ettt8sH3lv6v21UTZ9lff/SjfLVoWZfXFl4rmfLUgSk4FE2v7DhySH376Wf76e4fcuxfzSpRjx09Kh8695dTps+acXmvdUTZu+TtKzi+uVjJ6ZH+BJY6jQLljWew4prnaxxhu/HOr7bN330G5ceOmq+yPHV+zbqO83/tj20SQO/7/Xb0m9Zu0leMnTz9WDw+EJnD02AnbmFjj8/f2naEzcS/WCFiTo5ggxWfnrj3yXzQ9x6yTbNCktfyxcbO163Xfx0+elMVLfpbVv6+PMKsrV/6Tmi80keMnTsWJ81+5eq20ad/N9OXe/fvSrmNPWbNuQ5zoW0Q6gefB3n0H5PuFP8lmfY7euxfzysOjR49L63Zd5MTJkDEe9cVkmTRldkROx4zNzytXR6isJ4UmT50jIz4d60nWWM1z585d6dCltxzX9yVHSZY8qaTPmM7xMPdJgARIgARIgARigECImzUG240B1GyCBEiABEggsgS+W7Rcbt25LenSppVz5y9IkFqWVqpYWpo0qhvZqkOVTxGQXPx8E/ZCB1jfPFm8cCgu1o6r41a6u2+sRm3Xqbcc00m1KhXLyMFD/0qGDOlk0uihkiRJYndFozQtceJEkl7bTWjuZuFSrVSJYvK2KrLsBQodd2Nunxfbd3Slf7feg6WUXiPJ9X7ZsXufKnNuySdDekv1yhUcsz+2nyypTgSlS/vYcR6IHIHf1vwh8xf8JIUL5rNVlClDeilT8knbfmxsfLtwiQQFBUnTVxvERvNxpk1rcrTUk0UkZcoUsn3nHrl2/aYM+egDean+89HeT1gbNH29g8ybOV5SpkgR7e1FpgFcL70+HCLLVqyWCmVLypWrV+XcuQsyb/o4yZM7V2SqjlNl8a6BezS5/iZCvGmM0N+rqmxv1baTHFFFco2qFWWPLtTInDG9zPxyjD7TkyBLjEgifaZnTJ9OEvknipH2EnojVSqW13e48gkdA8+fBEiABEiABGKFgL9p1cdHRN2tUUiABEiABEggsgRGDe/7WBXv9xpijrlLe6yQiwPVK5eTunWe0cdWsKxd/6csXvqb1KhWUTLp5EFUSYO6taKqKq+sBxY4cL815YthoRQ6OGZZdmDiHwqB8MRcwerdvoM+keS6onP10vmSLFlSuX3njqz/Y3OMKnIwKFmzZJYh/Xt65fhEttOulHGwzmn7epNQYx5WW53fayNFCxXQifpgGTDsc5k1b4FHypyK5UsLPp6ID95TY1g8UWx5kieGu22aK1OyuIz8OLSyLjb6Yd8mLOCSJ09mfyhBb/fu0UmKFS1sFFwTJk2XEaPGS/0Xnot25fKNmzfMpHtQcNx3sT1lxlyjyFm6YLbkeiKHeeYvX7FKsmXPGv5rJxZ+QzztJBYUDB7Qy5bdm8YIz/QefQZKQEAy2fz7UnOPw4Xc7+v+iFFFDuBlz5ZVPhn2kY1jXN6Iw5ejx9hgSfbT0hXy2fABpgysy1o0aSSLflwum//eJo1efEE6vP26TWm8as06mTJjnuzcc0Aa1qst/+vR0aRt37Fb5s7/Xv748y8pmD+vvNnyNXn6qSqmTlgtDlcLpiW/rDLv+FASQiaNGykpA1LIjDlfy7xvFpljLV5rJG+2aiq+CXwhloHBPyRAAiRAAvGeQMJedhzvh5cnSAIkQALxlwAmeCuUK2VOEC6zICNGTZZt2/fI0E8mqNLgM3Ps+InT8tkX0wQKJRw/qZOK9+7dl4+Hj5N9B4+YPPiD4wOHfiHXb940LtZ+WvabLc1ZHUgcNXaabN66zeSDcmnYZ5Nk5eo/bOW+nD5fNm4OCTRvOxjHNyxFTqVypUNN6ju6WINCAHmg4HFMc3WKR4+dVLdqO6V/ry5GkYN8sNB47tmnbEUOHzkmH3w4TBCbp2uvgaFiuUyb9bVOFPwswz8bb0tHLJXJ0+dJrQYtpP+QUXL6zDlbXZ17fmTyv9u1n8kPt17nL1wy6WfOnZc33+nh0m3PkX+PSY9+Q0w5lLeuMVvlXroBBQTGC4o6R4F1DhR0iKETXvH19ZFC+fPIdbUygGAcwfe+uhCCQNmDfbjXg6xTt0+9B4ww287+rFi1Vl5v182M60S9xmJSLEWlu+saaWCFvN4icIOHewf3Ctgu+XmVresYj0nT5spX3y426WvWbzJj9MXEGTLv60XyYuM2psyevQdk+a9r5OUW7Y2bQsuFG8YXY9axR39zz+BePHj4X1M/7s+lal3x3Q/LzDXwx8a/bO0m9A1MPFapUtFY51y+csXgwKRnszc6SPHyNaXfgOG2eBVnz56Xj4Z8Yo43atZGVv72u8k/4rNxsvDHR25Blyz/VQYNC3n+2fOFC76O3fqYQ2+/093Eu8DO4p+Wm/aq1HxR+g8aKXBJFtsCq5yxk2bK4A97GkUO+oNnft06z0qSRCEWnNevXzfniX43afm2ccVm3+/lK34zx5E+dtI0+ySjRJs26yupWbex+WAbbTrKZWXRd8AwwxxjAtddYyeG1HXw0BHD7e79EDehKI88cDcGOX3mrGBsnm/Y3Hy++nahwKWaM8FEONyTORsjjE+f/kNDFRs7fqrelwtCHYuNHTwn8Y4zZEBvm7IWizSer/2srTvg1LXHh4bhO13+J9t27LKlTZwyU75b+KMZR1zvSEdsIzDGuPXqN1hOnjpjyw9OyN+mQzdTH2K2wEobAt7gjzFzJuhHp+59TTmUh1s2SzBmaBt96Nl7oFy87DyeEd7z5nz1neD+Q/9wn93Ud0aMPa4hjDWuqXETpoYaa/vrqGWb92SnWrLai7u+2eeLS9vXr98wltVWn3bt2afP9GHSqMELMkqVaov0ut2kChrIRv3G+1jb15vJwvlTdIwvydLlK03akX+PSjW16Ppm9iRpUL+OvNe9ny1e0SejJ8hVvc9XLf9WOrVvbRRB/f7XVVIkD5Avp87WZ9hK+XRYfxk+qI9R6uw7eNjUyT8kQAIkQAIkEN8JhChzYn7BY3znyvMjARIgARKIAQK79uw3rWTNksl8X9CgtbPnL5LqVcvLe2+3FARV/2LSLMmTO4e837mt5MiZVScClglcbKVMGaD/wHwUI2XL1h1GwZAyIEAns65qPJ5rpk5XdSAxdaqUsvWf3SYfVp5fUEXBps0hyh2sTt134IhagGQ06d7wBxPUUM5ASYP4Ks4EbrosQZ7wKHQwuZsiRXLJkyunVUWo77PqQqd91z6G64wJI00+TJgfORYy6XL2/EUZMXqyFCqQTyZ+PlgOHz5mYqkkTpRIPh/2oZkI++nhBAEq3rP/kHy9YIm0UWuT0cM/1EmfizJz3nemzQf3H8hejbv0QF31OQoUPu269JEnCxeUb2aOlUKF8spEnej2drEUEBjjbboadtOqRcayyrK2ss6vbKli1maY3zt27hVM/GPCfsa876XZq/VNmZu3bhm+mOS3BLxv375rduGS7ci/J6ykUN+I9dJ/8Ofy8ot1ZPr4TyRzpgyh0qN7B4pKMHGlqLTuE+RxZeUU3X10V/81dXsEpab1efAg0MQm6tprkN4jJ9Vqp5e8VO85GTxyrPz86xpTFcZj5rwF8rdOtH7xyQApV7qEcZuH+GHnLlw0lj7p0qWRNu/9T9Zv3CKD+/eQrFmz6CT5LFMeK80PqHK8RZOGsmDuREmVIkDGqCIIUrf2M1Iwbx5jsdWr2ztSwoX7RpM5gf3BxDXijBTIn1syZsjgdtJz8vQ5ckOVpZjY7Nujs6RKncrQOqwT6vYKGKxmxzg7SqaMGaS1rlyH9OjyjnTr3F7jUJ001pLdOraTRV9Pl+JFCxorC8eyMb1/8vRp02QptTJzJrAIeadLL/0NOa7X68fySsP60nfgSIEiC4J4RD37DpEmLzeQ+TMnStaMoZ/DnkwEo43OOvmPZ/u3cydLz67vypq1G+TMwwUDN3QSH1YGYvcbh308+yF4H0iTJpVM+HyYDBvYWxeTjJNdu/aaNMc/mAhHfc7GqJS6SPxRn2uW8gGu+ibP/EqKFinoWE2M7+/XyfNU+i6VN08up21DAfmGxrFJnTaVfD1zguTLk1tatu2syv6jJv9ZVcQMHDZaiqh15+wvR8t+/Q1BbCO4XJ04ergcOXpMY+s9UlSCE35/O7RtJZPHDpdT587JlJnzTF33Hzww4xEY+MDs2/+Bwgf9KFm8iCz5bqYU1Wf7GFW4QNDHtu92l5w5sslP382Qms9UM8pV+/LW9qSps2SiKhF66L3z1fTxqmjMKUl1Qcr4yar0VguRbh3flo96dVPF9joZMnK0KeZ4Hb3fqb1cvvxI4eSub1a73vI9sG93Y1VTqWI5qaqfbTv2mK7jvmze5CWpXq2S5MqZQxo3qicrHiqjG71Uz7iYTJMmtWTLHPIuv2t3yH2ycfPfutjnaXVDmEG/a5i64E4Pit3Zqsxs/2YLKaZjWfLJolJH823w4thg3jLG7CcJkAAJkEDcIOCPlSTBdi+hcaNb7AUJkAAJkIC3ErBcqjnrv7s0Z/mdHftTlS4nT52VYxoM/fatO/J09QqSw87tChQ51auUN0VX6cQLJgXqPf+M+Oh/L9R6WoZ9OlFu6WRL1Upl5ZuFS43lgL+/v1rYbJd6OunoKNt18sVVHcWLFVQrnuVmVeYenah+snghXam/36ykPnr8lPj6+coTOkHgLYLJawhcbTmKpeRxPI68sOhAur2ixzEf9k/pytnc6i7HlWxRKydMKvfs0k4VbomlcKH8snLVep2Y2yJ5cz1hijVu+IKu/AyJLVGjeiU5cfqMutYI6W+dmk/JalUstG/TwtbEO6rUK1emhNnHCs9PxnxpJmJsGZxs/Knnk17jMr2m8T0wafDay/WlYbP2ZrWot7qKshQQjqeLMbO3LoFyLqxxtK8D903qVKnkgK56xtjdUmWNvQLHPq+n2yt0zOvWriENXwwZ50aq1Jk66xtPi0dJPouBdU9Y+xbH8LgXjJIOhaOSbWot9Hr7920lxn86SBLr7+AunWiePnGkcYuHGDqIVwX3Nc8/V8PkhaL1ww86G2WqVThb1kzyfqe3zW6DF2oZZfWgvu8bd2CNXqwt7Tr30UnoW4I4Yx3btzb5oJTFxOj3i382adhOnSalZMmcQQrZxfKx2kiI32+rhQEE8XJyZM8iQ9WyAWI/6Yl9THrO/26xNG3cUH+LxFgh3FQLq3JlSyE5XILfrry5Q35HCxXOL6lTprJZPRw9fkJKaiytJq82DFed0ZX57Jnzpur06Z3H1YKl5DZVJH8za4JxVwce+w8eMtY5cFcHd2xw5fTqyy+aevA9bspss41/+2IiuH+vrmYiGAetiWC4jLTEamPJ97Mk98MFCE/pZPRlXSTiiYAnPrDGubHvht53+eTPv/6WMqoodSXOxgh58U6z/NdV8s7brfVd5R/jcqpE8aKuqomx4ydPnbZdU84a3bD5L3ON9+3ZWZ/pSXSsCqnrvFXy+/qNki9vblOkxWsNpbEq3SDP1awuxzWeXrs2rcw+LLFWrl4nHTu0Nfv407XjW1KhfBmzf/XqdRk8YrT0UeWmO9m46S/JkC6dtGzW2NxHLZq+LM+92MxY1WzavNUoZD7o9p7gXRDxmCZ+GXKt2NeJ62bO/AUCF4lVK1c0Sbn1fsLx+d/9IO+1ay11aoW8QyK2I5SJvbt3NhZDuFZdXUfu+hagi4u8SexjEGbQOFC3bt823d+6bad5b19it9gGSjDIgUOH5YtxU41irkqFcubY1Wshi6lwPfy45BdVwhVVt8objeIwl96L53VhDn47Bw0fbT6mkP6pU6uGtclvEiABEiABEojXBPxxdpiogNkwhQRIgARIgATiOoGMOrlTtHABeVrj5OTNk1MSqVWGvWTPFrKyD8eOHQ9R+PQd+MjlDBQscM1VUgNQQ5kD641UGoj67p17UrrU45Mj7uooqsqGILXsgHJp1+79UrNGFTl77qLsU8UOlDkF8+X2Kv/dcL0FSxh8HOPlgKejxYbljgppztx24bi9wCJnysxvzOSHM7/mB3RyuUrFMkaRg3J4P6lUoYxaeByyVePv72fbzpAurZzRFbeWpFXLAcvNl3XM/jun+tSHwuGSCxcqVl5YGBzTCaX6TdpYh4xF0Vl1zeZqBbItYxzcgNs0KNwscVTYWC7zkO7KIssq6/j9VuumRjmA43v2H5Q273wgpUo+fh85lnO3v2ffQXm5QR13WWIkzVLgWAodNIrtuKzIQR+fqlrhsZg5sJ6CFNKYBJaU0onmH5autP0bAApMWBvai30wcVgZQKx7N03q1Gb/7t27Rpmz+vcNap31naTSOhDQHXLzoaLH7PCPjcCgvj0khyq5Xm3ZXt5S10NlSj1p0txNenZ5r526n5qqLu/eNJP7vbp3srkgs1Uczg0shBg3arCMGjNZRqvrLkxIN9O4F9YYh7O6KMuOGDkQuM4qVCD/Y/UefWitWajgo7QypUrIt/pMx79p8WyCMt6ZeDoRbLUBZWRE5Or1a8Yt259b/pHKFcrKHX3H+E+t5iIiTV95SQYO/1zefrOlutdbK00a1ov2+Eqe9DOfWuSMmzzL5TN9v7rVrKEutKDIgeCZXl1/n3Y/tKrGMX8/Mx2BTcmYPp2xKDQ7+ie97l+7dsPafewbY4NJ/YuXLj2WZn9g74GDJlZUzbqv2g7DogjWi7AYLqZWTlDkuJMLaqGItvI/VEJZea3rqYRa/VgCpRXk6PHjclotuyCuriN3fStg93ttKvHSP0X0Pq1WpYL0+6BrqDOA1VLrdl3llZfqytjPh5rrA+7ZLIGF6MZNW+WjwZ/owqjsMuvLMcbNYoYM6UwWKGTtXfpZ5fhNAiRAAiRAAvGdgD9eqnSxsgh1OfF9rHl+JEACJBAjBEYN7/tYO5ZFjru0xwq5OJA3d079R2HI6j0XWWyH4bIBCoIh/bs7nZwqUaywieGSVt07wM1NQPLktrLWRlh1pEubRle87zcKHShvThY9Lbv3HZKTJ89ho3F/AAAVf0lEQVTKM09Vsqrxim9M6jtT6MAaAYLJX3uB0gfiTPFjn8/aLpAvj9nc+s9OKV+2pHXYTL7hfSTXE9ll+crfjUsoa4XnDp2Ue65mNVveyGxA2QDBmNnH1nGsE/2ARcL3cyY6vW4c88fVfUxoTpv9bShFDvrqTGHj7Fh4z8uynjqmikwwhNy8fctYtgWHI+B6KVW0wt1OXBBHhU5cV+S4YpY1U4ibKVgbWApJ/DbCrZb5t4Crgh4e/1fjsfQe+ImMHNRLnlJF+wm1nFy2Yk2o0lw49ghH1qyZ1fKwgIkfNmrcl+raqbr5XXI16YmSULT1+183ebfdmyYoeE8NPP/t3CmSXFe4w0LBkiBP7rVg/OMvRGpUr6IKwEoa++Qvad+pl1EQVdM4PrEpmfXZjcn21avXh1Lm4BrC9ZpFXfxB/tW4J9aENxQH+O1Aelm1xtyrSmFn4ulEsFXvCVXswwLDUeDeEwLLtCRJktiUola+kRqfCjFlFn8300xAI95RuMRujCpXLq/KoDtqGbdVFv70s4k7Eq66oilzwYfKNMT7gWstS6xxyqMWtT8t+zXUM/2ff3YZ14tW3sh8W0qh9Gp1c1KtdF0J+gELuGUL5z72TIe7OigQYGHjTomZThePQHaqC7Ai6trLEut6OqRKoScfWkv9e+S4Sc6uC0is90pX15G7vlltxPY3rC3hBs2SjA+VKdZ+WN+11Gr6fx8OleqVKkilyuXk8qUrcvfuPcmaLbMpml/fDR+om7zfVq81CjOrvh/12oEldotmr4p1vyENijdYLU6eMU/f1bJI8WL6zqD3P5TTKVOGXpBg1cVvEiABEiABEohPBHwxWUI3a/FpSHkuJEACJEACFoFi6gYNFjc/LlupFhk3jJus/TqBaUnliqVMXI8tf++QKmoB4kzCqqNE8YKyau0myaAWQ3CRAqshuDNCwNvC6lbF28RS6Djrt318EMs1l6eKHNSHlanNGr+ok74jZf2mLYLYDgig3vKtrmby14rTMVuVR+C3YPEyYyFTqXxpZ93x6BhWdV67dt0EHIZLvJfq1nK6ojmZTsbd18kFCPpxWt38zFUf+CiL+C+7NfC7N4llNWVvkYP+e2JBFZ7zvKmWTlhtjoDOX0yaYYqWLlHU5hYP1hqX//tP4xNMd1utPf+qlcrJ2g2bzTWCidLvf1jmtmx0J0KhAyWOtypywCdv3lxGQTltzrdy5uw5nbj/28ThqPlUlSjBd+/hvQMl3q1bt/U399dQ9cK94o6d+8wE3n0XQeBDFUggOw0b1DXunyZMmWnOGJOeX2ucot/VRejd+/fMWB1VRRkmmmfO+Vrjt5yRNBorB8+Za+puDVKqZDFZt/FPkxe/p5OmzjHHrT9wZ3TvXshvmzV5unPXHj12Vy1K98nPK34zk+3FChcyCpTbD10jWeVj63tw/w+Ma7Rvvl9s3MuZIPHd+sgvK1cb6whMzn85bY5h8oeeP54XtdWVKuQptQZZtfYP487ruj77v/7+B9tp2E8E79i527Ddu++AWnU+Uoghc061BMir1qRTNT7N+QsXVDl0QFauWWerJ5/GgYKsXLXWxOf7dPREWxo2cB9AYefn46uWQntk3R+bbemwML2hzxVn4jhGyIOJ7DatXtNYYp+ahScF88eNdwvEP2ndorG833ugYY3n9l/qLvXl5m312X1SKuqzG9Ys02Z9pdYzl+VbHYcjej1XUeVURGWdPhuu6nN5+47d8pU+ozGpby3+sK/Tz9fX3EM4hn7Agnrm3G9M2Rt672BMIBXKlTJ9nPv19+Ya+PW3NaaPJtHuD6zAEWts7vyF5hwRG2mxKoHua/y9V9T9K1z34X7CdTpD24FFUsoUKcK8jtz1za75WN3s8sFHUuelFrYPFls4WwTg5+tn66e9Yqze87U05lQH6T1gmJSt8rxxcbdd47MlSZRYOr/T1sS7Kl2ljmBs4Y7Qkorq9vWzsVOkjKYVL19TqtR8UabPnm+Se3XvKMUKFZTmbTpJiYq15L33+xoXfVZZfpMACZAACZBAfCbgj1UQfr4+Esi4OfF5nHluJEACJJBgCCA2jiU5smWRN1q+rBM5S9Tf9hZzuIjGCiiUP2QSBu4yEiXyN/8YL1q0gFXMfOuj0UhYdcA9x5p1m3WFe0h5yyIhQONPpFe3X94oUNpsWrXI1nXLtZTtgG445rFPc7fdsd0bkkTj4Yz4bKJc0NWZiNPxZvNXJbuOFf7xP2ZEfxOYffKM+SZt8IfdlW2IyxLU66MTY/bia7fvbHLhsK7crt3wdVME7qe6vtfWbFt5fR8ONFy/fDjkc43BVMnERxj7yQAZNmqCTJgy1+RvWK+WccVi33Zc3t6mE12OAmWEvULOMT0i+516DjDFMI5lNFj5tPEjNDZKiKvDdzVe0SdjppjPO22aa+DjEGsdFHh0l5rixvWOxR+TaxX106PPUJOIOEkQxzLmYAz9sSx0Yqi5KG8mka5kHv/ZIOmj1jONmncw9bdq2kiaPnRF5Yyts2P2HVMDCJsgFk7tZ6vLa607mWNvv/GaLQ0bzz5dVdbqZPbTL7wm77zVQt7Qe54SMknfp2cneavjB/KqBgLHpCcmvTHpiUlwyJD+Pc09dUHdg2JCFQKrlc+GfWS2n6lRzcQVQQwQWJi+1bq5xhl7pDioWaOq9ND4HTU1H+LkYPK9Q5cQq8ovx40wq9uRDkFcuepVK5vt2P5Ts0Z1GfFxH5mlE+MfjxhjuoM4OFV1dT+UG9MmfCY9VIlgMXnrjWbSsmnIdVW5YnkTgP29bn1NOcRlgVjXLCaCPx72uZkIxvFMGdPL2E8/NvF3sG9Jbx2b7trGD0tXGMsOuPa0JGnSJCaeFPqGT9d32xjlj5Xeqnlj/Q0bpHH1lhqLoQplHlmjFilYQBVEl8y5vdEy5F6xJsIdx2jL2mWSLFlSqaexgEarUvzNlk2sJuLEd7dO7SSpBqUfOHSUOSdcm+00MH3O7NnMMx3XWD9dwPHFxBkPr9sPpcSTj6x8rWewdTJQfrkTKEuqPvuSyVJLf1d6dn3XbFtja70jVNA4Sriu6+s9VapEcZk6bqQMGDZKRqlyANLk5XrGkiZjhgxmHEd+PknwqVyhtBkvP6tCkzvkDyzj4PKrdYf3zYFypZ9URVFZE7Nn4JDPpGnrkL4881RlGTow5B5DRvvrCNcaXJ36PHz3QIweV30LaTX2/qZIESC7tqxy2oEn1RoG8aks2bDqJ2vTfPfsFsLCOvhGiybSSi1soPCDNbylgEM8sEYNXpAH6nLNsmJCGSizJ0yZJXOmjlFrwZya/kA2/blV+gwYIQ3q1hbE5Bk8oJf079NNreNumzqt9zqrTX6TAAmQAAmQQHwl4LNs2bLgWs/Vfsw0PL6eMM+LBEiABOI7gb0Hj0q+XI8mTT0538PHTkmRArk9yeoyz6Sp89Sl2VGX6e4SCuoEVAed4ItOwUrOZLpCObFOOkRUoqKOiLTtbkzhzgR+x/sNGiXjPguZ3ItIG67KWBYeUW2VgH5fUcscxN1wnMxBX2C1kypVKqdprvrqeLxWgxbqo72TmTiBNUBKjY3kThBLCa5U7PuDfiRLlsy4CnNX1tO0jt0HyuD+IQHkHScesPoe/fxoyJhIj6VjnJyoHj9Pzxerl6GkS5IkcZhFHPlj9TTKwuItKgTXXMfuA2T8qIFRUZ3HdWDMB/Xroq5hEpnzsS8Y3fevfVvWNqzNkilTKHiiWjBmsASxj21ltRGkC8cQPD5t2kcTeVZaeL/d3Ueu6kI8rZQ60ewNgt8Cx0lP9BuL8K6opRvcStmvfEfaFUySqgtJZ3L+4kVjAWSVwbMMv3OwHIBg31/jycXVgOvmdzhAf4d1Jb+jmOeyKjvs3TBZeWBto24oQk0SW2n4hnVSWBPBeL5evnJFrW/TawycSXJJFyEMHdTHVg0scPyUHVytOQrKwrrQMRYV8sHiE+NsjYFjWccxgovEeq+8Lit+/Mq4lnLMH9v7+C27pPc33Jha15l9n3A9w6rMWZp9PnfbsMyAxVYVVejdvX/XKCfd5cc9EaDXjRWzB3nRjwD9/XMcL8T+uqMWhs7GyrGNO3fuyl21dnPMi+OBQaGVElZZXAt450mv7xiOz34rj6u+WekJ6RvXP5R20yd8KhXKl1GrzrsyZ/73apnztaxdsSjMGEcJiRXPlQRIgARIIOER8MeLFxbWBSe8c+cZkwAJkAAJRCEBrMqGhFehA0WOVTYKu/NYVY7/6H4sgwcHoqIOD5qJc1mwijSqLRMwmYFJH1di75/dVR5Pj2MFNT5hieX73j5fVPbDvt7o3m77ehNbrJzYUuTgHLGi3FNx5I9VwZSoJ5BKY69El7gbMygPHMc4uvrh7fViwjuDBn93FLgIgyWBM3GlyEHeTA5lHJ9ljvvO6o/NY+5+h931Paz4GZjkT6cfdwILAou5/rP5MXGnbEZZV/2zt0J4rFI9YJWDgmDP3v0ybvIM484LMULiouCZ7uyatfrq7nlv5fH029NnurN7wlU/oNxxVPC46o+r9t29Z+BacMcHbbnqm6t+xOfjuP5HDu4rg9Xq7eLly8ZSEVZTc6eNoyInPg88z40ESIAESMAjAv548QrUVUGuVoh4VAszkQAJkAAJJHgCefM8Ee3WNQkeciwAgFuu0SP7x0LLkW8yvwatDlCrmoQoEXWDlxBZ8ZxJgARIwBMCiI0HhVpMyqHD/6p7xOFSrUoFeb9j+5hsOs61VTB/XkmeQJ/pcW4wYqBDdes8K/hcvX5N3+WSx/i9FwOnyCZIgARIgARIIEIEjGWOryp0nCw0ilCFLEQCJEACJEACJEACcYHApC+GxYVusA8kQAIkQALxgEDrVk1j/CyKFyssP//wVYy3GxcbnPllSOykuNg39in6CCCOFIUESIAESIAESOARAV+sLqJVziMg3CIBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiCBuETAF4EXEZCPQgIkQAIkkHAJQKmPGGqUuEfAxLbT8QlL/Pz9+DwPC1Isp+N9C+NESTgEPB1z3r+eXxOeMvW8RuYkARIgARIgARIgARIgARIgAe8g4GsmiTTIJoUESIAESCDhEkiSKJHc1iC7lLhHAOOC8XEnUMZly5xRjp845S4b02KZAMYH4+TOItoHQeI1LsPWbbtiubdsPioImDHPklF00F1Wx/vXJRqnCZ7cR04L8iAJkAAJkAAJkAAJkAAJkAAJeDkBXz8/P7eTCl5+fuw+CZAACZCABwRSBCSTK/9d9yAns8Q0AYwLxicsKVa0oKzfsDWsbEyPRQIYH4xTWJIrZ1bZtm1PWNmY7gUE1mLMixQQH/znRqHD+9fzwfT0PvK8RuYkARIgARIgARIgARIgARIgAe8g4AtXBXSt4x2DxV6SAAmQQHQRSJ0qhdy7d18uX7kaXU2w3ggQwHhgXDA+rgQTxPhUq1RGTp89L7+v+9NVVh6PRQIYF4wPxskaM8fu+KqltK+Pr5QrXVxOnD4nU2Z+65iF+15EYMrMb+TsufNSsWxJwdg6U+ZY1wLvX88G1pP7yLOamIsESIAESIAESIAESIAESIAEvI+AX/PmzQfky5/f+3rOHpMACZAACTglcPHyf5IuTSqnae4OJkuaRJU51+TW7Tvir3E98HE2+eiuDqZFngAWWMC12vmLV+TWrTuSKUNa8fPzxB2qj+TOlVN++W2d/PvvCUmVMkA/KcwkcuR7xRoiQgALZo4dPylLlq2SPQcOS+NGdSUgILnLiX2rjRQpkj90tbZbDh05LsHqoStblkxWMr8jQWDZijVSr84zkajBfVFrzH/UMT9/4ZI8+3RlSZ8hnfj5hvV7yvvXFVmLaXjvI8f6oBhPkiSx42HukwAJkAAJkAAJkAAJkAAJkIDXEPBZtmxZcO3atSUwiIGvvWbU2FESIAEScENg78Gjki9Xdjc53CddvXZDbty8LXfv36flpntU0ZIKBRpi5MC1mjuLHMfGg4ODJDAwSIKCAuWPTX/L7r0H5cy5CxL4INAxK/djiACC2mfVGDlws1VVLXJ8dUIfijkftb5xJ4GBD+SBjtuJE6flnx175Jh+X7x0xV0RpnlIIF+enHJYlZ3RJbYxL5xfypV9UhInSiyJEvmbsXfXJu9f13RsTMN5HznWeP36TUmpSm4KCZAACZAACZAACZAACZAACXgrAaPMeabms1y5660jyH6TAAmQgAOByCpzHKrjrhcRwIRwkC7OCFSFjmri8D8VcrE4fiEutLQDqqCDZYavL1ziuVfkoLuwzoJSDhYJDx480PEMkmAdV7rFjbrBjA6WakAlPnCnpuOM8fZXJY6/xqaEEs8T4f3rnFJE7yPH2qjMcSTCfRIgARIgARIgARIgARIgAW8j4A8f3ljxhkkCCgmQAAmQAAmQgPcSgKLA1zfYuMezJqutb+89K+/tueWmMGQyOiS2kSdng/x+fv5G8QNFQJAq6SB8V/OEnus8itUoOPEdbaKVm//028RA0vdsT4X3r3NSEb2PnNfGoyRAAiRAAiRAAiRAAiRAAiTgvQT80XVODnjvALLnJEACJEACJGBPwFIcUIljTyV2t63J6PD2wlIGBKlljhHPDDzC20yCym+NRXTeH9Y9GBGwVtno7F9E+hUXylhjFxf6wj6QAAmQAAmQAAmQAAmQAAmQQGwQ8Mc/FvGPI/6jMTbws00SIAESIAESiB4CnPiMHq6xUSuUOpSoJRDX74+43r+oHQ3WRgIkQAIkQAIkQAIkQAIkQAIk4AkBX6PM8SQn85AACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACcQ4AaPMCY5O3+ExfkpskARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgATiDwF/48YhOP6cEM+EBEiABEiABEiABEiABEiABEiABEiABBIqgW8W/ZJQTz3C5/1aozoRLsuCJEACJEACJBBTBNQNO/2wxxRstkMCJEACJEACJEACJEACJEACJEACJEACJEACJEACJEACJEAC4SXgHxgYKAI3a7TOCS875icBEiCBOEsgRUCyONs3dowESIAESIAEYpoAn4sxTZztkQAJxCaBti0bxmbzbJsESIAESIAESCCaCPj6+flFU9WslgRIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIgARIILIEfIODgyU4MCiy9bA8CZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZAACZBANBDwhZs1Hz/GzYkGtqySBEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABEiABCJN4P84ENf2mtig3gAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "77d60dc3-bb36-4b19-8dfd-22a5f15ffb29", + "metadata": {}, + "source": [ + "![image.png](attachment:b635b471-d26d-4374-abe0-41c284eaae6a.png)" + ] + }, + { + "cell_type": "markdown", + "id": "18fba209-f034-4fe3-b9d7-0daa8b7376c3", + "metadata": {}, + "source": [ + "## Run models in DBT\n", + "After we defined models, now we can run and generate our feature tables. Simple exeucte `dbt run` in the terminal and it will do all the work. " + ] + }, + { + "attachments": { + "5b91a161-f657-45a8-b48d-ad595e00e7e6.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB0cAAAKYCAYAAAAIfPBPAAAAAXNSR0IArs4c6QAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAAHR6ADAAQAAAABAAACmAAAAABQaIM2AABAAElEQVR4Aey9SWwkyZauZwwG53nIgZkkkzlWVtZwb49qNR4ErQW8pTaC8FZaaK21GtBCa6210ErQTg31QnraNCA8ARf91N339u17qyqrcmYmmRySyXmedT4LGul0unsMDDIjyP9UMSPCBxs+Nzc3P8fOsYa//du/Pfx/fvOvbn5hyUlEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQARE4KoSaHz16tX/MDL2ldvc3LqqdVS9REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERMDl/uZv/kYYREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERODKE8h1dnZaJQ+vfEVVQREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgetNINfQ0HC9Caj2IiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiAC14JA7uDgwCoqA+m1uNqqpAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhcYwI5k2tcfVVdBERABERABERABERABERABERABERABERABERABERABERABERABETguhAoWEYPtebodbngqqcIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIXFcCuf39fYuqq7C617UBqN4iIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIicF0I5BsbG52T5+h1ud6qpwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhcGwIN7a2uobnZNeRNB+rkIFLbF/7QHe7tu8OdHXe4sVXbRVXpREAEREAE6ppA3pde44K6vogqvAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIwAmBhsaca+jqNKNoQf15skffapdAg79eXLNDM2gfrq65w/2D2i2uSiYCIiACIlC3BAprjtZt8VVwERABERABERABERABERABERABERABERABERABEThNQIbR0zzq7RcGUq6hRAREQAREQAQugsDR1KmLdx3tzefcaEfe8flhY8+Nb+5VVJ+xtrzrbs65lZ3CrKFK06koc50kAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQ0wR8KF15jNb0NSqlcN5AamGRFWK3FFo6RgREQAREoBwC+f/yf3rt/qsnh+WcU/axGDRH209CWPCdv3KMpFHjKgXgN7K0e+CW9hRewcPQPyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJwzQmwxqjkahDgWso4ejWupWohAiIgArVE4IuuORoMplnen3GjaBwe3qhLyzvxzfotAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJwDQk05BuvYa2vZpV1La/mdVWtREAEROBLE8j/7//dI/d3/37qQstBGNw0yfIijXucJqURPEiT9p1nW293l1taWT1PEjpXBERABERABERABERABERABERABERABERABETg0glc/BJil16la5uhruW1vfSquAiIwJUg8PDBfdfZ2eHrsra27t68fVcT9co3NNgD5vBiw+qyPmgxI2aWkTSLFKF5K5HR0buup6vb9fR0ud/8wz8dJ8H20eG7bnl51S399PPxdn0RAREQAREQAREQAREQAREQAREQAREQAREQARGodQIXq+es9dpfzfJxTWUkvZrXVrUSARH4EgQ6OzrcrVs3fdYYLmdnP/nvM0ef1SrTbcsjGEZJk+/kvba+Xq0sKk4nv7+/77yBtOIkip9I2Fy8R4sZSEkphNplLdFSzssKyZtWMrxCMYDGJRhG49tL+R2MrT9cc4NqLpfz7Yl2dd2F+woeYlFZSxC/yrjpLBEQAREQAREQAREQAREQAREQAREQAREQgXQCwSgQVdhzNB5NGAhqQWmfXnrtEQEREIHzEcBgGQyjIaXo72obSEMe4ZO81mrAe9R7jh66i59R9WF9z/X2lLYYuvciNVJ4hWZ5nVbqNRouQjU+MbR+++3X1Uiqqmm0t7e5rs5OnybGufWNDbe5uVXVPJIS++bZU28Q/MMff0zaXVPb8rb+xEB/vy8T98DmxqYNfjbMkbo69wPu4h0d7e7Dhwm3uLRcU3WvZmGiHKPprtvsD3hWKteFX6V8dJ4IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiED5BFDMxw2jpOI9mjrvuzdv3tW9gbTLvLN2dvfc7u5uyY4s1XRUuHXzhvs0N3fRASvLv/glnNHY2Oj6+3rd3Of5Eo4+ewjnw3Jvr7KIl2dTrI0t+XzeNTXlL8XGUBs1vpqliBpGw4SQ0B/SNwYjaaUGUnT6CLaBDvMQDWlHabKNcpB/6I+/RL+bLxiCLj4swdLegeOvFO/RACp4kYbf0U8Mo5V4jUbTqMb37t7uaiRT9TQGBvqtE+87lS5G0vfvP7hVa3QS59rb2tzt27dOoeB+mJmddZ8+fT61vZIfRKy+DpLEkXqvrq3ZDJDxihFcF34VA9KJIiACIiACIiACIiACIiACIiACIiACNUegrbnJbZlBKsy9f3Drhjs4OHTjc+fXNVHZX42OuPH5ebecMiE9nn+5gBotCtqfjI2635pOp9plD2Uh/RfTM25jeydsutTPJGV9tAAPHxaU+9FtfA+GhDTP0sbGnNfHtpuzBE4q8/MLlx5Rrrury927N2rOKw3eAQRdJ5HtSnFkCY4K7969dyurq/Hql/wbwyg6V3TQOzvbx84pJLCzs2tOPGzfLTm9yz7w5s1Bd/PGDW8gr8TZ6PGjh76OExMfM4ve1trqevt6zhyDXroWIxHeuXPbnN963B9/+MmX+cbggMubsTQqW9bua9lJqKfbllk0ew73xdLi0rW0k2CwRPCSDwbQ0KcFY2Y4JnptS/keDaFbrJ8tGGJPUuX3ZXuTXsqao6GK5XiPhnPSPssxjBLydmVpxSe1tFJ+x453aJBi55dzbEjzIj8xUK3bg2hgYMDP7Lh/f8z98ONz3wFcZL71lPauzaL69OmT67MZQe3t7W7o9m0/2NkwT9JalVLicpdyTDXrx2yoEJucdDcuwVO5muVXWiIgAiIgAiIgAiIgAiIgAiIgAiIgAteHwFd3h1z/kZI4WuvZ5RX3toI11+7dGHBDvb3Hy5fNmQ7y9cys62ppcftmHK2WtLU0uxbz4IpLWv5P795xbWbA+P34h1On/IUZAOdNb/h2du7UdtLZPVouq5KyPzEDypQZHdYy9EIbZhgbuzHonk9Oncq71n8UlP3JCvzm5mb31ZNH3hBJPTAiYSgYN+7nMTSWy+SmGSYxjC6vrLgVa8t37fqXKtVyVBgcHPTGvQ2LZNjd1XnGOYXywAQjbCXy7Tdfm1fmvvvlxctKTi96zqdPc944emdoyL15+67o8dED8BhtsXsUB6Vi0tPT7fM5ODg4dejCwmKqcRTvzWdff+Xr/qUNzLdNh05bi5YfI1ulxlGMrbTfn57/copHtX6Mjg67PuujmaziLIokjmWLS0sW9XHSXXTe1apDNdLJMlqi2+807/msY9LKEPVITTsmazt5XrY948hzNKtY1duH5ygen1keoaXkVmo43VNriB6tMfph8uOxobRYXqfOPzp4eXnVTUxMujQjaQixy3FLNbD+6NbWtpu1Dp0/Qt7Sgd6+fdNNT8/6wdojGwi1tbXbdzNmmTHw9Zs3fjbPkHX+yyvLvnOg6nQePd099psH+ppLOi/MiIty5WHw4P5912yz5piRQQf59sibcNC8W8mH2UId7R2+M+XB9vrNW7e9vR1N5kK/MxPns83k4u/+/Xv20O5yw3fvupevXvt8h4fvWMfZ58uHIfXNW8q348ZslltXZ5fVac1/wpDZRDAsdLKni83DkRlYhDzmO2nwgIXL10+/8mEuwkO9r7fHDQ8PWwe96CZjA0U6CWawRWd3nM7J+cEXsy0u0x2dawfDqFAv2hz1ZEDEw5vQEj//8tLqd6cq/AgPQprPvn7q2yxtifY2afc6YX0f3B/zv7kmSTyj5dV3ERABERABERABERABERABERABERCB60HgxcdpX9F20139yjzt/tn0UXv7p40UpZK4YY4Vd0zRPrGw4D7OL7pe0/30mPfgZUnl+ZsyKyY3TC+GUbdS6TPHgwWiiWX4HHz4/Nn9auzekWGleobjSstcznlpRgP0rXhoYrCamZlxXdYmMJBubl38MmfR8re2tvif799PeJ1jOcbRaDqVfscYyhJcn827OSroVKempjwXjFLoX4lGt7GZ0VCiCUS+owdEn3pRsm/9ADpernXB+Fd6XoTjxVhYznXHkalUQeeJXtm5s/duqWlU8zgcs4Ku/7zpNltfnMs1njeZ1PN7e3q9/ePV6zf+GDyEt7cK3usXnXe8UKUYAUs5Jp5uKb+xKeAZGrxGo+ek9W/RY9K+F0LkJu8NXvfsJQ/sFrUgeToTbxm7pNIs7R640Yy8MKCyzmiWAZU0ikmSYZNzRs1IutxVPBRuT0+X4y8uhe1fu9/8wz/Fd9X8b0I50PDazRiKPHn8yPHA3LKHNM8TjHb374/5mS08OHEzD8J3HgYYRtPOi3eEhJL46slj32Hv7Ox4IxnroBJagE6ItkeabGPgwG8envfMEPvyVaGTCvlf1ieGSAx4zPZC7tosQtYlxfC3sVF4KD56+NBmsPzsmszoR/l5mGOExhDc1tbqZ/wkdS6BGw/Yg4M9f/zTrx67H3967mPQcz7XACM1nr6et83wigsGZjqx0InE8wqzNDgmuMTH07iI3zyc790b8UkzCCB0BB65w3bPjdlLBoOipqYmH24XL9Nq8mNQAC9m/zA4YgCDMRbmbKcDpq1zLTftOs7by4pEBERABERABERABERABERABERABERABOIEms3L8tejo27ddD3dHW1uZmnZDZrB57c28Rv9Wa8pdp9YyFCMqfxG7vb32fFbbvJzQd+waJO1+YsLurLvR4Zdq+md0J18NA+xSfvrMn3SM9Of/OORPuzR0C3XbHoyPCtNeeu+N11Zi+lU9u2cgmHkdMql5n/6rLO/8la+BjPwzUeW5MJT9T959MD0Kzm3Zfq9P3yY8E4Bd6zOI+b4gImGur6YmvbheDnu0a1bbtR0W29MN/XIWDWbDo2yfzDd5Ix5lW6aHvDA9GM9ZhxL4nS2ZLW/pbWl1RdycXHRe87hPTfR8NHrqdB5MqkfB4uW5havE0TX+PHjR7d0pPtDp3XnzpDXjdI20KPh3NJpRvb75niCngvnAwyKDx8+MKeLLa8/RZf69dOnfj9tw+v6rSTffvPMG2nj5Ah5i2cn5yHohXEQCW05ejyesM1WXsq5YNctzYEkeg5GYWQuFkYa5xTqyh/6QfTBhJRlDUucZ9DFYvOLOs4Ex5q5uTl3wzyNaVuwQXDG+O7bb6xc1qZmPhXli9ESvvBBN4uhljol5fHDjz9ZOZdMz3vbe7KhDy9V+u2+OK8+lrp9/fSJlW/R2E97fTP6aJw+wjJ66JRh8aM5Z8EOh5zgnDRnkw8KbafDOwJxLW7evOmdkT5+nDredsNCB6M3jRo4Mcihyw26cdos3s+Be6kccPzBvgBvzv1g/cayedOnpU/I3v4+60+sDXBdt7Zw4nrn2zHXat76SYR6b1nbHx+f8Gnh6BSt34uXr7w+n7SoG041OGLxSdr7B/vHVQjL6tGu43m/ev3W9Mw91mbu+HuFNjNrS/GFdWixb2xbyOjgpPPG8mCN36TrcJzh0RcYPHz45Ryf4raEUD7KFewN2BXKlbjNIpxPWtE8OS6E7w3H8HnZtgzyzGFIODwsbmzk4GoIxs80wSP0j8s7fi3RrOOy9pE2oW0xggbBW/THH3/2f3xPMnqGY6OfeH+Gc/mMCsbXJAn5TExMJu3+otvwVEToYBmMYSyic6JTpJOhLWA45WbH2McDhwcuBj++Y7SjU0k7L145Huo8lHnI4ikYZsFgAIwKHfDPv7zwRkK2t1q89S8ldJQI9USoA8L1pAOEIYOHMNBgHx6KdLwhXEKPzQqLS+ANY4yhz39+4Q3CcMXwHAYMoQOCEdcm7eFLh0KHwfEYQ4NEDaPRTifsv8hP6sKMOP7Cg5oHF4ZKP9CxwTD154EalWrwi6b34uVrP6ijk+U60m65dgwmkF57sElEQAREQAREQAREQAREQAREQAREQAREIIlAwcCUc81Nje73Fvbz/ed5rwe6ceREcMf0Cttm3DMVx7FguFwy/UMx+c70lRg7f0DPZEaiEQsj2W26t7zpVHJo7o+kqTHvjaP8/NYU96wD+rt34+5VikdnqfmH9NM+u0wnFzeCwOMn0x2+Mm/IFjPC3DQOGHPvWdnfWaS6P1j4UDxlB8yA/MPRGovjZpz5o4Wq3DPd1ier5z+ak8RnMzCNmjE1yO7+nuv8gjrAUI5qfS4vL/uk0NUxWb/H9NPowRAYoqPCwQK9Ik4ifGIURPC2JGof29CjomNjzUv0fERF49yOI0/k/oFCdLs2azcIukv27+zueKOR32j/bJpHZtAFh2189pnXJoI+lmuNHjboP/2Oo38ePBjz+4j4hxExOJBwDk4I6Pow2MUlGImzQr5iIEZYnxJjKka9dTOYoJeFAYYyBP0rdYMpLMk3RBvkN3Xc2twuie+ITUqAK/UmTX5jpE3Kg+hzm0f3c+DsC1TCPxw/fzRJooTD/SGwDX+0BZxKCDs8aBMMMFLes8kacMcITBhYBL0wTj50G4Vwzg3eALlk7ZC2Q13DH6Fq0Y1OTE4eb8PYjIcz+WCoxgiPYAfYt3uT6JHT09N+3+DgyX3rD4r8k7e+ivMLaRTWsmTZulFbGxn7wvj4e9/eiZCIpKWPUxcGf24ZjPHTtiZxuG8arU0Ewa6Rb2zyP5Pqxz0DNwzJGGTxRMVIS7rrdi9RTiIdYiwPkpQ3PKgD3LGd0DYxrqP3RigH9w1Gf+wG69Ze0q5DyCd8Ro2IUb1+2B/V75/X0B7SLPZJng8f3veHcZ9ValfgPM6PSvw3+2i/UTlPntF0yv3uw+o21IgbdndzznruQhXwHu3N2+8KpNsW1Q3iDZwfTgybIRxu1Hgajo1/0rDD8eEznMfnh0i64dxwXPhdS5+tbYUHDw9LHsYIncjDhw+Oi8nDAVkwzzpu+BvmXh4e5PM2Y6nYeccJ2ZdO68yRdZvZFIQQCjw8Q4fLdjqZIHynTDwUsx6i4fhqf7a0FBhhIEaCEZRZKFEJx7EtlD90VmFmTfT4wC1ap02bAUM94cTDjAc/HTQPQTr/ldWzXqPRNEMnFQyq7OM7nUvYFz3+or/zwHv1uhCKOJoXD9IHNnsJYcZT4BWOCb/Pw4+BIkL7CoOk0P4wNEfbOAMfiQiIgAiIgAiIgAiIgAiIgAiIgAiIgAhkEcAgiCcQsmK6rTumTMfQ12XGD4yCUUGbFvRn0e3x762md5oynRvrcfJ3y9YcJCQuYWjTBC9TDLSUhb+kfErNPy2PsL3Dyrdnyv6obJi+p1Be50b6d9yg6a44jnL02cR0/g7s+w2ry7wZQDEHkkb4wwP2yZDpvMwIh5EXYw6Gim0zAFG3qyIsaZY3nedA/4A3AI1Z2GB0ZXitBUHfiKcf8qvvv/V6Qb4PmqEKweNvamrG61/RRfZbBDR0fBg5iTiHPrKzo9OzR3fYa8y7rf0gi+aggH6M0KE4aUTz9Qcc/YODB9eui5Cx5uGL0RWDKQbQIBjOCH1JviFSYDCgoi8/MO+7pibzZrYyoTvFQBQEvWjQ9YVtfFL2sOQbv2GBoY980YuSFpH0WPsRb7yo4E1KFD8EvR5R/8gz1BFDFZLGl/og8F0178U9M9JTH/gFiebBNoxdSFt76U486HQRDI7lCNcsCNcGZxkMe93fdJmh/aFnjGciRtN1MzwV1spcNt35jq8DunScdigz52LAw6CJ4RiZMcNo8JIMOup3NtmC9sISad9/943rsUkf/MYzkj/SJB/Kw1J74fxQzvCJsRNDepA//PFH8/Id8OeNv39vnwVjJ7pZrl1W+jtmgMRTObRFylCKROs3du+eb7d4ziId5gEc2i7tZci88gcHBr1xHNsH7ZvQzvG8Q3TEl69e+XYFJ+5ZuGKARmjnYVk+2lLadUhiF3T3Qa8ffkcNo2Gbz+wC/wl5kgVGyrjh8gKz/uJJ28Qka2Q8QS9Jsgye7BtryzuMpMWOy/Ie7SkhbG4p1Y0bOleWzFhlRtF6FDofZk0gqysW999m4yDcxL+8eOW/8w8dHkLoBjoIHrgsUMx2OiYMm0jaeX7n0T+Ee8Arsq31xFM0PKzorPHsiwoP7tDpRY2I0WMu8juGYUL6IszSQqgnZSIMMIa3IMHDNPzmM8wc4UEVl9WjGRNRw1yYSbVxZNhjoXTSwF0fmZ05PdCOp8nv0EmGjvRLGUZD2ZLWWg0zgziGhxEenKGdhfP4PC+/aFp8x2OU9sfnuA0QgjCAk4iACIiACIiACIiACIiACIiACIiACIhAFgHCwAb5YMaC78yLaLDbJrTbxjnT4URl23RGhIidiG5M+M65e+aVFoRvQRfGtmA4DPvDZzETQan5h/TSPjFYYsBMEwxylDE4V2ybMQOZs8/VI11a9Nx7ZpQaMqPylBnuPpvB6PHt28avAU2jazKj2oYZ366SoPPCuMn6ozcGB330PZwhgqEGPWOQoHPkd9ARrpjxHQnGtaCHXV1bNePhgBlLe70Rkf0YuXqNbavpXVHnBscBn0DGP4TVxZOQaxn0eFF9JaeGdQej5c1yIEEHHIR0swSdK8YoDKKUm1CeGJLRC4fyRO8J0sJ7tRSJljfKt+Uo5DEelfwFabGoirvmxYvE8wiRNhsa0u+HkE74HDDDLhH0ypVg+I2eBxucTNDn4wiSdn07zIiN3L8/Zv+eCB6swTi6tnqWX2CNjpa8wvXFuE1oWNpE0H+HfSepn3zDEzcY0MNWbAG0g2+efR02+U+cpbAJlJP+qQRSfkTrh+2BJvjtN6fzDqdyL/IHV+5NHHqI8hgX6oABPjhQsR97RWhL4Xc4L+s6hGPin3G9Pvu/hONTNe0KGFpD/xHqS/prb9+Fn/4zfgy/OTcwOXXwBf7I+07DboDLkt6m7A4la63RUEbSyDKOhuP4XE7wvivFyInHaVzixlLC99a6YBziDw9FhJs4LIiNEY8O44HNRFqyOPidNvMLj1Fi4tMp4moeQjYE92cMhFnn0bEyhiIm98LCkhuyQQ+ee4/MLZvOlc6JWUdR4xgPc0JHdHUWeAbD5GWxhQ3hLpjpglC29xY6AMGITPnuj43ZA2nBPxi4Z3iAB8GIHBZZZ9vySmH2SJhpx8wbmAZuT7964jtXZkSRV5htQrgADIRsZ7ZSqQt3RzuN6PdQvsv6DA/PkN/G5oavJ3x5UPJAoX5jY6PunYWlCVINfkmLdbPGw5CF8qX9jYzc9TOrCHn81mZGmdk7ZK9PERABERABERABERABERABERABERABEcgksGYegDumR3to6/atmGEHvVlUZsyTaMwMgazDOW36CELlDpt32vOjZboOTR+GYEwcMt0EHqj9pgzGEDlnhq5gWBww3dyKGY+6zGiDJxOyad5hN+2cWTPI8plkfCqWv0+ohH+WrW5x4yhrsBLyt8f0K4TvnTPPu1Uz1gyavmzdPvndZjq/raPyousKHqF9ZgzZsPpgXB41w1FUmkwnuZZgUI0eU0/f2/CMNQMfRiyML3umQ0XnFfeCTKoTHoA+0p5df84PEffQDyIL5rWGMaevtxASd8kcWFgarcPClxZC8RY8BJPSjm5DR4ehgmvEEmeERH1snolxQb9LaFV0pQPmvTpv+uJgbCzmQLJrEQubmgohWqPpYuDDazUueMhiDMVTEv0pXoxZnlyUvSBHN1U8wYTfgS9OJWHtSg6jjhixkyQ4+5Sjp8bQi363GkJbgj36ZLxuCVV72ghdyMWH/7Vb6+3bd6Z/PW0EDV6i5ZTn0cMH3lD60/PnxufAh6At53yOZS1O9MQ//Pjjmb6StXcxtqalj+0gSLjWwdkqbM/6LBg0980Z7OWZw8iX/Qj2kc6udu8VGw6M5k0dWlq6fH8bysE9mmb8zroOIf2kz6DLr6aBMimfUraFspRybNIx0TVLo/uD4TPYl6hr3DjK8d6Iam04OPVF07io737NUT/l6aJyiKVbivEzdsqZn6SR5VmaZBCNJhINuxvdHv2etC5p3BgaN5ZGz6+V7zz0+OMBhhHulxcvjovG2owYO4ktf9uMSDTKNhvoBAnrYPI7+j3rvGAYJGY+nTczR3ig4iXKjBOMs8HdPOTDJx6FPMwpTwiJEN1/kd95APOwp6MjVj3ro4bBB0Y8blzKxswiyhlmc4Uy0bGyncEpxzJDDGHggmCcRhgAUD+Mn2FNUeoaZurAJqwFEDj6E0v4h87rvB1YCdlkHsKsQdpQ+CPkwm0Lz4F8+DDp/6grD2ZCdwSpFr+QXviENSEiaPuEK6aNs14u6+hKREAEREAEREAEREAEREAEREAEREAERCBK4NjkEr6Ez6ODps1wgw5pyj7jMm3Gqhnbzpqaf2UT8J8N3/XGVOw4K2ZYxVjaZvq55zbZHuPjX5gTwUNTEGNYXDJdEkaIdTMUPrbws39qXnS7plMLMm6GRQwlf2FGixFLPyjqw34+s/JnP8bK//TJo+M/yhKrHof5sL18tpvuKghrpP6lGdCe2rp9lHHC9F2UGQPvI9O1/JXt+9W9Edd9pFNcNEeDETPq/OWjBw5mHaZ35JjBo5Cj5AsD0sUYe1Xk0aOHflkn1h18YGFG0UMha+vpIZND3XFWQW6a8R1j4f37Y/brxAFj09oQOrXgSYqOF6eEYDTCszRNgt4RR5ZgV+RzwNoSHptJMmlrU74xnS7CWpgFo2/B8IYDCaFFCU9669aJF6Y/2P7ZMiMowjnlSJsZ/x4bwyTjfzQd9M3cA+hqKVspBsATvraOK169FvZ11NYcDWyi6YfvwYlmY720NooBk/4hanwNaRX7RE8a/UPHSnhY5PnPL7yO/f7RtQoepP02EQPGS3Yfcj1HRuwetHuMc/EOrlTgHxgPWhvBrhAE7sWuD8cuzC/acc57iKIHxyZAWkhW+hgY2Q976kZ+9I0427SZTpdQt+iRs4R7gTyZmEAaTDRg/V/CNeNNOmxrOJM+a452dXYf2wDieVMHBC9Xjue+pGyL1tcnyXmuAzp9DPdfKiIkoZDfvHmXVK2qbcPw+ZDnnv0lGUZDRln7wjHV/MxzUfnvMoSQudWS0Y683fzFQy8krQ1aatjd0dHT64qyUHOQJM9S9mFArQWj6YQtgM5fltDRPf/5F99RMJsjPvOBMK/cHHHJOg+PytnZOd9ZcB4egz/8+JOfLcJsnKgrekiXtTUnJ6ftnMKakWH7RX8Sgz2pfvF837wtdA4Y1bZsYej4gxPDH+Eg4vVbtgHuDz8+N2NqYR1TDK7w5uHNwxJjaFzCoIYFtutFSuVIfWgLQW4ffakGP9pk0rWkbFwDHsIMDoLxOZRBnyIgAiIgAiIgAiIgAiIgAiIgAiIgAtebAKFd/+PL18cQ8ICM/g47bG0yPwEbw2CSsA4pfxgeSQODBcK2GVtbccsmcaPs/yebKI83Jnoi1uoM8kfTL7Edw2hks1s2T8LfmuKafWEN1HBO9DMt/19s7dQkIc0kWTIDBeFwfzYd3x+sTAiGTCRESeP7G1Pmv/30ybU24TVKlDi2OvfSnAYoK3XdtTp+Nv1Yg+lkgiMCx4yYcWrLvCXZf1VkYmLCDC/D3gklrFKJXhRdadD3pdWVpcwI8Xpj8MaxsY/QudHIdVtbm957EGcAWC+b4TkYBuePDDlJ6eOAgQcijizoJSkTTgQ4gSTpJkkD7zo8PVkTFIcQDHOvrb1gKMJ4EULTEnUwLoQ4Za1K1g/9ZG3/RE7a+sk254/BkIzxCgcH/oqFssWTlbVd8abFM7cQJS6a6unvUb6UDaE9ZhnaiASIlOrFhsE1Hi3RJ1DCP4R2jQr1g/PUVGFpsnfj773hGMMebYK1bLkG/P30/BfvNRo1qqO7xljHUnkIYaxPJH0bx8x9nvORIL/79huvA6e9BSHsM/xoB0FfHvZFP7EpYOjD2E8ERYS2xrqdWeljWGZ9WCI80g7Q6c4vzPt6Pnny2K6Zrbt8Sp9+ti7omZvyTb490aYQJhOwvdOMx9wL/CG08+CklZQ3dcCoR3kQrkuIyOk3RP6hvG/fvvNG1Pv3x/yecB24l4rJl3Z6KrWdZ9WDNHAcq9TA+SWMww1///d/f/h//F//wUKGnp31lFXZcvdhGE3zGv2jGTkJlZu2Py0vzksLr/tv/vovj0/DkDkxMemCxygG06j85h/+yf/EGBrf9+Eo/AUHRPex/cOHj94Y+u23JzGsg9GU/GrBSBqtZ619ZxYLDz86zPHxQhjbWitjVnke2ww4QhqEsA9Zxxbbx0wnHi4YTYknX8ywXSy9ethfTX71UF+VUQREQAREQAREQAREQAREQAREQARE4DIIHLrGI6V4NXJjsvWzO3dcp3lGTpoX56Qp8K+ytNoEczxB//H12wur5p9jXJmddYsJxrWkTPeNe1ao1aRzsrYFI1/WMWn7UP5nGYbwVktyQklLL76d8Lw4ZwRjc3x/Jb9xGsBBivCyCMba8zippDmQhLJ99+0z7yCDMbYUoWwwK8WIFNLjHDz6cPbBEF+q4IHIBISosT5+LmkT3pe0kyIgxo/nN+FiF5cWj9eXTTqmmtvwjqTeUWNh8PKMbqskz8L1aEp0MmmyiQ/sLzUPeDOpI4SzpTxZ6bOf9rVtbTWcQx9Mmy01z0Ie5jHPvWSG5Hj7wMsXQ2tIn+ODxPNmO3XAe7tUqdZ1KDW/8x5Hf7huhs1qGGgJrYt3KP0kxk4MpRiYk4RjyJeIo0hWv5p0fjW2eVfOYrMxqpFRluETL1Bv6Nw1N+kyjKRZ3qMYL4MxkxC5PT2nDZhJYXOj9cTIyTEhjfg+DKMIBtB4XoVjh93STz8XvurfRAI8kOmItipYqDoxwUveyJqgPLijM2gqLQIDH2aYMAOlWrHpKy3LZZ1XTX6XVWblIwIiIAIiIAIiIAIiIAIiIAIiIAIicL0I5HO2DNSheQWZopdQsldd8Hr97VFI1Yuq6+/NE27f9GBfSlDaWxDbsj2cgsI/q9xEzYtH58s6Pr4PfVm1ZdeuaVTQx55HiKCXJeg3WcszGC+zjmUfxqtyDKPhnA3zci5XSjFyhbC0U1PJXtfxPPFAxWg4N4cR/3IkKTpeOcbDrFIWrkdyxM5y9eBJvLPSp1zx9oUHZrl1w16edh9mtbV43pQnqQ5sT5Nyy5qWzmVsx5iJAZM/+rfzepByfjS6I78xfsa9Sb+El2gSz0Kc2zJmVyQlUmxbsXC6rB/KMeObe8eeoFnG1JBf9LywLXwG4yUhdKOGUAyZK0srp4yl4Zz4548//mzxuofPnB/SDsfzO54P+/BEJS95kAZSpz9ZZJu/ehXCGEy60h6SxepIaIrrJtXkd93Yqb4iIAIiIAIiIAIiIAIiIAIiIAIiIAKXQ2DHDEkvPk5fTmY1kstFGy4vOv1iGH34x7fXTxdXjEu19k9Pz/qksoxQ1crrItIJ64aG9T2L53Ho3r//4J2Aih+rI0SgdgjQF2KoxIDJ94uQggfp6dDRF5FPJWn6sLp/9+//X/NYS15MtpJE4+f8ZwMh0np8z8nvDxt73jh6ssV5g2kxIylhdfE6zRLWAUXOY6QsdS3RauSVVRftEwEREAEREAEREAEREAEREAEREAEREAEREAERSCNQ3bC6ablo++URqHZY3csruXISAREQARGIhjLHQ/VLhNBNugr5QszlhqR9VduGARMvzyRh34f1E4/R6DF4kvKXtV7pyk7xEAznMYqG8pSaRqnHhXT1KQIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUE0CrEF4sfrOapZWaWUR4FpKREAEREAE6pVArRhD4/yOjKPxzdX9jfGzt6f5VKJZRtFTB9oPDKRId3Mu1cjqD9A/IiACIiACIiACIiACIiACIiACIiACIiACIiAC15hAgzvc23cN+cJqYtcYxJWoOtdShu4rcSlVCREQARGoKQL5hgZmUV3sDBxvCLWwuQgGTrw9g8HTbyzhH3+8rbGMFylpIGkepyUkp0NEQAREQAREQAREQAREQAREQAREQAREQAREQASuIIHDnR0ZR6/IdeVaSkRABERABESg2gSOjKPVTvZsesfGUDNwnkeCkfQ8aehcERABERABERABERABERABERABERABERABERCBq0ngcGPTHTY3y0Ba55f3cG/PcS3lOVrnF1LFFwEREIEaJJA7OGDNTsXgr8FroyKJgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUTcBC666sWXjdQiS7sk/XCV+cgDeM2jWU3vqLXwoVQAREQASuJIF8LlcIUXsla6dKiYAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIXDsChwf77nBp2TW0t7kG70XaaAzkIFLbDeHQrxdLKN2Cxyil1TWr7Wum0omACIhAfRIorEx+eLFrjtYnGpVaBERABERABERABERABERABERABERABERABESgPgkUjGo+xK4PzVqftbi+pZZR9Ppee9VcBERABC6eQH5/f98m4Ohhc/GolYMIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiMDlEojqPeUgcrnsy80teq3KPVfHi4AIiIAIiEDpBPKNjRZSQp6jpRPTkSIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAnVIQMa3OrxoKrIIiIAIiIAIVJ1AYcFRjQuqDlYJioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1BaBgnG0tsqk0oiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhA1QkcGUflOlp1skpQBERABERABERABERABERABERABERABERABERABERABERABERABESgpgjkDllvVGuO1tRFUWFEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASqT6BgHJXjaPXJKkUREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIGaIpAzsQLJOlpTV0WFEQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERqDqBXEODGUYVVrfqYJWgCIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAbRHI7+/vuz//s1+71bX12iqZSiMCIiACIlARgfWNTdfclK/oXJ0kAtUisLO7p3ZYLZhKp2ICaocVo9OJVSKgNlglkErmXATUDs+FTydXiYDaYZVAKplzEaAddrS3nSsNnSwC5yEgfc156OncahHQM7laJJXOeQjQDpEvqcOW5+h5rqDOFQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERqBsCuUOF1K2bi6WCioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIVE7Ae44eyEBaOUGdKQIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUBcEvOdoQ0NDXRRWhRQBERABERABERABERABERABERABERABERABERABERABERABERABERCBSgnk5hfmnUyjleLTeSIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAvVCINfR3uEODg/qpbwqpwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhUREBhdSvCppNEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQATqjUCusbHRyqzAuvV24VReERABERABERABERABERABERABERABERABERABERABERABERABERCB8gjk9vf3yztDR4uACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIhAHRIohNWtw4KryCIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQDoF8Q4OF1OWvBJmcmnYbG1tuoL/P/noTzyjlmMQTtVEEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAELpBAjrQPSgitO7+w5A2j7e2tbn5h0WEEjUspx8TP0W8REAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERuAwC3nM0l/M20sz8MIhiGB2+M+QNo3iQxqWUY+Ln6LcIiIAIXDcCq2sbbmdn1+3s7hxXvbmp2X/v6mxzzc3NjmPW1teP9/OFY8L+Uzv0QwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREoCQC3ip6eHhY9GAMoxhEo2Fz4yeVckz8HP0WAREQgetGAKNn1DBK/fnN3/bOXqJhNBwzv7h83XCpviIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQNQI5bxgtYc1RPEaD8ZPPpDVHSzkmqeTr6xtu9tPnpF3aJgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAKeAM6cny3ibaXiPUcbSjy7rbXNHxk+k04L+8Jn0jHxbdsWXnJt7XT4yPgx+i0CIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACInC9Cbyf/OjmPi9UDCF3cHBQ8cnxEzc3Nx3rjiLtbS3x3fotAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAl+UwMTHKcdfmvz0/JfM/WnnabsIiIAIiEB9EMjncjl36PbLKu3m1qatPbrp1yBNOnGgv8+1tRW8TJP2s21lZdV9nJpx27u7rr211TU2Nh4f+mlu3s3OfXYtTU3u9u2brrOj3b14+cY9ejTmmvJNVt5D9/LlW/fVk4fH5+iLCIiACIiACIiACBywjrr9Mb65isJyCPw1WP2SIn/s7u253d19P0mNFeUPbRJcgy2fwJ9EBGqJwNr6pm+n3KsHB9ZarYnm1E5r5hIR2afRrk0+f/KOVjOFq5OC0B8f2jzk5uZ8nZS4torJ43x7Z8c1N+X9M49n+5d4lkXHFfX2XI2Wvbau7uWWptjY6XJLU/3c6q1dVp/A9Unx0B4qDQ3nf8chHfrYq/q+VE6LWFleccumn+bzm2dPT52KYZR93T3dp7brR3UJ+HdbvQNUF6pS++IErvrY44sDrmIB8pW8YBDLN0lYi5RwuknrkUaP37GXnDdv37sHD+657q4O93F61m1v7fhDluyB9Hl+3j19/MAUJQfuxet37rtvvnItLc1ueXnVDQ70WwjeDa8YjKap7yIgAiIgAiIgAiLwbnzC7djEq6+v6ASqWZtAtri07MZGhm0i2tkoHay1sLqy5p48uu+XLJi0iWg3BvvdoE1ck4hArRDY29v3s/Dv3Lzhuro7/Xi/va3V3Ru5WytFvLbl2NrecZMfpx2GvSabvPro4di1ZVFpxTH244WysVl4Z378YExG5jJhLttzbHr2k3/n7+nuclvGcsfa5BNrj5etzH/37oPPm3EFSwHV03M1WvYyL8GVOrzY2KneK1tv7bLeeX+p8qMrff7zC69HvX3z5rmK8eNPv7hV68/++q/+4lzpXIWTMYgGIyifwUAatvEMGrl75ypUtSbrwDvBm7fjrtXsCfeG9R5QkxepSKE2N7f9ewOHYeNuMke3luam4wltO7t7bmtr+0wqHe1t5ihXmOyB/YeJswh2oqisHtmAmOpN2kw6jI4Fw7m5XIN3rjt97rqfCNLV2e7LE9KKHsNEUN5Dqy04/S0urbixUdPbtJ7V21Q7P6VXOYE8jagSA+nI3dtFvUPTirW2vuE6utodDxmkva392Di6srrqms0QyoMfoWwYY/tNqffp02dvHF1cXva//QH6RwREQAREoC4IMDhgkgtGG4kIXBgBpkFfaUmvH2O6FRuA9/X3FgikH1oyof39fffKJrTdHBxw/X09JZ+nA9MJiKlzC2bgRzCMVuuWffdhwgxQeTdyZygdvvYUJbC8suIVHEyqaLdJr5UKSlcmwDKRo7W1udJkKj7vS+a/vmERlsyY19XZ4d935X1b/mWcn1/whtE7t29Z+2mxdYTmvcatEr3FefuGU4/SUz/O1qvW+vcixT1bgSu75YqTuOLVq9VmiaES3eWjB5fzbssYp90i9BFNT1JdAnEDKanjMYrOOhhLq5tjdVKrtWdOKbWK64QwaNG2m5suf6xYSnl1THECn23MtraxcepAos+MDN/xRkEm8HDd4zJqkw46OgrvGkyKm/k05w9pajptTPw4PePHhNHzeU8haikGU6JmcQzy6L5FHG0qRL3ZMic8JrQhj805j3aWlBbvKfdHR/xx1fynWu+41SyT0kom4MPqujLD6pYSNjc5u8jWlKVOmWnLDABmAyAjd4f8rAC8I8Y/TFponW23sLDkvnn6OJKYvoqACIiACNQaAd7TGawE2dnedftmvEmS+LGlHFPKOUnpsC16bvR72vHR7eUeHz1X36tPoNLrUey8YvujNSnn2Oh5Sd/jacV/J50Tti3Z5APusN6e4kbMUtPd3SPs1qE7IDZkESk1zSLJ1PTuatSxGNNiecT3x39HAWbt47j4/vjvaFrx7+UcGz2XF8WFxSU/K5gx//5+etvKyiO+b8degHNt5w81Fy1rrX6P172a5dw4mrU90Ndb0QTaUJZdmyUewkmFbeV8nreOpeRfbh5px8e3swQNQl/ceaT0Kafu9XJsvN7VKjfthqV3WpubTTHd6ZMdvnM7Nfl4OeK/K+0bQjrRsWy8EOGYsL1Y/x6OS/uMpxf/nXZefHs4L6vs8XPq8XeoZ7llv4zzKs0jqS7xtOK/k87RtosnsLq25npzaeFWi12lpP3xbad/s9zYr3/17QVX7HSe2ZmVc2x2SrWwN2ogpTy1bhiljKU8c+JXKf6bdKKStj9tO+eWsy+uE+Jd4KEZrpIkK91wfNoxadvDedHPco6NnqfvpwkwQZVJbMvm9Mbkgs82sQ0DaRAmWne0n3iFMvktCI5ynMsYkO9xT0v2jVpam1tb7rNF0pr7vGARbvKup6fgdBfSWV5dOY6YxfckIa3hyGTa4L2adGx0W7ydxH+HY4+3X/VBWKjwJX4SJY1rnyY/25KcccEjnUi3WZL3L60pyur4ieFFr/B55JUQP6iE391dne79+0lr1Jt+dsjq2urxWcywnbXZAh13bEaUGUh393aPZ0YRrndycsa7SQfj6fGJ+iICIiACIlBVAsxEZPYWoScabJDSaQqqO7duuk/2MFq1Acu9kRE/Kwtv0DkLh054n04LV0E4DAZCm9vb1n/nvcf/+sb68Wyy1xY2pcNe7oYsLTwriArAsawzPWCh04MijAffknnBDQ70+QfggZWn37632TrVM7Nzbs9+81y4YecgKNxn5+ZsTes1M+Qc+hea2xay0cY+jrSWLa2bNwZ9mLZmy+uOKdo4foP62aCcgRXecQyWohLKwf7FxWW/hmOXzSIdunXDzZuCf8k8oO7cvn38wGU2GrPUHoyN+ryjael7eQQYo8xY+1hdXfPcO2yMcPvmoJ/1B2OuH6H2uH4D1jZQ5geZtTbI9cpbqJYbg4PH7YrQPdMzsxaVYtM1WgiVgf5+19dbUGxMTE65nB3PrMIlOzdnISVvWzsNE7N4eaMNEeqFsuH9RhsljC/tJsm7Em/Otxbqt8VmJAaPNkLPfJye9nnTFqdnZ/33RWtPKIQ729sLbdXKuW33Bt51tyzf6PrsoZ7RT8ZV3HOsz5YkMJtbsHvTInIwUaGtpcUNWyQQ6pvEuqer63gG5+d57sdlm7R215Y6OJmxzuAfj54V6wd27Z5kMhv3Q1oZkspVD9uYzTq/sGBtgXFp3reLVuPAxL0uG9dyfRCudWM+58NClcuUsDsL1lcROhKOt2/c9B53hTb0wfqobt/e16zt0l/esZe6+UWbqWtla7VQQLesv2s1DwYkrZ2HtPrsXsEIxizfUXth2Nre8vcLoVRbrV3Qd8bDNodzOzo6LOLL9lEf3+ivNzNus9p5uMcom1+H0e6frs7TL7PsQ4rdW/S73NuhrNyTMxZ+ExMrzxSeMYMDA2aYSk7fZ1KH/5TTPxWeW+U/m3jmb9nyJ8ibd+99O++w/ijt2bqyuu7bLP0UQl81dOuW9Y1Lxy+uhJfNW1/64P6oG7f3P/qM+/eG/fHT9ixfX1+33yO+f6OO9Mt584pZtHuBZ/6g9dFp+ftEEv6hjYQX52j+SWMBohNx38XrEMYOhXFIv1/2Zc8M+Sh26OuRpPEOI4gFa5/IlI0H+uz4ME7xG+v8n3La4cTktF8z9MHYiJ/8zL391kLUEjrvrnmEpsk7aycIbZH7mfYxZV7IGLxpR6EvKtaPVdo3EP5tambG8aymr+XZFpc1a7c8E3dtTEFfOTx02+3s7B17LqQ9M+PphDFmeWPdzzbWtclQxhNjCePpoNgrpezxMtTj7/hzIDyz0t5dQh1XTO/E+Ct+LxvK1H6mnDZf7PkVysFn1v3R29VdtbFhNE99rx6BH3587id30Rb/9Y8/2nj6jn/nZUz8ccr6Pnsu9vX2+j6LZ9rMzCd7Ln02Q8Fd986er4zbOOfNu3F318ZzszaOWbH3HZ4vw2YAGLfxJIr9mzYew7iQNyMA70McT4hX3plfvX7r1wZvtjHYzMycPTsb3ahFa+g/eh+ij+KdB0MDQlpj1p82nJq+XGBCnzJlHlY8v+lX7pJHbEkO+t4/Wr3pezdtDMmx7RYWE8/ZNuvXf7JQve12bvCk5f3/lS2TRv1uHD03C7np32oQIMJi8JaLPnNW19fO6D14n017Bzx5DiWPdXiuJOlMtm3ie1qa1C/pXX3LDFvBw5DnOzoh3qHejn841g9xbmk6ouTyJo3Nkt4J6NsR3vfX7N5Cn8AyfozzsvrnrPGLT/Aa/9Ni75B4bdIvrFqfshkLpdvS3JI4aZCJslxzbEWb9p6LPi+8WwecORuYE/qWP/SB7yc+eh1E3Djqx+1HfRd6yiQhrVImL57cG6XpI3H2Y0mI0J7wnpVUl0AlUY02TEdWzDia4wEXVwQnFX3evDXpfEmQz0l74FcqKOHumkfoqzfv3Q/PX7h9e6kIgqK725TOP/70wj3/5aV7+/aDvUTzGu1cvw0ueGiHh304R58iIAIiIALVJYDCBeUUik9m7nebUp6umOfFnk1aQRmEAgDByMJvPjmP5wPGIgY0GIR4zrTaACY8azo7O0353mrK+B03YYMaXh4xiGIQmPIvcOs+3T37jfJ71pSnDLAQBv4TthZamw2KGNTwG2UUgiIL4wIGWgZWhGefsxAfCGmR/qQpKhlM9ZoxjJdU1rAevDHgnzscE8roTzr6J5SDvBjAM3BmJtyqsek0IwF1J9w7wsAOZhi8rHiScxLwxke7jl1mjByw0CkoRhsactZmdt17C6HJILrT9nFNc7Y9KhjrOI/r49cts50MWMc5zwbdvfbikzcjIsYAQiAiO2b44voxIMcQiwGe9kzECkK+0B4xwgRZtO3NZiAL4xLCxYT7IhyDQZU1N2hrvFwiy6akoFxtFhqL+4PvlIPQXKzxx0vj2/cfvDI5b20JwxzlKibbdk/R9tKEmZZbpuztvOPpLAAAQABJREFUsfbfYXkzKWHxaBmDJNaM11rs/kcwiHLvUp+ooHRhjIjwMomDKQbpqyR45NI37Vr7wMiH8RNjjzUnf+1ol0F2TZm/a+0TKYcp/RVtgH7UvxjadaKN02boamkj9EEodDFqY0R/Z22E60k74l4gpBGS1c5DWp9sxu2W73sLBkR+Uyf/ItpAZ++TOvVPOJeyUk6M+JSLvrdYO48mtHNkfMtqq2n3FoqWeFn9y/LRbFBeQmmnTSkTBKLlqLfv5fRPlT6bUFqE5yAc6QOynq0oXBkJEMqbY+mrNq0tcm3pyxCe3x32XEYYG+zaX5A9flsbom0h1JE0MIwyIavDll7Jyr9w1tl/0/JPGguk1YFUw/MfpTX1oK3R323ZPZ423mECLxMoEJTFML1KUk47bD96bobnFwpLP/nDxoBZEkKshfuZNkm+9HtI6IuK9WOV9A08k9/bpBcMo512zRnHxp/rlIH9PLN5vvOd8SYTmIo9Mzk3KidtrJyxrk38sjbWbmMfwkczSQcmpZY9mn89fk96DvDMynp3CfVk4kL8XmZfVj9TTpsnrbTnF/uiknV/VHNsGM1T36tHoNsmECKMyQb6+myc3OzHYRgs6QfQdy6a8RDjILKzt+PvV3ScTKq7cWPQ3hv3/TsJ5/BuS8jcT2Zc/Zd//cFP1uT3tE0MYUIYEo4P404MTYwd5z7Nm7HUJr3Z+8ybt+RXeKgy8QfB2BrSWrf3kbgc2uD9xavX1pdt2jrj972Bk7ziQl9IHh/9uuS73pDL79eWZ2Ou0Y9HmfS8Y9H+EKKEsJ+1/upBomuM4jXK+z7balXSnjlJY52sd8CT59DZsQ51T9OZZKWZ9q6epBPi+cVYkL4WKV1HdLa8aWMzn3DsH/Jjwum6LfvHmPPQnv+8yzPBNKt/jiWjnzECXE+86pm0Sr8YFQz3GBz5wwEjCGMZhPeXoIOhHaQJBlLG2kxei47RmKyLvoZx+oaNzXhfZdJvXLjWoRx8JvV3nHNyb5Q2Rvto78RMcuFdALsW50uqSwCb5NdPHp75C7kk7RuMTfQJx0Y/fVjdwxLC6s5bg6EQuB6jKMRAeh65acpoYkTTkE8r2gruzXeHbnnlTtRLAqX0n/z6osNInKdWOlcEREAESifAwz8Ig7Od3dMDgPh+jo0fE86v9ifKTQYWKIaioTBKyYd+ncEQg4LhPgutcXRS8PTB8w/h5Y/jmPHObL7+vh1T9k/4mfjRRdiZucrMrhkzuGD8ZHY4Bgpm6qIYWzdDUj7f5Y1HzPAf7C94dDDQXbOB2U171gRhAk7w+GBWGcLsWY45/SwKZ5x84l3VYc9BlDKsX7VqXgN3bSDNCzCzww6sHmFgh4eX5PwEUA4htKleG2CGgc384qJvO4wlot6i0RwfmncJ15Q0vGHSBsm0aV6+eu369PXYZKyufa9UxAOkw9p6kHDuG/NwQZk/ZmtQNDfnbTLXlFs3xQEGeX4/fDDmT+F+QUGBgQpDKzOuo9JnShNevljLDw8iZn4324Aez0OMaQgG1ltWH9oQa2MQSYMwgsy4RPFJO49630XTD98x3rX1ntQjbA+fTArgj0lpa00bvi6UhTKlse7t7fHHdZmhJPAP6WGEw5CB4hoWV3VCwOJywfh7z2bbB89MGARjd+AR/yyHaVB83b836mfcEmaI/s2HbOsu9Cf0NWPmcXdgBtKXb1BE5cxDfYRZK+6lhZBBAYXQDtPaeXhB5JrhjYWXQRjTc5+hPMPInSWkETz/PkwU7gnWeslq59H0gvIjzYAZ2hPnxO+tMAkiXtbm5gGbELPqX8LDMyaa51X6Xkr/RDut5NlEH4MyFw9pOHKPY9hKe7beNW857nuUYFwTDA8oPjCyr9kzeMcM6SiN417Ixa4H3jQYyHz+k+n5p6VD/5mVf3Qs0GP3V1IdojOMUXLTr1M/FGcb1h83N3f7OieNd5ikxbEDvX3+/TmtnPW8vZR22Gts6cfwXmKch9ce0m1jpyxhnAY/jNxZ93Mp/Vi5fQOGTiZGRce/m5vv/fghWmY8qhg7YoKg/2XCnB/PZjwzo+fHv5cz1vWe2PT9Jni+ML5gsgvPhlLKHs+73n5Hn63RZxbjr2LvLizZdOZeburO7OcCn1LafDljw6z7gwgfSDXGhqH8+qwugeHhIe+1h7F9ZOSuT3ziwwv/iXcm7yBE2Zg1Y2Fos+y8Z+O4u0ND/jj6RmR09K6N+e/4ib2sY0okEMbVjOvwSsVBJMvz8lffP7P8Gv0kXYyTW5YvRqj79+/Z863Bv6NQBt4xyLPTnpFx8QZXm1+JMePRjTHbHd7g40fahCjr575++sTvwBjF5Dwmvt2yqEp4zmJsIIrM57kF/z7Teo71y8/mfjFboobRsMZo2MZn2HYxuVeWKhNXs97TomMdnlVp74Ah96SxTmtLz3H7jetMst4r8XpmfJT0rh7XCcWX12DSWmk6ooT+PGNsFuoZ/3z8kHdYm/xm7zeMWRg/ZvXP8fP1+4TAm/H3fmzMFqZKx73P0cnwhzBWDhMn6OP8NhtrYwNiIi7toLWloNfzO2P/5Jsa/TN/z5YACkLIXpZSQOfCpA/elXkHYYwUFc4IEWbYjp4januKHsv3ksZoTV2+bn5sanooelDejaiLpPYJ5LlwpUjUYxQlSryRl5JG/BjyTssfz5CjCcfx0/RbBERABOqaAOFYi0kYKBQ77qL2MxMQIXxiOcIs/TsWKg1PPSbSoMC5awYeZnfFBaU3gmIDCTPLNo7y9hvtHwY1SAinHkKHEV4IYS1EPOYQvAoYlAVhQBKVro4Thdzt2zfdpIX7Q9E5Z3+EGsoyPlE3pNm8BBBm1yIoLqgvL5yEG6a0X/r6+YJdgX+IGIGCCAMcfyhXMY6HttMZWbMiXt1g7G6yUFYIMwcJHYowSI0OVMMMbL/T/jk5N++No42NhWuPp6mzyx6UHISTRoFL2GlC8iDxtNiGkp97gdDODL5RXjJBLCqhXYfynvw+auem9CwmHBHaadKxGKU+muF12xQYTWYUQ5gdi6Sx9jtT/gn3HV6oJQ4nU1Kq7c1MiGC8GjWMllLicpgSPpK+jlBESAgZQ1vnBR2hTdAS+aSfyeVOxtG80IVZr6W0c9ZxwTCK4N2GQZS2zMSPaLhlf0DsH/INglcVEwYI6YwnRLF2znlh/dq0dwCOSbu3UMQklTUrLdK7SlJq/1SNZ1O4x9OerTz3WA6FPi14Syb1geXyD56DxfIvN91wfHQsUEod8IhBgkGfNlzOeCfke5U+S2mHGIowhBKNgQkUGBAZD9JPVENK6cfK7Ru2jjyeCA2ZJaEfpDdkfMo9EvrgrPPS9pUz1sXDLEibGWa8cdSMIaFvLVb2cG69fqY9s0p5d0m6l0vtZ0pp8zBNe37FefMsL3Z/nIwFC2PZk9+ljw3j+er3xRFYMoU88vs//HgqE5YKC8IEzbjkc4XrSZ+JoPRHwu9ifQuGUaSlqeClFYxNvOuMW7hS7o0wcZN3gLige3361WPvdfrT8xc+Is/jxw+Pz4kfH+4Ftof3eCYn8B5NNJ9Ps5+9AZV8H6SsJRlP80v+Jvw+XqLxNUaja5DWqoE0i1t0rJP1DhjSSOof2ZemM8lKs5R39ZBv/DOcG9pWuo6oOmOzME4I9w/vNOgcivXP8XLrd2GdXiZnYIzEOz70O4HNHdPjdBvbghTeJ9Gr8C6J4ChhFkX/HYNpcGrwG2L/7B1Fj+N9dmenoCdhbNZp76PLRwZJ3huD3iZ6OmMujOLHUkSRUcoYjfsBIarHyZvycQ76UuME/NO3lAuHxyhhhIIHKbNQJCIgAiIgAleTAB4nCINDG+b47+EfXqAQlKHNzrzpTEkYFULkEs6UGP+E+mGdqEf2YhSeNYx3GH+wJgEeTgyeePnbPRrgEMa3XAkGS7wMxkaHj0/PGudg6GBW7rqFeSM0KGXFYzUYGdJmj4W1E0KoPOrLuQzCMJiy5loYZB8XRF8qIoASaHTkjvdKmvn0yQyaq+bh2eEN6bQd2md0/ctimYR2jWIiOtiu5HoRCoZxEaFFWbcT4y1G8iC0cwbj1IG232/jJmajhtCnvIBXW/BGxdM1TSYtDJb3hB0Z9rMoXx6F+uL4NNYn9+3piQacE+67oJBkW1RQzrCGa0iDfSh4ovcWExj4iypaomnUwnfP1byO8RSNrqUaDNF7+4WQOfHJGOUwpe/i2tCvYjgIM1yDQqAcDlntPF5G0uX64OmHhx+z/RfNq2DOQvgykSfajpPKELxOfThWO6CUdh6UDxjRku7frHsrrazhfj4k1nGK4IWIBKMG3+PtMW0b2+tNqvFsCvd40rMVdqx1RXt9YgoG+L62ddSChOdvtM1xzxRCYBXGAfHxQzg3fGblH45J+0zKP35ssTrEj4//ThvvxI/j93Vrf4FBYVmcNb9eGW2ht+f0mDIcd97P8/QN0bzbjjycwhq00X1J37muGEYZR/BsoxxItN0Xtpz/33A/oHgMEr4XnhWF3LPKfhXaYdq1DkrYpHeXwCvpM3BN6ueSjs/alvX84rz4M/Wy7o+sMmtfpQQK9xuek0GIWsCEmz//0+9PjXWj495w7EV/Mjb92UL4Yqz8y7/4E+9Z/tt/+UNqtkyo6vvTX7l5G/+9fP3Wljd7577/7hvzjreIUDaeT6sDEU4QJqswohy6c8vOfe+mp2b99rQIP35nDf0TN4yGomEgxXhaq1LqMyfrHbBY3dJ0Jllp8kxKe1c/KXNhLBjP/7w6orSxWbz/jecbJugHHY/65zih4r8H+wuTv1+/G/c6D4zM0Xf8QxsrxfUuIbwuk+eaj/SARIAjEgSRbFi+IC7oGXmfQG8YxvvhmD4bZxLaFmHMuWARx5IkXo5wTNK7YdiX9Uk50ZImTUDJOk/7aoNAvpyBOwZRGUVr48KpFCIgAiJwkQSYqceAgXB6DQ2fCsYoMyISQoh9zK78ZAZB1mMI6w1SHowHrCPab+HGeIligBAMCMxu37HzmFHNOmKsq4cSnjUct3dsEGODHKSSkLQYIQiZQTi02bk5m6Vmi7mbl2C3fSaF8+PZN/7ho3n0tfuXRmaDYZRACPdLnUK4X7/Rb//swxCx/iSClxQCJ2bK4nWF9HRfjOLPJ37N/pm29WYxMLKuD+trIbSnrs4uH2J55tNnP3BG2cd1iIZQTkJ13K7NkE2bYe1bQuoWwvaFV7WkM7O2FULLfrZ2E5XxiQkfgvnh2D1v/CcsMMZRlCaEJQ1eVtFzSvkelBPrmxtn2nYz62xYeMsg4dhNm819YEqPUEMG7UsW7ghv2jATMo01a3cgGP/xaiUETvD68fed1YW1S9/bfc91IgQOSyPgJTQ+MemNxyPWbyB4aXOf3DXvcmbjok56bQqUA7v3Hj+6f+rlyZ9QI/8ww5X1Pj9YffrNgLhhkyAIxYmHOPzod+g3CH3MVJHCPGZnxvLk9pvEtMfyILzPB+PIWo+s04TgaVyuZLfzs6nxAkmfhwIreMYFA2K0HXO9kS2bmDBnRlRCQmPEpT2w9i5SSjsPL76sPYlxNORFWGjazYmcvbfSykrZWOOStoiHdou9YEc9fekjCEVM/xHCZ/EyToQDXtzp75GPNpmHPEZtfa5oqO2TMtXPt2o8m/w9nvJsDQYFQ2r96KZNXik8AwMhjEyLbsXa1oL1091+bXHGAbvG168Dbc9h7p0syco/6dkeTSsp/+j+wvdCr5hWh7PHn2zJGu+cHFX4dh3bX2CAwpywzDz7EIwHFyGV9g3xstCuuHeY8MQzFOMjCrq4LNmzjDDfIRRcWA4itMukZ2Y8jXJ/cz+gPEThTPh9ygdXnkPeMGHlzir7VWmHadf6+NmX8O6Sxfo8/Ux6umefXxwbfaYyMbRa90d8vBfevdLLpz3nJQBz2hzvskx8ZMwwOFhYHuONjW0JjUvfwf3J9suWMOZvME8q3rEJdxuV8F6FEQJPVcKD37bxOe8n3BPBoPHzzy99tJ0/+5Pvj9/FeN5Pz876/pH6Y4BlOQhk0JbqwDjKxGHC7zYdebNG86617yMWyt9CXaUWy+9P3ftldyQ9c5JKFNpD0jtg0vFhW5bOJCvNrHf1uE4otJ2Q53l0RFljs3j/G/LjfY02z3rRSFjaqlr9c8jnunwSBQm7Ee+WTLZl2aAgjJm2I0uJddt7bhhHDd265XUmHMtSWvQh6BVY/gcJa8ISjSTo7fBqjgtRT3k3pV+LTmqOHufTivSJvp82/WWaHjB6btp3xl/tNml+zfQBjNHoQ9GZSuqDQI7O7mSuU30UWqUUAREQARG4WAIMEPHAJPSmN4SaUYdZVBgxmJlN2EWU0Awiw6QZBsgoXnL5nB/M4FHSZDOowqCFFyQ8sBgo4amJgocQvAiGBxYsHxzo84ZGvzH1nzAUP33AKGuUecPtmvdmWbJ8WP8kSSgnSgmiIaAcx0hEuNagXEg6B8U9xi0GY8yuRaEehPUrEQZW0XXKwn59VkaAMCms58o14hPmGOdY+xVjBsof2g6GpP0j7720nGg1tOv7tn4oCgHaIW10g3XxzKifKAVbUOIu7gPaMOHsUPQT5u2UnHao9m0rKIWTQmodn3vcvI+/HO/iCyGSGHxjSIuP3zD2RkP78cLMPUwZCRuHcoZzKe+GGYZQWAdJYw0rQtKwhiXn4WkdFdYkDspaXmIIKcOxJxIvpb3cnOy8EO+aSPJV+YqihwkQrNWKgXfdlNH0h8iNI6a0p8aGRm/4DlbocpiynivhYuln6Jdo20RtiRr4zlYmuY2U3c6twPS/H61fpo+jDzteXzbWjikDs34XrP1hPKB93TNP5FAS+tBi7Zy+l1uLl0eENomxnBnArFGUfW+ll5X2TR88Ze0wGJd9BpF/oh4ekc2Rr0etM9pII3tr6mtG/xTKWdmzKVzNQippz1baGc9/7vcpazsYiqJFil5H9hPC2ytKj8YVRFpgdn8xScu/2HlJ+cfPKVaH+PHR31njHWvU0UOPv1+p9hdqFb3oYVvss8/GTAh9Q5gMETukCj/P1zeEAnDlGA8iTObh2Yk3fryaeMXwPGAszNjz9tEEi2LPTJ9wSf8ktyHWzKSPxihKyEye46xvSD9aatnrvx0mX2vu57R3l2LIy+pn4o0hkni03yllbMipJd0fx83h+EskV/Pai433Tu3UjwsjwBiYCV8vX73x/cGQvdeODt/1Cv1fXr62MLXjbsNHYSqtCIW72MZFh8nXubRU7KiGQ3vvyPvxGeuWUhbGR9wjIeVgsGWJGQwFjN9emcfoc/M2ZdmSMZvc6SVhPITS/8OHSTdtE8pYc/XZ10/I1B/OsjcYhhHGyJKLJVDqMyfrHTCrhFk6k6w0s97V4zqheP6V64iydVF+Bms8M/vNex3vcbzf3B26fWyg49CS+ueENK/tJut7EN4jGZfwPhZdboPwuTgahD9CKPM+6Cfa2vthkLBEFYbQILySMi7DhsXyGw/ujRYmhoUDIp/3bVzEcz1NfFqRcqBPKk9CT3r6LPo8+lrGaKtmGGV8KLkcAixZdc+ev5VKw9/93d8dLq7suVVTDkpEQAREQATqnwBrfqTNkqqkdsEIEDccouhsNCVn0tAAbz8GLvFzyB/PINZwDDNS/TZTzPMyZWOocwuDeMJ5MlusWHKUkfrxYhEV6oZhA8Hgw+y1gsLFlPo24Ikr9/CaIeQOxt0wuy2a3nX8jsGxGu2QITaGm7T2wT7W2olfk2LMue52+Y+vc7Hj0/b7+wBlQ6zxknYIqxvOfTs+4b3tzusliWJzf+/AZmMHH8VCDpTllSliGBwG4xb8eCnBiEUZC23e7o+j9h3KxmcWa+qyv394Js9wPvv5i95LMGYt1uh9GL23ONcraa0+0f4gpFmNz2q1Q8rCNQ3lj15u6hAUS/Eyl8uUPDD0RznG0yzndzntnIkfGGWj14LyhHZMv4r3JUoLPCuT+k7KVko7n2Y2sPWrTx4/OL53CvfyibdC2r1FHkllZTvlxVMDz4foNWIfzwZaebR+pMNzKrRRjmASUNKzizQqkWq2wXLzT3o24XVWYHE6Na591uSetGcr7QPuKF2TBMbwDUxhvE+fHnvuJp0b3RbPf8uMVrSRJGk3Q0G4zvH8k44vVoekc8K2wrnJ451wDJ9fqv2FMnzJdjhrky5QkN0buev7D55D67aeeJLwbMqeFJJ01sm2UvoGQsEXuwcoI2nRTkP/cJJL4VtWu2Efz0z6IdpqkuA5X2kUiax2l1X2q9QO0641rHk+IaHf8T9K+Cfez5RwSuIhac8v+kquXbS/jN8fiQmWsJG+NTreK+GUa3sI/WG1okNwv+2aJxQekifvAod+siDrEZ9s+zK49w/sXvDP6NPvDJSG8SZtMjyPOZb68M4VhN8Hth1jK/fVP/7zv9jEqD4bvz20PpLx1slEy3AO63MSmefP/+zXZig4m2847jp/VltfE5458XfDKGOupdeRJLwDRo9L+l4496zOpJQ0097Vk3RC8bwZ06fpAOLHRn8nPSNp69H+Fw/vHUv/6ZOHflzamPC8r1b/HC1bLX3/kmPDWuIQLUt4149uK+c7z+KC7qqgeynn3Ot6LO0QqYbusFKGef+wjmsPKk1N54mACIiACFw5AmmKhSTjSqh8UEqG39HPpEF7pcqhaLrhO0YyjGWlCM/A8EIYPT6xbv7l8XS6GEUmJqd8mElmibFmn6S6BFBKZrWPpOtXSgnS2nUp50aPSWwrdgBDq6D8wruDNXx4AWNtx6z7I5p22ndvwIoZRjmWsuCJtWizKoNxFH7RgWahzZ9uxyGfLNaU2f5PlcL+0wckMY7zoi4eVmrKtbODoib1X74OZmBLknKZkkelbTop/6RrkHQc20K45Oj+aDs+vf1s31lOOx/s63dLZhxlRjAhhZF4veNtJZp/UlnZT3mj7T16TmECBVfkROLpsLccZicp1da3rGfTzMwnHy0hXmKeYQ/uj8Y3H/9Oe7YW68+SGMev9XEmGV/i+S9aWL81C5+ZJHgzNzcX+qN4/knHF6tD0jlhW6nnXqf2F9iwRvuMhasj/DbrczOxAkEhSgSRJOk071LWO65U0q53tG8o5R7gWZk19qB8WdeefTwzWReLMG1JwlrJof9L2p+1LSvvrLJfpXaYdq3hVmk/Hu9nsq5B1r6051f0mZp2f2Slm7WP51fa8y/rPO07HwHut+bmQkjZk5TYVliW4mTbl/mWZZzE4BmVpGOpX/w4zin0M6cNo4QXnraoPHhNPXp4X4bRKNwL/h6eOVnZcM3S+qas89hXOPd0eznZnvwOFNJMG/MlvVOFc8JnsedwOC7+mfSMjPa/0ePpO+NlrHb/HM1P32ubQKX3SKgV7anSdhvS0OflE8jTaTDbXSICIiACIiACInCWQIu98KLQyyV4xeyZgo/ZZT0WcrOvt9cUYQyHJCJwmgDruzSaMXPIwrP22NqjFymDAwO29ufJuqMXmZfSvl4EUIzQF7YdGTjitS+nnaMQIXQVYbck1SeQ9WzKMoBWvyQXl+IQYfuOQvddXC5K+TwECBN+eHjgoxn09Zysx05obdb+/VJymfcAxs9KDaBfio/yvRwCaffH5eSuXESgfAKMA1mfvrMree1ovPLxlv3qySPXb2H3JSJQywTaLTRr007y0jrqn2v5yqlsIlB9AoWwuqv7fnZP9ZNXiiIgAiIgApdNoNphWi67/MrvahBQmJarcR3rvRZqh/V+Beu//GqD9X8Nr0IN1A6vwlWs/zqoHdb/NbwKNaAdVius7lXgoTpcPgHpay6fuXI8S0DP5LNMtOXyCdAOkS8Z/cIigZmXC8G3JSIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJwhQnkWEBZIgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJXnYD3HD2QgfSqX2fVTwREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQASuPQHvOepD6157FAIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJwlQnkGhsbna06KhEBERABERABERABERABERABERABERABERABERABERABERABERABERCBK03Ae44eHB5c6UqqciIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKgsLpqAyIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAteCQJ6wuhtb2259Y/NaVFiVFAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAERuJ4E8vv7+669tdUd7Cu07vVsAqq1CIjAVSOgyS5X7YqqPiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAtUiUAirW63UlI4IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1CiBXENDg3P8SURABERABERABERABERABERABERABERABERABERABERABERABERABETgChPIUbcDC60rEQEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREAEREIGrTMB7juZy3kZ6leupuomACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACFxzAt4qenh4eM0xqPoiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJXnUDOG0a15uhVv86qnwiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAhcewJ5CDRcewwCIAIiIAJXi0BTU9PVqpBqU3cE1Abr7pJdyQKrHV7Jy1pXlVIbrKvLdWULq3Z4ZS9tXVVM7bCuLteVLaza4ZW9tHVTsY72tropqwp6dQmoL7y617aealYL7TB/cHBQT8xUVhEQARGoaQJ77sDtHu65Lbdv3w7s39LCljfaNJWc/dfqGl1TQ97l7btEBERABERABERABERABERABERABERABERABERABERABESgugTyuVzOVPf71U1VqYmACIjANSOAUXTd7bidw32Xb8DM2eCNnA0l+uYf0hPb+s8YVdcOd11zQ6PrcM0ykl6zdqTqioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIXCyBfGtrq3PLuxebi1IXAREQgStMYMuMmStu2xs023OVhbPFiJo/Wv8Zw+iuGVkXDjdct2txrQ2VpXmFkatqIiACIiACIiACIiACIiACIiACIiACIiACIiACIlB3BHb3dt3enkUd9EFdS4s6WHeVrHqBLeqiBVrM5y3qYr46uvL8/v6+azhSyFe9vEpQBERABOqMwL9t+d98iW81/MbNHv4bN73/wP12769Ta7F5uOM23K5rs1C4OfMYrZY0mYGUULvrlv6heZS2NTRXK2mlIwIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIicIkEDg8P3Nb2jhn5cq65uck1Yu0rMergJRazRrOyqItmTcaovLm15Vpbms2ueT5dfL6xsbFGK6tiiYAIiMDlEbiTm3T/RfP/eCpDDKS38r9xv87/r+7/3vnv3dTB8Kn9eIxiGG3J5e0x1nBqXzV+YGxtsckrGwe7ruGwQR6k1YCqNERABERABERABERABERABERABERABERABERABETgkglgGK2m5+MlF/8LZ9dgxmRzJmq2iIvmeQvLNqLinkNyeCQdFvx3z5GMThUBERCB+iYQDKN4i2II/de9f3eqQmF/2MgaoyGU7kUYRkM+pE2YXfIiT4kIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiED9EMCgh8dotULC1k/Nq19SGMISpueR3FUPq4ur8nWTAzN2X8d6X7frrPpWj8Cf5//BJ4ZB9P/c/q/dnzX9B+8tGs8hhNxl+7rb8UbLaobSjecXfpMHBlLylIiACIiACIiACIiACIiACIiACIiACIiACIiACIiACNQPAcLB4jUqqQ4BWML0PJIjrO5lLvmK4W5padmtrq2dKvf+/p7fvrm5eWr7eX5MfJxy//Eff+fW1jfOk0xdnXtwsO/+v3/6nXv56m1dlVuFFYEvSWCosXC/TB2MOgylhNPNEjw4dw73HeuCXpaQF3nKe/SyiCsfERABERABERABERABERABERABERABERABERABETg/AYK3FtYYPX9aSqHA8rwBcc+3YmkFV6Eh1+BevXnrnv/8wrwbT8yyCwtL7vkvL93K6mmjaQVZHJ/S0tTs2tvaXL6x+msBHmdSxS9Lyyvun3/3e7exUbmBOIK0iiVTUiJwtQlEjaGsL5om4bjdwz2XN2/OyuTQTU5Nu7nP82WfTp7kLREBERABERABERABERABERABERABERABERABERABEagXAtjC6sNOVR9EYXliX6ykzF67f5mXhPXzBvv73f7+gVuPeHRiGET6envKqEe88qd/37w56H79q29da2tbGWmGQ0+nFbae/Uw7Lm372RTClh1bRHZ3d88uaVoo4PLTDGnrUwREIJ0A64wi8XVF42eE47bcvstV+DBbWFx2C8vLbnun/BC55EneEhEQAREQAREQAREQAREQAREQAREQAREQAREQAREQAREQgcoI5Ms97e37D25tLTtM7a1bg+7W4GBq0n39fW569pNbNoNoZ2eHGQMP3cLiouvsaHfNzc3eo3Ti40f36dO8Xzvz5s0bbnTkrpkFzOv09VtbtDbvmlqa3OTklBu5e9cNDPa5Cfs+P7/gmm0x1hs3Bt3du0NudnbOzXz65J4+eWQG0laf7uTUlPts6e5Z+Nn+vj43dm/YNTbmHeF+//jjc4dBFc9N0urp6najo8Ouvf2scXVhcclNT8245dVVX+6xsXuuu6vTh/CdmJh0ixY6mN937gxZPr2eBWXHdbq5tdnNzMz5GNOjI8N+/+ynOffBzkNevnjjmpqb3LfffJ1Y36GhW+Z5llwPn4D+EQERuBAC0/sPfLoHNoGhqaHs7tPt7O64aeuTbtoEkb398o2cjQ0Nbs9C60rSCawePZ+6OtvTD7qie65z3a/oJVW1REAEREAEREAEREAEREAEREAEREAEREAEREAELoBAHqPgZfsjdnd3+qosLi15I+bGxob3JB0Y7Pfb341/cDNmPMUI2GDGgI8fp70h8e7QkNva2nJza+tm0Mx5Q2Z3d5d7/37SfTZj5sP799zOzq4ZIHb9eTt7O97QuW+GUCSk22PndDQ1OQyS5P3tt197wylG0fHxCdfb3e0GzHD6ycJesrDro0cFg4hPxP6ZX1h0L16+9mUYHh5ya6vrZrBtdJtbm+6n5z/7wyj7Zzv/lxev3NdPn3iPWMq+amVvM0PtwECvm57+5N68fef6/+zXrqWlxbXaH56j3T1drqW5xaeTVN+seoQy6lMERKB0Ar/b/c/NazR7nVFS++3eX/tE963XZLJGeXLoPtqEiqEbN1yDTZLYs76nXCFP8pakEyg8A3b8s2Cgv5xIBOlp1sue61z3erlGKqcIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIVEpgc9Mc+ywyYbGlGQfMQXGgv+C0V2leV/28ssPqPrg3at6e6R457MvyGgVoztbNuzHQ79cX3d/fc8srq55zX0+vOzg88IZR73V5+5YbunXTGxOXFpZPXYtnT79y9+/d856n+0ceWBgc8Bh9YEbSuIR0MUx+8+ype/L4obsxOOCNlZsbW8eHYzh99uyJN4g2NeXdooW/jMusGW6R77995kaHh92zr79ybba26cL8kjfyPnr4wMo26r61fJC5uc/+M/zzq++f+bLjpYoxdGtr2/X2dLseM8oit2/fdMPDd8Lh/jPUt72jzfMpVo9TJ+uHCIhAJoGpg2H3r3v/LvOYYvszT7adi/bQslkbrv8aP5Q+Ts+47e3tVFRM1hk3D/roetSpB6fswCDabOtN46U7H3tupJzyxTdXo95UopbqfmjPckJIV3otib4Qwu1/8QukAoiACIiACIiACIiACIiACIiACIiACIiACIhADRAoxTBKMXHwmzRHHUk6gRyemSjsy5E0AymGUfaVIv1muUaWV9bckilQCadL+Fos38jK6pr73e//6P82zeNyM6ZQ77KQtUHG7o34c1+/eef++Xe/d3PmsRmXkC6epkG6OgtprEc8uPIWsjcsjBs8OcPx4ROFLYZTDKJRWVtf9z8JD4y0tbX6z+WVwnqq/of9k8s1+q8tpsBHWH+1mIT6llqPYulpvwiIwGkCeIWGNUVP73HecBq8RtnXaB6chAMvR5hosWH923PzOp+YnvbrjmIsLEfIk7zrVTCW7WX0dxjUFm2SyXkX064lI2Ep16pa9Savcuo+93nBR1oopYzlHsPEn8mpabe3t1fuqf547hWe/RIREAEREAEREAEREAEREAEREAEREAEREAEREIECgeAximfok0f3E//Yh3BsJQZSnFvQ4y4trVh0vp1Cxlfw33xjY6M7NG+dcgUjaHT90XIMo+TV01vwkmRtT4yNeHwirS0Fg2KXrUX67Osnfpv/J8OAi5Hy199/4w2qb96M+3U6+/pOh1MM6a4fGTBJMxhFgxHzJLPsb5SN8Lg7O9tm1C2Ev+UMvDqxyG9sbvkwudvbhYbT1XFiyM1M2fvxmlkg43JUsx6ZZdFOEbiGBEoNr5tzObd/eOjyGf1SHN8DW5c4CF5x9D93h26HTSV9kid5S4oTwEiI52jwIOX3dZFS6z6/sGBrZtskHwszX21hwtP33zytdrJKTwREQAREQAREQAREQAREQAREQAREQAREQASuPYGskLnsw06FBAPp8J3S9NDorXGoyJtzIKpvlp68Ycth9vVePd1qHq8OwtFWIhhIZz9/duvrGyV7jIZ88o15DzR4efb3FuIfY6zt7+s1y/SS+zA55fp6etzaxro/tqO9I5x+/InHzS8vXvt1Ojs7OrxHp9kmzwjpDli685bum7fjtkZo3q852mbrfHa0tzvCGpYqrI2KcfT5L6/cHQv9u2bf2dZndZiYmPLp37lzy81bI0LCWqrF0u88qt/0zKytSdrvOcTPKVaPcPymQcAoQHhJiQiIQGkECK/7v2z9z0UPbjX/zS1b/fOyhRWiyfsyhHDlb96+d122RvTsp88+vDkP0Y8zMxYKfMcbdsNDmP7wo3kJbtmEkH6bmDJsk10In06/OvFxyi3aLKN2C2keQqBTfn+OrSe9b8fcvDHgw5xH60U4Vs5dWl51TdZ/j4zcNUNeekj36LnheylGQvrJD9Zvr9lz7OaNfnfL1oRdXFhyW7Z9+M6Qf75NTc+6Rw/HbG3rRb+W9Lata82g4I6FQG+wejJRqKOt3Q8WLByDhVu/4xZsIMFgYnCgz6dDmTiOiATzlj4s4DlofX1cirGJH5/0u1jdP0x+dISUf/3ug2PCz9josPs0N+9mLQx8ixlLCe9OeHueb0sW/QBPUMr1zdPHJbUL6vfi1Rv39VePjOGm8VjyIXZpC302OWrk7h2LopDzaU7PztpAbcv12Hrbd2297vhzi3ynLAwI3HvtGPiGCA/Unfa5u7fry0qdBgb73Igd8/nzonkq7/nw/BzHuGJre8uuW2mDQc6RiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEA9EwjepqXUAfsZS0/esiUhEXSmTfnL0UeXUr5qHlMIq2tK6EqF9UVLDaUbzyOE1m1szPm1Q8P+x48feIXxtCmkn//y0n00BTrK+CRB+d5iHirv30+6n56/8Arcx48eOIyvcfHpmkvx7Kc5H+4Pxe8333xlyu3ywlRiEB0eHvJr5702Q+vc/LzPF+Ps068e+2zHxyd8CM2xsZEzSv94uVxDgT+KYVyeMRj/8uKVV/aeOdY2ZNWDugwN3fR5owiWiIAIlEfgv2n9b138L55CU0Pe7WW5eMdPiP1mpg2Gt3KFPMn7cuTQGwabLAz4t3jx23Piva0Hem/4rjdOhZDAhFZ4/fqdu33zpjec7ZgB6+NRPHuO2bUJON89+8qNjmDQKggGSc7B4PnVkwduwYyF8RCqhFbfMKPad9ZHP3gw6lpbK5vogZEwaw3S12/G/XrPeDkS4py1YfsGmKCz7A13k/b8uWHGW/rW5uYmbyTl2BUz2mL0Q3bs+UT5v/7qoTfwkSbX+JkZBuc+zbttizIQjsNo+OzpI2+MZDIN62FHpRQ20eOzvmfVnfbXYM/e+xaWHmMjERw+27PsqT1/743edeMfbO1X+w/jNXXgeenbgW1jQlSxdkFo5O2j5zZpwJMJRN98/diiPKwfLxqPgXTEyvKr776253ajN2DG68QY4NatG74tDPZjTD79zMYASlt5cH/UnsEPvUGda9Pd1eENp2Hy0/ziohmxz06yiuen3yIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQywRwvkiTrH1p5xS2mzZw3yIXRpwpcVZpMWcPBL3llDn2vX733v/hSIKDC0tBvn03YXrEE2cidI0TptND0IeiJ371etw7XaD3rQXJU/gvJbdu3jAL9I0z2TeaMv7J44fukcVMxrO12Yf8KyhDv/v22anjG80I+uDBmLt//54/tikSHnB0eNiUvsPHx7PW55Mnj9wju0gHVu+oARWPzL/+q784PpYv8bxOduIZ9P+z957dbSRZuu4GCUuABL23EuWlct013We6p+ec/3HX/ZP3Q8+aNV9mpnv6zFRXqapkKUOJ3lt4R9z3DSDAJJhwdKKovbUoJDIjwzxpkBlv7B3j8HwZMwImy/SUO2vp9cq/HE4Ur2O9W34UBvhnjW25h/qZOdrQXNbPrQ712sG8ZqamILyMCkVnNSWgBFojwHlHhzx/qez0c/7/rSzbBS9C2/o97ZIrFiBWXs3IGZbFMln2VRq98OgdSQ9SCl78MeQ9rwBPQt6rOHqIocm7y6HSB/v65OPSivEMpNfnDDwSeX+1f6x7PJ4UL4TGJEILc8rnNm+bHGL+6X6IktZCwYCkIbzyR3QA3pUB//lFYYqbTqOwSwGPEQhsqImDw5j0wyt0GvdmCricp7o7WgoDTw9LelIexGKSw496AnH7I1hH48AW3rO7MJc101BMpIXxAJFKZVD/0kNEN6Ih8DeOeZIBRbyO0HF49lpsQvC8PY9Vt50POfxrb/OYz0O0yR/wG5GU5VAMpjcnLdQRNO3jsp0ju9F5UT3miJ7Dlgk5UkwmuzDyJoP1jS2JQzT1BU4eI5bZhYFDq3iAYtn0OnUznp/G4xS781yMxePGYzSMsME8pgz9z3I6Z1QcdeOn65SAElACSkAJKAEloASUgBJQAkpACSgBJaAEPh8C7Mu0/ZkXV2uPcfxgNDwKob1w/uCUltZyuYLp12Q0PPbT0UEmiD5c9u9RAI3FkibqG9PvHRxIKVJq0USIbYf36cT4MJz6MqYfkP2DrTot2npc1KfxHKVQeB2NYRlL4fVOeom41ZUgncKoWxq7juKiUxi161v9NJ5ECFtrhVHn/r4a651pai17EfK3mfrVawdZcLuaElACrRH4/zL/j1hBlELp3/P/6JpBWPyShWBZ7fnnmvicK1kGy2KZn8qcP1YeCGo0ehYWj06OJmKY9pKnXul3xe3XxexTvmfzXjUAQbXLiK/HreOclU8e3pUgRMW5t/MmRO3x1uaX7Lyj/C3phEDmNHvseM9lPTohbA6WQ0bk8YNOz0pPe7mt+J18825e9iEiUqxleFe2v9qqw9Tb/avTGXr87a36/W2Gzem83NfUa3v1Hkfl40gO/JtAaGR/WZDmb3Etq3Ve1ErP9W04f8oBEzBqbMM8SFFUJnu3AVuM1jA5MS4HeKh6/eadaxpneTz/bD48t+iZTPGdIZ/rtcWZhy4rASWgBJSAElACSkAJKAEloASUgBJQAkpACSiBL40Apx0bRgS3TDYHp5V1RBJcqUQ4DXeETLhdRnKlMQocI8zRsSbS2YFocTGznpEFc9k8ovVFzDRsnK5raKDfOGZ0d3dCYG0zTicm8Sf8z3iOOjs3P2FdtGgloASUwLUgQEG0lihqK0gPzi4JSKKYlQCEPrdBEjbteT4pwFEYZVlX7TXaTL3DkRDm7FwxP2j09uSIpZKnpcd4+TG8N7336LWXx48qjftklzgnsk868KNKD1QvRg9xhBGNemEmmzYjkTgfKUVMhltodeJvpzjIELPVxvk/2zG5OEc6UTijoMbBQqzPMkY+McTs/MdF403JenI+yzu3Z8yopnQmA/GwdbE6g/04Mmp/P2a8b+mVaY3trsXGpmn2s1HbmY8fojAfTjgAjHViyPnwaMiIo5zD0+elF6fLJN7NVqKJdPuYg5RCLM8Rzm162orwAk0aYbsDYep/+eWlGbmWz5fCEfOhjEYvYHOtYN5b5nlretKs5xwJnL+c7TlLKGuTif6nBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAErikB9lv2oW+TtoOprVqZY/R0kzwm+hsjwDFq3vr6pnFumIbjQgFTW61tbEPwzBiPUfal2lC63eiDo5jKNDE4KfjQ58q+U0Z0oy0urp4oKst+4k8c4A0OM95yQNgTddMvSkAJKAEl0IBA0OMzglryKGdC3l60V5r1GO0Qn7Csq7UmPPbx6xEMBGUSoXPfvv+AmPRHEsYoodtlYYoelsv4UaSgxRALgfK8odxnampc3mAfH36DKEjevT1tQvYytOvm9jaE04CZG9qHEUgMYTuL0OmtWDPiIOeuvHNrCgLoEn7YN032nH/zACJdf18P6oy24Yefc0tz3tRuCKwvXr/FqChENUA9GxM6XePNrW0jvHLLDObItFECbLs5d2stNqdzc1/TXNvFzO09v7AkDHl7986MCXX7/MWcOU4mvD3mgz1tjVtdGijQOB3zHsSoMdaB50EHBFI7yKADii1HpjFM/cbWFuZAzZhrrRfHhSGKV9eWzNSjM5MTpooMR/wMdWe456HhgUoIXw7+GkCY5K3tXQjPJz2HT7dN1ygBJaAElIASUAJKQAkoASWgBJSAElACSkAJKIHPiwCFURv+tg9VP484yv5o28dNpwQ6q2zDGYa2immxcpk8+n4njLconUuscdo1eoTSyeEwEYfXaGlqLD9EUtrU5OiZHE1s/pfx6fnzn/9cXNk4hAp8ud4hl1F5zVMJKAElcB0IpIs5ORR4EmJO0Iuag5RzjFqP0VaFUY7qsR51V8WHXntHEEc5t2i10SPUbT1Dy+bzBeM1apQu7Gi8NxEWtZT+9PbqvN2+NysOOvfNY1QTy7TinHObc7nUFoaZbU78c+77eu6djMFLsgMPC20M2evI42S7udfVtJ2ju1gPO9E6519liF334+VszcUtMwwuRczqKBY8JgzPQdZH5Qndbbh48iIjhu3ghO6sP8Nz0GxbzBf8x+3Mm+F51ZSAElACSkAJKAEloASUgBJQAkpACSgBJaAElMBVE7io/to37z6cqvrE2HBFHE2lUsaDszrR3dmZ6lWnvrOOq6sbMoDQupFwByLO5WRtfVu8vnahQwmjs7FPcwx9bMlUGts2TFRA2+dG54RYLCHs07s9M4H+Ra/p632PyHwMxcsIgYwkyAiDkQtwYjgvUw2re+oU0BVKQAkogdYIULz0CmKsS1boReqFYEPpq72FcLsUFwsQfDBbouQhUFFo7fV0XMtQum50KLDVEtRqrafoxegFTqOIdZz+9HZnWrdljk7ihOGcY9QtlK7bPlxnPThrbbfrj+tm17T+6ZbHyXYzz6tpOz1EnUax0UXfdia58OVqMdMW4DwmVhS120pC6kmBujqfTDYj2zucnH5fHty9bXfVTyWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJXBjCDCULj1GaVw+q4Ux/VcPvFC3d3Zlc2vHZBNA9LzRkUGzzAhv64i+9/b9RwimXhMF0FlWNBqRvf0DCYYwlRmEURr78CbHR2QFouvC4opZx31DIX8ljVn5Cf6DU0bJK+MTlK1FKgEloARuDAHOBxqVoOQ9R5Ir5jFTYwEiZwH/08OtsdFnkZIqAhDA+/R6zi/auBXXI0WrwuhV1XoIk5nzgeIy7bq2/TLbzDAdJbH0ZCn0Lg1AJOfcsT6MSlNTAkpACSgBJaAElIASUAJKQAkoASWgBJSAElACnzMBzi9aHTaX36vXOdvIfZozj5lqjNON0fuTjgg2xC73pzfpbUxRdmSiBJ50eOF29ku6eahy/czUBOYjLTCZwzHGfP1k/3lthT5ZDbRgJaAElMANIkCR1OvxS7M/OTeo6deiKZ0XEJLhshrCGP2Xade57ZfZbj6YuRnntuWfmhJQAkpACSgBJaAElIASUAJKQAkoASWgBJSAErgJBDi/KK2eGOpsJ4VRu49zfaNlZ0Q3Z9pS9MDTwqgzTa1lt2h6tdJexfpSWN2rKEnLUAJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKoGUCoVBIxvGndn4CbSYUHeL+qikBJaAElIASUAJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAEbjKBNjaOMYLVlIASUAJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAI3mQDmVMWkqvhTUwJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAJK4CIJMHpr8SIz/MLzIsvzRcQ1qmixqAflCz+TtPlKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAIXTID+iYWjowvO9cvNjizP6/PZZoRRnXP0yz2LtOVKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAKXQsDrbZd8Xqe3vCi4ZEmm5zEjjp7P+fQ8xeu+SkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKQAkoASWgBJSAElACSuBmEvB5fXIEb8dcPnczG3iFrSJDsiTT85iXnqPJdFoSydR58tF9lYASUAJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASqCIQDPglnclC2Csar8d2ExdWXRerMNX4WjRhiekxSmGULM9rXg9C6oaCQSkUNN7xeWHq/kpACSiB60BAB7tch6OgdVACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKQAmUCHg8bUaLo+djNkvvR64vKp6mCHjMHKMMpRvwB5vao1Eib9t5Zy1tVIJuVwJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAJfOAGGgz1vSNgvHOGFNL+tUCgIvUfVlIASUAJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAI3mUBbe3v7TW6ftk0JKAEloASUgBJQAkpACSgBJaAElIASUAJKQAkoASWgBJSAElACSkAJKAElYAh4i8WiFEvBjRWJElACSkAJ3BACR0eFS2lJGvHwd+JJGenpkhwmwN7Yj8l4f7e0IQLBEX5P0pk8wkK0SRbb9pMpCQcD0t1xMXHgm2lQJpORQCDQTNILTVMA76XdRZnsm5LNww3pCHRIVzDasIxUNikbSM/9Mtm0bMRKy22Yg2A7voWJxgsy1DVs8lnZXxZvm9d8T6Tjsp3Ylqm+abNtN7EjsXSs8p0rF3Y+Soe/QwY6B00a+x/XB31BifjDZlUsE8dnUYajo3XLtPvnCznJ5NKSLmQklorJdP+M3SQ7qFO+kK/U2W6oV6ZN4wwQONoAAEAASURBVPZ5kNqXvcSe4UMmB6kDtPNAxnsmhc8vy3uL0hWKSjTUjfNyG+ddRka6x9yyOrFuEQwiwU7pDfeZ9St7S+L3BgwrlhFPH8pYz4TZtpfcNe0lHxrLWN1flb7OfukMdJp1jf5LZhLmeE32Tsn6wZqE/CHp8HXIyv5KpW3M46h4JIs7CzKKNvi9pYnlWZ+9xK45toz0wfOC1/cgzot4Ni47MffzgPNX8JwZ6hpCeR2VvFnvdsH5hWNVqz4FHEPWbSAygHM5rBFGGh1g3a4ElIASUAJKQAkoASWgBJSAElACSkAJXAsC7C9ymtG/sK5Rf+HWpshhTMTrK0p7mwf9myLpbFGmJj2ytr4u+Vze9I8wv1wuJ6GOkOTQT8plOiBOT0+dSmfr4vf7JZFIyO3bt2R+/oMEg0FhRFfWKZ1Om+/ZbNb0dXlR8MjwsCwuFdE35JHhEZGXL1/Jw4cPnM3S5SoCsVgcPEt9aVWban71aljdmmx0gxJQAkrgsyVwWeHSNw4TEJUCkof4mcZftnAk2Rx+zP1ePDi0SThU+hHy44c8d1SU/URSesKhK+PIh47LartbI1gexapsIYv25sSIlBk8SUFsbGtrbyieHUKEyx/lIfrt4wEILJFPMpc0+8UhdnaGOivt4RzhTMv2JXMJfEplm7fda/Z1tp159fp7K2lYf4qtGYh73LdQPBbQvagr961XJts6v/0ewtwRxLag+WQZNFsuRTtbR7MB/zUq06Zz+6RYyHq2o340f7tPktkU6JIvzjcIdzsQDqMd3bILEZNCsq2LW352XRoMerx9lbQIo4HzOW2+FwXHocyZ6VmHHARhZ75sdxiCo3OdzdvtMwhe6f20ySeG88McgzAGFKAdtm3cr0085jjy/LF5sz5FHC87RzzXl46hR1IQXWudB4Vi3uQV8AVMXu2edsMyl0fdwatefVinSDAsKwcrpjmRYESGu0ZO1NWtnbpOCSgBJaAElIASUAJKQAkoASWgBJSAElACn5IA+03Yh0VrpZ+Q/SshdGGm0h4JdohEMB4+mMNKGPvd+Ectjf1ivb09EEXzUkDfaCQSMX1HqVTqVDoKnxRGOzsjpm+GaYaGBiHCxozjAuva1QUHFAisXi/6Vh1RXinQYpWxqanJ0oL+X5NAe3ubYV0zgcsGL4Gf1NJdUukqJaAElIAS+KwIWGHloitdgBi6n0iZP3qK5vF9efdApgZ6JMAhVQ7jQ0UqmzdrLqs+juIqi1dZFgstQEij1ya9OpPZBASpkpBGsbNRXeiVyP1iEElpRxACD5J78Drtwgg1P/JLVvJIZpLiw4MY8wzA83MbnpI2/zQ8OW25JiP8x+8U1GwarudvPj0/w5FeeEkO2aSVz3pl7qf2jNfkg5FHJk+Kwmw387dlGDHTISw2U2alcJcFMqSXKo1lZAppPLMcVUS6aEcPPDHXZTtGgToHL9KuSl1csqus4jHL5FLigdcpjWzpqVlqR9G007aJ3r25E23ieY9RgThuNk0l4xoLXoi6rPdGbN1488YhkB6m2vAgXBIu7W6QRE3e/G7zNkxRnv1OsdjWx4/9KQ7bbRR47XlAgZP1zEIM7QigfFyvZNnGh+sm6kPPVJ4jFHOX4M0aAB97zjCv9YNVU22u4wuCmhJQAkpACSgBJaAElIASUAJKQAkoASWgBK4jASuW1qvbAXwdIhBF6XwYT4gMIZAbPUYPl057jO7s7FY8RsfHx0y67e0d0z/Dsmx5HR0dxmM0HA5LMhGWVXSllDxTwxggf+yZ+vTpzzI2Nma8SCmgMjIe8+gfGDdV5v5qF0/gjL1ZKqde/KHQHJWAElACtQiURinV2uq23oolbtvOs+7O6EBl92Q6I2/Wd+Th+JARXJLpLB4C+BDhQ3jdnGzByzSIZevxVtnxkhcuq+1u1WZZoz3jsgdBcyg6JBQpCxD0uK6R0euPwtXtkVlwKnnXbiDk6hrEvgmEX6XX6Mftj9IdpldpURIIf9tZFv86ERKW3oybENs6/Z2yVQ7B62w7BUCacx1kTAkh5O8WxESGhA3B8zINT8wMQuQyNG29MlmHHMKtUqzLI2QrwwdbL1FbBtuxZcLbZitiY6My63GihyjLoBDbE+5FvbeNt6gtj4ImPSNXEQK2J9xTEU3r5cltrCfF5e6OXuOFSbY94QnDKoxwwyZsMLgAF47tvgmDa8vk/tXt5rpGFvKFZDe+IzMDt4xQuhtHqNz+6ZPHBy6izJvl2vLInYKo/Y6TwRwDfucxXMh/lH14HjNML/Pncec2Cug8FynITvqmEXZ4y+QdDpRGK9arjzmPcX6FcZ5FkJ4erlaQZTspWjMcNI2hiX1en1nW/5SAElACSkAJKAEloASUgBJQAkpACSgBJfApCbAfpdKHgopUf69Vt+GyD0EcIil8DYxdlMcoM2OfaS3P1OGRUiQ0htulYwP7Uumhqna5BIw4iuPSlNENeP8wbhTsLOIpqykBJaAEvmQCHZhLM5ksebVdBgcPPLwCDL2A0UE9mOPTKCaXUdAZ86SX2xFC51LIoaXyeVnY3Ct9wf/hoB/zKTaed7OywwUs4Pnnyo1hY5PwQqRQRS/GHoQsbcZ24YlJdlYY5T4UKBcx/2UKHqjdoR6ENt2WtxtvjXcpxS5r9Pwbjg7Da3fZrOL8mfRadRpD3Lrh4Dyl7zbfyPO1F5Xk470Tpux6ZVKc3Dhcl6dLP5n9utFOtttprP+2f1uer/xqBLVvxr8xHrD1ynTuX71McZSMOHfmwu4COGAOh/I8qzZtf+eAHMDztg/zYzZrE5iz9PX6K/l15RezSxQepP3l/YMIl8t5Np+vPTdhbrlMQdhpeYiVrRpD025jblh6t9I2IVBTeKRRoH62+sws87/nq8/N8uzgLD4pjh6XT2HS1oeevhSF322+Nek7cI7Y+Yb5IjAzMCPvcP7Qu5Q2DtE+CJGWVq8+WYjlc+tzJp1JCwYMq1sx5F1h0OxDZGVnXVACSkAJKAEloASUgBJQAkpACSgBJaAElMDlEGB/CAXRVs06Z9pP7j8w0O+aTXf3yf7OEFXPGma9PvvrdFtxjlG1qyfg+fOf/1xc24xLDPPC1baiJFNp2dzaMZOasqO+q6vUoVd7H92iBJSAErjZBF6/mZf7d29dWiP5Q85BKXuI68ABKSNDA+LzNfbQSiRTEsE8n85RUpdWyaqMCxjVxFC7Ji6+I05+VbJL+xqPx02s/0sr4BNkbEe4/bL0s4xAEGW4U2v2YW8RwiHnobw7dM9uaviZhxcovQwpsLV5ykPiynvVK5NzVjJkK+dUbdXqlVkvL9Yni/b5vSfD0HKfZYjJm4eb8t3Ub+pl4bqNebZhLk63sLBsJ0XoT3EduVa2zkpypYjK+labZed2nKvTOr9ThKVnM/N0zovqTKPLSkAJKAEloASUgBJQAkpACSgBJaAElIASuE4EbF+Z85NemM30qV6ndmhdWiOQTCaFYYxbMS9PjEY6ehqhEymMcvLYsZHTc5S1UqCmVQJKQAkogeYIUJThyCP+7e4dyNrGlkyMj8CRrrGr1qcSdNoR9oF/n8rOMDDsU1W1YbkUpl6tvTSegfF0XFK5JJb7Kvu9WHmGELMRI3AyrO694fuVbc0s2NAgzrSNymRaimxnNbcym8mL57PTc5b7MPTt4u6iCRd723hYNpPTyTQUW2vZedpZK8/LWu8m7tqy3NjZbfU+PRDMq5nXS6/blIASUAJKQAkoASWgBJSAElACSkAJKAEl8KkJsB+Ewqj9ZH243MjW1zeMkwpD2+YRHY9ziW5ubgkdMW7dmpGlpWUT8paR/mj09tzY2JShoUF5+fKVPHz4QN68eWucNrxeL/rrCpKDswvz4xyi7N8NQ4nLH8akkMtJEWW0wbHEC0fEHIS9oxycEfwBCfSV+v44aD2BPuD+/uO+wEZt0O2tEWgirG4RoXRjxmNUhdHW4GpqJaAElMBFEejtiWIez4zs7R1K7zUMsXtR7dR8jglQ8DLzmCLk6gBCx1L8dHrwjXSPSgzhZBmW9zeTvz2XaGlLbVSmTXcdPvlgG0QY2fsjDzF3aM91qJLWQQkoASWgBJSAElACSkAJKAEloASUgBJQAkrgMyTAuT4DwYB0dkYkFovLzs6uEVUpfnLZiKaI3BUKHofQDQRKg+6npiYllUIkv0hEKJ6yz4rp+JeDEMp9KZiGEI43DeHWX47gRgEUCikE0V7JM7KrmWe05MoY6u+X7MHhZ0jy86my16jmdZRzeuHQc7S/t/fzaZXWVAkoASVwAwn0RDtlY2tXerq78CN7AxuoTTpBgKFuT8zzeGKrSC+8SPl3kdaozIss67x50etzonfyvNno/kpACSgBJaAElIASUAJKQAkoASWgBJSAElACXzgB5/yidp5Qi6T6u11v5x612+vNPWr3CQ64Tz7qdQkJG4122d308xIIwHO3XYpGkXbLnSo15vmC+29XV9gtga5TAkpACSiBKyJgwjBksyitdG++omK1GCWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAI3hoCX8ZM9deaHKznx3pj2akOUgBJQAp8tAXr6F4+KRhpVx9HP9jBqxZWAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASuEYE5t6IBPyCuUJFbt8Sef9+HlNNBiSJ+UD9fr8Juevz+mR3d9fUmk4sk5MTZnltfV0yiL7KsLw0TouVhYML5z6lN2lHB/86zDb97/oQKIXVZezcWlZnU61ddL0SUAJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAElIASuO4EMNUonAhFujpLNaWo2QanQjuPqJ1rlN9pFDsPD2OIuNop3navSFBKn6XdzRyjjNrq8/nMHKTl1fpxjQh4qV6rKQEloASUgBJQAkpACSgBJaAElIASUAJKQAkoASWgBJSAElACSkAJKIEvjcDo6MkWe9o8kk6nK96g9AS13qATE+OyuroGMdVjPEmnp6eE3qPU2g4ODowgWigUKsKoP5eVg4VFOUIUVx9U2MjUlBy8nhMPhNM2bzvWIy3mF02IR/r7+05WRL9dGoE2hmk8UoH00gBrxkpACSiBL5FAHjEo+Kf26QnwwWxra1v4UHZT7eDg0DywnrV9+/sHkkqlzrr7td+PIWBisXjL9eS5s7Oze63OnbVtkbeLLTflwnfgNbWxsWn+ag00TGYS8uvKrwiFfjwQMZdICP9oeZxzuVjswuv2pWaYPTyQQiZtmp+NxwxfJ4uF3QVZPVh1rqos7+yLvJivfL3yhet0D3r9UWRz58oRnCiQv1f2+trd3TuxzfllPbYu89snD1yj88C5/+e6fAQ+2YN94SfvP2Y5lzvRnOerzyWWdr+/zK8UZWXj+L50Ykf9ogSUgBJQAkpACSgBJaAElIAhQG9QhsnlJ/+oo3m9XmE4XfYhURi1adh3wmV6mnZ3d5v9rOcp9wn190ugr1eCAwPmL7O3b7774XXKdfxkGnqZql0dAeM5ygOrpgSUgBJQAkqgFQJzK5tykMrIb2+N48e/9DuSyuTk7fq2pHN5k9VoT5eM90VbyfazTUuxJIuRYGPVQ80+cYvYcfr8+XP53e/+oan5DY6OjmQOEy3cxgQLnFPhU9ni4hKEuR359ttvTlThw4ePEo/H5cmTx5X18/PzMjwyLCPDw5V1rSx8+PDB7M8H18/RPn5cMA/f3d3u19rm5pZ5cH/w4P6J5iXBcWVtXe7cmT2x3n7hufPrr782fe7Y/Wp9/vDDDzh2JWGwI9whgwODwtGVzT6H4tSU98tF+Wr25HPrixcvZXNz80Sxk5OT5hw+sfICv1Bw5svQ2tqaDAz8ybUNywfL0hvuxbjP4/omVlaMmNFz756ktzYlvbcr/V9/KxR09l6+dK1hBG0J9vbJ9s9PT23v/+ZbCCR52X32zGzzIGQP04YGBzAatUviiwuSWF2V3kePzPcCRr0ynwDSdN+9K4cf5iW1sXEi3+579+UIQsvh/HuJTE5JuHxPS21vSwzpB7//h0r62NKiJNGmngcPxR89Pv92cc8J9PZg37FK2mYW0rjmD95ioheHhVB+F+rBdrA9NG84LMH+AenANW/PH/LrnJ7GuhFT90C0Wzqnpk16/jcQ7pdXW3My1Dlk5n+pbMACfqogjhblMO6RrlKEJOfmS1++iHtQDsfsL3/5a6Wuvb29MjQ0JMPDQ5V1jRYSyaJsYvqcOxPH5yz3+Y///IsUMMLZaV999ZX04eX+Moy/Q7zP84/LvTiXqu2oeCSr+2syO3j7xKZa50F8ZVkSS0sn0tovvD4OcR/1RSLSNTNjVnMQw+6zX6Xn8WPxR8pxtewOjs9c7FB2X7wwa9rRcRLo7pHI+IR40AFirQh2m3//wYwQ7330xKxuVJ98JiOH797ZLMynx++Twe9+K7yO9169kt4nT6TdHzDLvJ55XVvri/TJ0v6SPBx+aFdVPgeB86fXIsP9mAupvbJaF5SAElACSkAJKAEloASUgBJwENjb2zNi6K1bM+hz2JI8nuspiLIvYGCg3zgiePyldye+G83PfzD9bvQupSDK95m7d++YgZ/Mdg+DG828pHiXoVXmJcVcpfREZT8YbQPv6J0QS5k2gneUaChoBv/mEcI3l0xIO+Y9LeRzUkQfZHhyWoIoe58TpsLaUC49UQuZrHmv53tJ9727EkPdPO1tUkilzSBLu57eq9XerEVohYVkXLyhsPjhxUrRlv0B2e2dU2mrPV9tWr6zFJIpUx9bbj6FundEhO9HPY8eSnxhQXLoI2qH2JxPJcXXETb9JW1m4tcCWLdLHu9lbCu3deI4sJ3cn/sUwRMvjKaOXvbnnUHjxHGC6m3Q6X9KQAkoASWgBJojsBODJxp+aJ1GIWVubQtiQEjGyoJotiySOtPd1GU+9DDcxnUTR1vlzeO4jlAgFK0+pVGoTOKBs9rIuFrEfPjwgXnwrE77pXzf3d01IxdFjsUpZ9vHx8eMwOBcx+UMrs/Nra2a4ihHPP7+978r512999m+z0B4GB0dkSQekn+FoMcHfb5UNGMbEG2C0OvdxKthiGR8YbHGeT0u06amJiWFh3SKo26WyuIemY7Lrb5bbptPrfNBfBn47jdmfWJtFR6lcSNemhVoS7HsFUYRpz2AiUzKxheRo2RJtOr7+muhk2oCddp/91YGvvnOvFgwaRrnCMXSNF7uaLzOaZ0TkxIZG5e9uddCMdGIjXg3SOO8oCUgKHVAXONLiQf7mJcPs6X0X2ZnGy9Y7ZLZ3zshjjqStLQY6OkxHAwDeH9237mHsjHpi7GiEUUpAuVx/hx8eI8Xs5xpQzOFdAQgqLYHZCO2IaPRk/GSWMT0iMjCusgT97ECzRRxLdJ8jfOgoyMke/v78goCWk8PRi0HAk3VbWHDI+NDxVOCGYXRu3ih7u87Ft8uc0Qz8+YAHYapYseAm23GN8WHkdldASjbTRhF8w4MyKDtzc3hfO8yQjq/s2MginvTzvNnpYEFePGOffwooaHhusIo97XW9/U3eEnPSXxpWXbBvQ+iqn05zyCsFq8TXtcceNCG9jWqTwEdIRRD+x9/ZYto6XMwMgDxeFUSuA+FgycV/0iHR6LhoqzuFGViUHsCWgKriZWAElACSkAJKAEloAS+GAJGmMR7A71C2T9iPUVDXSGzrqurC56eFEET5vvQUPl9A16hTMv9afZ9jJ6lteYlpeDK/Ni3yP3s/KbU7nwYHMw/vCHgvZ4DN/E+f1TE+4JfikcQXFFeBOIqxcgihFcOJs7j3YPvIDRu9yPvdrwnUmz0cGLV8np6sxaRF0P9Wm9Ws31w0LzfBCGMUuik6Gn6BKrSMh9THvJ1ps3s7ojX5zd1sOUGvRi4S0ETxrLoMesLQyxFnVk/DnzmMsXU9iDqCiGXA1DxYmW2VbeTDAScWS4th0HsrZqXo3E58lZNCSgBJaAElEAzBBgud3F7T6YHMCpq4zj23iG8SPP4TRnv7+bPlukTDHG0zw03hnR982ZOUujIpMXhHUf75ptvTDiMDLw/3r17LzsQJwJ4cJmenoY3T+mBienev583Hpp8ANrCSKwOjAj79ttv4bFX8gSLYT0F1xV4TfGTHcaNjBPCs05JPEiMjqDH32HbGOn14cO8eXjj5PGjyJMj1GivXr3G+phZZvn0CB4cHBIKQTTm+w6eLJw/gQ9tdyFSdOIB6jKMYUqyYEcRx3o+UrClOBote6hx/VLZE2gK8zU452X4+edfIAr0YN8NM33AzPQM2jJgqspRfK8xOo6eqQN4GMujQ9say1tC5/YyvOE4KnAID4Szs7fNyEB61H733bfmocym53Hj+t/85ju7yvWT5wCfuQ7hIcjjwmNJMY8Pf/RCZB77EDP8EDEoQLBMK/CxnRyxSCasF+0reAwdwmNpFd/5IJ4ClyV48QXxAPnkCTrlYcyXx5RGL7KZmWkscWDdkfz000/wdM4bxj+Uz9nbt2crHlo8L1kf2iOM6GPZ1vhiMA+vQpbLfDkS0grW9bhzf7aJHsn8C+P8Ozw8NOLo8+cvzLGw1wa94H755Rd5+PBhxeN57wDtcNd/Tb72hcPWs5lPhjN9//69qQevh9nZWeMNV+s8sMekUd4HmUPxe/0Iq9NcSBwKgHyxoVGo4fe28neuK5TF0Ta8XDjXc5u1NowepegShvhMr9RsohRKmd5kKYiY9AJNb28hdE8/Xn5Kz/6mLGTAlx8PRpc68+aLlDfUIakt3JfggVhtDAtMASeK8+ZwaeGEl2Z12ma/Ww4s2+M5WR/mwXpSHOZftDBtRGB6p7aVX/oalRMNdclh6uCUOMr9ohGPvEe40WKx9PvVKC9ur3ctcPvTpz+beyxFdF7DvN/eu3fXzFNT6x7E/dbXN2QBXrLJRNJcF7zGrCc/X5pfvHiB+/K0fPz4wfz23LkzWxEuKSzyerVCJkNq80We19ODBw8kjBdlGsPVLmCk7jfffG3uQ1y3vVeUx7fdxTIfzq9WrzFeR6to+/LysmkL790PHtw39wveX3lf5AANvvBPjI9XfotYl0Z2mDqUrmBzwijzMudI+TwxgjtDXjmuMS86IChYxuBBGsL5ns+khB7ezRrzasOgni78Rm8/fSpZ3J/9XaUbVgbHPoS8M3s7QqGUHQuN6mPLddbRrmvms70N4b58QTnIHJwSR7k/vaX3Dz0QR5vJTdMoASWgBJSAElACSkAJKIEvjwAHdtPsO1QtAtXbq7/bKF+NBoazX8WmZVndVQPgA/DirGde9GlYcy7bdfystb7eNnpp0ihmWqvOx363aZ1RbbiP3W73t5+11p91H5tvs58aVrdZUpeQjh0GOXRMcoSBDQl2CcVolkpACSiBCyWwhMnZhroREx8d6U7LYPLwIDpl36/vyF4iJX2dHTKCdB03XCCNRMLyGB4iFNQohFLUorGzl/d5hvzk8jfw5qFY9RKhH+nJYzu6KfYtLi7K2NiYfI0whQmMtqJRFJ2BkMpO7g2EDOU2CloUMu2+JqHLf2/fvsXDWwQegXfRef7xRArW6dat29jegbKSJmwqRSGGAKFYRxHmv3/4O/al4BWseGRSUPzxxx+F4UrZUc/O+9evX8n3339/Iv/qL3sYDfYMITbd7J/++Ieav38sm8Zy2bFOEW1ycsJ4k1ohjhzJn0xzDoGT+x3GYuZ4UMClmPsankJWHF1eXsHvb86I0NsQpLfKXnLcj2IHxbL76MD3Q4iae/NGfAs+IxCzDhQmyMsaBWMe30bGc4OhXylOUKhgffoggvLBl2IlwwLfv3/PPBe8AteFhUVzPJgvRYRVhkaFEPngPkKeIj00VYSlHZBeCMAUSgbgEcX2OZ8neO5QiGB7eZ5ZY/mP4IFohH2cKzx/ac7zit6mFCp/wLnA8qzxeDDU7sTEBM6DexDaP4D/q4o4XI878yADMqRIXMBAixG0m0axncfZiqNbEOQKKNfJOp4qSk/UXbih8ESxyRqFdLa/nrEeTyFijEOUIftsNmfOC+5T6zxweqfWyzudTeEeyRGOJ41emHYKUj+OJ705W7EY7hVteG601jVzcrAEr2+OpqRR2MzIDsJu+jEas1NSYM9RpT5cM1mct81YGPclemiGMEig2jjPIetPb8/i+3cmvA9D3VyVtZdFvqNsBqJUh3TP3sFI2NK12TmBcM0OTrZOQW9QNnPb9uuJz2Cg5E2byRYlGHA/z5w7NLoWmJb3cd5DpnDfvHXrliQQAolW7x5E0ZIen7wHRXAf5zXG8Er2t4XXIwVPCqMT8Pzl/ZD3M2sUPHlP4oAcelTzPlkalACvWcyTa89hCrYckWzvGcyCU4UH/eRwuv0rGIhBL3Ua7yH8HWhkHNjxBgM/OOiAg1d4z8njWYHGexzvzY9xL+L9aQ73RHYiuIXQdSsnnUtLF8TuamvmPKjex36P4F6w9fQnhLN9K1Hc3zh4oFWjcE9xnwMHBNUrXZO7CGVFoRXXJxhSHG3GirgnMfS1NV7T9O72BgLSBaYMqcuyuOzFuVJtFEeTuBe5Gc/xRTPv6Olj7ZZe1ykBJaAElIASUAJKQAkoASWgBG4aAW9pBPzVvhSl8bIYg7cBy+7shFvwGV48L/JApODB8XFxWWamJtCRdroj6yLLcuaVQ2fns+ev5eGDUge0c5suKwEloASuI4FYMi0H+PtqEmExq8Lq5hEages6Q53yZGJI1vbjsrC1Jw/GT3scXce2nbVO/C1j5zS9dQpgYIU75kehk52/t2/fNkId03KuRXqIOsPvcp3taI4iZIc126lNcYzr2/F7yU5wp4hl09pPbqeIx1CzrAvFTNuhzTQcqWY71/lJ8YmiLcVRegUVyr/JFCedbaHHKY0iFn83OxHKg16bNuSH2ejyXxfmSfiuat5QJmMQD9sp77Kb6dxnexl+le1huRQE6E1qf6vJnH/t8AByMwrOZEjvVgoMFMPYpl2E9xjHnHAUJrnNep8yD3qTUoS085fS85ZhHSkosA70luTAptdzr+X73/7W1M16srrVwbmO+dr5/yjI0jOTdaBAQVGAYVopooYhMFmR3Lk/hc7qY8/2tyHkKY+d83hxPwoYPL7ch213GtPyecyev85tXGZ+zLvaKHbTyIP502P3559/NvXmPrRa3LmNeVK0pLBUElKzpo4URSlKs91kQeFmdORk6NME9F2/+6E254tTSGXdGhmFInrqUnTiuVjW2sxu9c6DRvlyeyaP8xTCRLVZTzKurzePYfV+9rsXz6keePC52fazX4RiCsWS3oePTnhTBiHEU/CJQExrxQLd3eY4cy7Q6reFDEQ8CqMUkCiSZuGFe5XiqPUWLeJ6FEwvEnAITqyXm/ngzcswPRSsqu8/Ph9bCPEqi7A8TbwONHMtsA68l1jve94PafXuQTz3eV9iyCWKhrzvLOJea685kwH+m56eMfdz+90KpPba7cA1zns71/M6H8G97A0GQ8zMTJvfKg5U+M1vfmN3R5jtkjjsNxwqqysLzNdeY9XsKomqFjiogwKtjU7gvEdx0A9/B60Yyvts6bpzP3ZVWUuukJNA++noFM2cB9V52e88l724/3IeUT8GEZzV2hAO13p7My+Go2bobA6M2IPITM9t473aRAHOMNr0DKexniHMuWvNuWzX8dMPPocZ94EQqCIGFVG85W+xcy9dVgJKQAkoASWgBJSAElACSoAEnq8/l8fDj+X11hze7wOI4Nomk9FJWTxYlGwe84rinW26e1pebLyUaLBT8KZpIrRy3cd9DFpFNKQs31vwDu9t80kim8AzOqbGQToO3M0VsuZ5fDw6LvO7HyrphiJDdctA3CcTpSqdT1fqtJPclhQGkHIe01QOUZ44MBrlhrwhYX4rh3DogFPBrd4Zebv9VkLor2BfEts0HBmW5YMltBjzqWLfO/1wiIivo+5Z9N0hlC/eKzKFjGm73de2tdMfkb6O5gZ/XsezysuO3KsydkTMf1yU/b1DdEB1CDvSs4s5eXD3Njr0TncgXVW9GDaQJ4t90Y/FEvDS2ZbZ21NXVQUtRwkoASXwWRD4ALGzH4NaUhA2knQzgSUgsITRk+wtixFjiNXmRXz4ke6IPFvaQOcbf5BPepl+Fo29gEpSfKJRmLLiVDfm9ePDitP6EPbSzdrRY8l5CqzQww7uI8bUr2MU72jWa45zzzltDfOJvn37TrogbrKjmr/FTs9AZ1rnMjvpKSQ5hVaGiGxUH/62uolszrxrLXdCNGRnOcPjUoCklyfNtq3Wfna9DWViPTvpscTnHoqstpPeCtZ2H4qTFCutMQ8KDLRuCEUxeKRSwGO4S+ZzAA/IQRevOru/87M6XwrnNObzFAIjQypH0IHOOrBeTqNYUi2MOrdf1TJFTdbFnpP2/KIAY8VRN+62fjyWVih58+at8RalgM19+yFuUbCkgExB/PHjR3Y38xnGo2IWnfluRrGensWtGDn34Jja5z/nvvXOA2e6WssBeI1m8LJ00RZCmGsbpqY6726Et+VcIfT0zECQ8UFUsxZEO5M4lwMQ6Dk/aNOG6zcyNiHxlSWJjIxVduO8iVmc+148z6chcuGEMB5xYdwTrsqOCqWTwc1DtFYdcjgmvP+6HfNcWRwM1PCcrM6zmWuB+/Ccd1qjexDvtXxnct5rGd6b92l73TE/Z7glZ/4UI3mN0nv6v//7f+AZv22uOQ6AKbwuILzvPgTgjBmoY8Va7h8oi8NZcPB6T6tlvD6t972zvHrLnDd6yCUkM/fJoJ32XsHvvD/yumvWfOhUyOBl/SKNgwDy8O7l/LuH8GztvnPnTNkfYZBCe1nIzGIQTBsiaGTw+2V/a434ijIaGeccPc81xc4MNwGZ5aKK6OBRYbTRMdDtSkAJKAEloASUgBJQAl8ugcHOUgSlnlA35MwiBMVS/1o0GDXCIQVIWl+4D2IknBoCESMucl3YX4pq1BPqkXgW84hCRCwUC+Zdj+n4rE7B1L7jDUUGK+m4f70y4pm4ea+lwGrrxCl9AqhjHnXiQG30Jpr3XpZLY1ndkdK7aTgQNvXge6fte+IUNpwayNaH781RX1RYFvMIFoOyk9oVu69ta7NTCZlKXMP/SmF1r6hiq+ubRhh9+BCekuVQZ9s7GHX+iUMuskPOKYTSo5MdHpdtp7sdLrtEzV8JKIFPQYADLuglX8+aSVNv/6vcthNPCv9sJ9/7zV25N4pJtMtiThs602m28/mIbglfgNn2OptqxSyKQdbjxrndLp9VPLT7Oz+tWMXfMf6+ZRwevnzwoTB6Fx2+FKD4fftvx/PGOvPhNqfZttDD1a2tzrTOZc7pyLnu3Oyf//lPlQcvt+3sOKd3Eb036T3FULT0sm2l/Op8jRgKb0rbCc92Uui0xmNhxVCuo6gdKD+zsA70MuU+DDtMzyvuSyHCGsXnNDxrKSQ419u8bDoKIFYYYBhMhshlaFca5wm19bPpvRjEVcvIgw/qZ7FWB8mRD8VcMmC5dgCAFaBbqUMYnlnr8BazRs82hiClkZ8VW+32SBijGDNsZ2tPULWOCc9pHkM3q3ceVNKXB4RUi1bcHvSHDKdK2itYoMcbPcuinlnZR2hmZ+hOepr1PfnK1KIlcRR7BOh1ijlFkxCOrGUhXtND9QiuZ5kclsGCYXaPcN856xyJNu9mP/PlgSBtCC3arHEkrVu4Y+6fyvC8KmJu6JPnF8/1j5iHkjY+PlYZ7NHstVB9bTS6B/G85LV1795dU2at/6rzdUvHewy9+2l8ybWe8Lz/VHtmU8vDuCZJw3O2akyNW9Yn1tW6xoL4DbLln9gBXzjYhvWwxvtu9cAX1tk+a9h09pMv/Bkcz4uyIt7/DjGXcifm5vXDo9/MGwqPdqe3dzNl5dMp4ynqLQ/85Xy/7X7UFdcMzQilnF+6CXG0mfLqpWHo4Z4OdxE2iXsp76lqSkAJKAEloASUgBJQAkpACbgT2F85kHSwNICT7yXD08PoQ9gy/TUcIG76ydAd5El4ZGxoTDgA3LynYV0Rr2GMAnfYFpMcRiYOTYZlZ33X7MMIaYwwND//wfQVLm4vmf347jR0F5H40K+UgbNFAI4o/NxMbkk2XYq6Fe2KQoSNnqqw2zpnInqPWhvtPD2oeazreDA00w10lCLV1Mu33jZb1nX/9JoOxnJH9mVWlh0L62ubMjkxVhFGWV5/3/Foanp0LK2syt7+ITomfOgo7JeB/l5TLa7jvD0+uCtvILQfvZCm0NnMTrkVzHvm93llDPNWdXWVOihXVtdxUqGDM5WUXcyPF+kKyww8CjYxandza1eiSDc2OoywWaWO4/fzC3JndsZ0ZC1h3zxO2pevMN9MdxfyPT552Im4sYX59Myo65yp3/Bgv+koYQc0PWNH0OG8traBF/acDKMNw8PHYY8oBm/wIkL+Pci7lm2hjltoZxqdTN0IpTgxNiIra+umvsNDpfzIdO7dvIziYjKj0MHHj54N1o8ixSja1x0the/i9mW0ixxpQ5j3Z2Tk9PxRteqj65WAEjgbAYqeb97Oy8joEK5V92uOA0fWVjcgWN1qKKKerRYXt9dXUyOVzOKpjLxc2TQhdumB7y97h24exmUA99ztWFI6cC8P4P78JRi9XlYRDpGdvRR1+PvKKAkU1paWELp9Ztr8VnDONT+41BNLz8OLZVNAXMNvBjvyGaLRGuvEAUl8QOODHecNZZhap7HjnvN4Mozu+DjDbJTCkzL0IecyZRuH4QnEvJiG3kh2pJkzH7vM/SiCupnN220b19G7k/WjKEmhkcvRruPf1Fr7NVrP8LYM4UiPRXpVOa0b6yggcy5RzgnO8Ld9SE+jlxW9PVkfhoH9y1/+alhTJLG2Du4Ml8u6V4uju5gXk8IirxfOB3jfzEEH8QnHjGI2jwm3M+wyPXubNXpN7uBYDEBQ5LEwz3ZN7Mzzs4BzgQI2wzY3s5/1NOP5RS8ynl88l6uFzFrF89yj8Mv5btcQctOyZXqeK3xeoVj8+PHjU1n0AAluOXLr5DP7qXTVK2odE54HHz9+xHyua+Z4smy+pNAjr955YPPnMabAQwGf1wTPZ8swGuiSlb0VeGbnTLgbu895Pwvw+HNqw22YF7faGAqXITyTvPYbPOMXEVbnCO02oWZxbAoZhOWpypPCZ2R0XGKY49JaGudvAB7v0du3zSo+k279/QcIpAcShNBPo9jE/Kx5MPLUhgW166o/TV1QJ+7L0KOmPnj2p7hLYz0LuMfm4L1NwbZjbPxE+ODq/Kq/H6YPa4pFh/Gi9HdzdO3Jvdg2nic0Diqx1/t5roV696AB8OOco3zX4LnIa4bXKEOiN2O8l3BQh7mX4P711VclUdzW/4cf/m6yYej1auvv8cg+OPTWmNu3Or39XusaY1s+4nrmYAfeb+l1z3sUrx3Ol8z7MOci5TsUPWUfPnxoszSfvC+RBdvCgT/O3xrON7oV2zqR/jxf4stLxis7CC9dXsc8tw5xzvc9+bpyXdfL/wj3tTzO3Tjmh+X1x1DTebyHHqFtPQ8eijdYGmWeQptjK0vSOTVdL7vSNkwC67yGuNIZZrdeBhy5TnGU9yI3w6OI9EVbH2zilpeuUwJKQAkoASWgBJSAElACN5EA+/nYT8PPFAZB7uzsmncDDupk/wXfU2i2P4Tp+A7DdKZ/AH0/DL0b6gqZdexLYj8TI74xDfuVaHz3Y9Q4Uw7e5biPIHJWqPwOwby4r9rFEzA9DeyIuGyzniuRzpJLcXV57Hh4+w6dLuiQmJ2ZwgmXlsXFFToA46UZnWUQTrc2d6R/oNdsX4GCPvfmvTnhbs9A9IQguLyyJg+77pissxAm19e30LE7Kn13eo1oyfk9hyEI3kG43MWlVdnGSTg+OmI6Wjh/GutA7y6KlhQRpybHSmq/o7JMw04HCrPtGF794SNepPE5ajxwjuBBkoK6v4Fyh9HBlka4uDXp6Y1C7PWjY+MQHX7LMoE6dUI42NktzdvlyN4sUvBdXFrBHFgzuAj8pi4sIwKPgGV0Rg5BjOVLexxlJSA+hG8FcREdGj59YDU7MylbaNsC8uiO3jftekO2eP+dvYW5porwvHCM1K4uX78rASVwcQR4T6EwSvGTVi2QWmGUaRp5l15crS4np3b8WM8O98u79W1Z3N6XTty/JvrdPRYupwafNld2YjNE5/+g45mC0x/+8I9mRNgTiDwvX72Uv/71v0wFKaZw3VmtuuPeLZ9bM7fk+fPnZp5NdsI7bWYa8wu8e2eETop3bvNlTsJz5t3792YOyPHxcXhJzhoB7NGjR8Z7881cybuPIizF0UbWSASttT870GmsJ0fkUWh2isp//a+/VcRdCpKv4XE5PT1thOhaeXI9f/t/+uXXkrhJYa/sGcptDF+5h7kUf/zxR341D6AMT0njAy+PXx886SiQlETb5kXMMMr6+99LwgSPiw2LOYr6vHz5Uv793//DzCtLwZCjEJs1PoO8m/8g//mffzFi7e/+4R/Mrq9fz50Qx9fx7MTj/d1335rtZDoxMSFPnz413ylIUoChBxfDcVqzy19//bV5AZidnZW5uTnzx3lhv3ryxDyX2PT1Piky8Y/HtBfi2tjY8YhFnif0bKMA73ZeDeJUe7sogvEXUh4LV6+ohtv40nIX3nm2Ldzh/oP70i3RuueBM2N6Yc9/mBdeE0/AgUIPLYQQOhGEqtmIYV7F7hbVXGcBVct7OE+c1otrEm9dzlVmOTw2JvtzryU0gIEMdAesYTF4QlOsoeUhXCUgWHffu38qNQXP+NKi8Yjjs3AG3nDds6Vnbibmc2mgp1fSGABgxVHmxT9r/u4e6bl/Om+7nZ8MQXrwtnR/4Xd673XgnCgJSR5Tx+2fnyKcbxiCLQZcDg0zWVOWzCQkjXlShjqPBz3aHfG+K4vA8KSk9drVdT95LzrrtVD3HoQXZF6DnMvXGkPlNiuO/vrrr2Y3hvPlfNd8abfGl21ee4FAsPICb7fxc3KoKD+9FuE4KOdpw+v8LMYBOhwwZKMHMB87B/XMzLT5nfrb3/6vyZptrA7by9+AmZkZE3acv6t//OMfKuL0YHhAVg5WJZaO4Xmj+fuwWztyibgkcX/swT3QDnCI4LxLrWPAEwY/hGqEBnbmtfPrLxBXAxLo7pUIfjdpHCxAT1ErjHKdD/ed4oec5BC+t94cvXhdM9cbrwGnDf7u95U6OtdXL2/Ft4wHe9iFTSKJ8NsJkUezVSMBqjPR70pACSgBJaAElIASUAJK4AsmwL4aa+wnePnyFQZ0PkBfGdZCZ8nnOozTACNSsX+HXqMUOtvhPMIpHLvxvYD37CJ0re7bt+QAfTQF9CWFsT0P/aeI9wcOIg5tb0p7B97T0L/GgeR8J6Fn6SIHXsK5gv0MdE5AMFy8579BBCdMF4P8o4g+xjw9yLOtnKfJw+hppb4JW2d6tdpIPRR8qW9x6igb6Yf9W8w/i3KYH43vLjYilc2HnrPc17aR+2SgQ52lTuTow7Q2Pkzx4vPumMhe5OtWhuXYWebobLO3zNHTRP+kaZjjP8+//Mu/FFc3YhJzhJQ73o5JZDF30Tt4Vd6/e+t49RmWDtCT9Q4C3ddfY+QsRgxXG8VJemreu3cLIX5K4Sc/LCzBwzIr9+/cxgmwZzxEv35c6lShsPgRwuR335ZeYq13ls2f+7KTbWqi1CFFoTCNEb33ZkvtWIMX6z6GzD64P2te2l+8fIvO6vvGm4fzje7Aw/Phg+NOn+r6ol/IjMre2NpG+LzMiXweP75nxFB2Hv309Dle6icxOjpqBFrmc2saAiWMAu6zZ69NOc45V1nPFy/eQGAdMZ6ptlOZHg0///LSiKb0fF2CGMzR5DNTE6f4sFPl1ev3pk3cj2wfIZyxvQhMBfQ/JaAEzkXg9Zv5pu+NThHUCqRu6xpViGUyDHgpdK17p1YCnk+dEfeBKI3yv4jtvPfl4e3wKeYZ5agtdvxeR+PDA9lQkLKdr2etJ/OpZTZvPuzwN8KE+ahKzP0pvrltq0p66iv3ZVv422Q9qE4l+gxW2HbUOh5kR4ZnYeTW/BcvXppRgAyxXOu40KOyVn3c8vyU68jGnkP2nLuI+jx79tx4lc3OuqtUy+tFiac9cn/6Ikor5cFzgex5Pjs907j1POdBAqLN3NY7+XbiGzPY7+Jq/PnmRNa1zPyi4SXwsmx+Z158mGdlomfiVBEI2AKv5KJ8c7/18s96LTS6BzFf3mvdzstTDWhyBd8JOKjk4YMHFSG/etdn7xBCCeOaMNbpwsy2hfc3+15jM7e/Jyb8lF3Z5OfqwYoks0mZHaj9ztZkVnWT1T1vL/GcrVupBht/Wf1FpnunhXMVVdvbJXRCeIsyPdL6+V6dl35XAkpACSgBJaAElIASUALXkYB9huen/TvLO4ezbYyEw/eZvT1EkSrph+L1HeCdzWvWU9hkH4LVX0wkIGg0Ofy1wRuUkZtoHOxbQN9tO6Lj5KGJMVoTwmhJACIoo83RGHGO3qUcpM8y2VfB/DIQL0ttw1RHEEir87R5sJ+G0Y6O64xpcPCOab1gi9D8+K5pp+bKYcoc5p9G9CEa6+jFgGBGVXPm49bGs9cphLagLLAM+M/P8QhTmzgdKkxDGvxnhgHbk6VB2nNtDsKDiMaQeARbbSmo5TR6VVjrDEcQEnfZfi2LAaWvvvIIZtsh5/WVBFceZJwtJpHzXZXheDOebCUvL07aPE66Vo2sKGgwPG4Yo5k5kW4WJ73T6O1KY928OJFNnfA9AU9PGybYJKjxH0P93ro1ZTxhVxCel0IKvUV5EQwM9plQfF3wRqNAPDNZGpnMrOw8f1y2FzvLTuIio1kXb/NF/1MCSuBKCVhB1HqQsnAu1wu3e6UVvMDCeO/7FMLoBTbhUrK6KJFtF16N1gvHraL/5//8b7OaD0+1yuQxqrXNLU/nOu57E35PGrXD/o46234Ry/WOy+fEle24yPryBWBlZQWDvbbl97//XU3U48MX35nPc8G+vFQXfJ7zgB5b302UvHSr8/1Sv+/Coz0PLz03o3covUQvy2711R7oicA0MtB7tnPrrNdCo3sQ8611Xp6FEcOor8KTN4RRtW6e2TbPJ7N26eI+67XlrL9FrN1o9OK8smu1NouQxnuvT3psO9MO/f5/Ob9em+WvR7+uWZc7ZnzA2c73mpnqBiWgBJSAElACSkAJKAElcMMI0FuTXpv04OQ7DSPjcJlWKCAyJ0Lg8p2N3p30FKVxKhanUQdz08LsOvtp92GEK2ssr9ooftYym5czj3DZCdFGZuO+9IKtZTYSlN1up5Nxy8emOXudbA78PK6Ts642Bdtm22fX8dOu4yedBVs1Lz0kITO3ul/L6RlWlmG9dhFa1k3B5RyjNHqQWsU6iVjOdrnlAs+5A8YUuOZAD1bOnfr40V3TKWg9Wl0TV62MwJMriYumGWNoX841egB1/v37j2au0W6sG8AcrS9fvZM+hMqi8NnZRFy5IMI50XjBurFvpj6aRgkogfMTqBZIb6Iwen5KmkMjAhzJxZC9ap8XgSGEZfycPW0vmzaFoijObYYwdnsQvuzyNf+rIdALj8VagzLrhf+9mtrd7FI4yHIEYaH6ERac15tacwR8GG098JvfNpdYUykBJaAElIASUAJKQAkoASVwYwiwD4d6CkPOcroQenLaSGAcLM53LOoznCOUA6v1PevzO/TegYE+zGN5cCU1n4aX44cPi1DSvWZezzziLS+vrksf5sLpQdhZelmuQnicwHydqXTWeGeOlCemvZIKlgvhyc1QuQwXx5OcIwOsFXnCo55eXBycR3UHHjzNWhQX0sfFZTOHKOcW3ERIXjeLx5MmvFtvb7eEwyEjKhdQLo0dhmHM8fYB+fRDKHV6i7rlVdonKO3wlF1Z3TRzoTKs8f5BrCkv1lp56noloATORsAKpNzbuXy23HSvL5EAf5PO42nzJTK7Dm22c1Feh7pcxzpwNKIdkXgd66d1uhgCHr4wXkxWmkuLBJqds7TFbG98coa4MmGubnxLtYFKQAkoASWgBJSAElACSkAJOAlsbGwYz1DOr8m+OEbgoTg6BL1qa1PkqFBEVFFGD90182XSi/Tg4MAIphz4zbkzOYWPnZKIYmtvJCyxDx9OzRnKcimuBpH3bjxhylhdLU2pSM9UhsHllCQBRAJq87TJVhERSj0ho11pf5PzqLW27K01eru1bJpLzXk3j47GZQMnxvLymtmppzcKD8lOI/LdvzMj7+cX5Tnm26QNDvXL8NCAWW70n3tHy8m1nuLxdxv6tpRvab0dRM25+sKdHfIr5gPlJ+c8tcb6bu3uys8/vzCCI9uUxonplg/XOcVLtrMrEpF5zOFK62cMLxc7QujetY0t+bhQCilMV2h6klqjoM35VnsxaW5tO24rL977d27JPITpl5hbldbb140LujlxtXYZukUJKIGzEFBR9CzUdB8loASUgBJQAkpACSgBJaAElIASUAJKQAkoASWgBJTA5RPg/Jz0DKUwySkaaXZ6IepIwSCmFUMwVGw1c3kyrZ3Tk16mRuyEYNoLx8BYLG68S30Ic9sxNIycipLZ25cABFeanYeU29sRWdWG7GWo2FAwBEfClBFG6aVKrWcw1C1tybxGKDP0zv6f51//9V+LS/AcjWPC2NNWxAlQlHcQ8+7frT1Pz+n9Gq/JQWVvx4Hkwaw2KvBt9Ni0amV1giv6ns3mcNKe9By1RXOSWk62exajxyybRq/UekYOvIiq021t75p5T796dN/kUy+P6m0mTzAnezUloATOR+D1m/kLvzc2qhHLnL09Vb4/Hg+CcO6XwKTeHOTxJRofNjo7I19i07XNSkAJKAEloASUgBJQAkpACSgBJaAElIASUAJK4IsnYB0C+Wn/GPq2FVtbX5cc9CEaI7jRc3NyckLevHlrPEq5noIovUQ3NjaNt+c6/AEzuaIE/dB0vDuyCyc7epQ609byKE0sr8hRLnvKq7QN+lQ+nZEw5iBtxauUHq6cI5Wep2wHPWAL0KWsiBsNBSW1viHt+AQkNgaefm3iDQQll4ibCDp5CLUeaFiBKBwEt7fFjzlPvYhseoD1tOvktUohudUpJb2fKhYyQ+vWslZP1Fr5nHe9HydOLTurMMr8KLg2Y9Uc6IIdT6RkaWVNJsdGWxZGS2XX5t5MnTSNElACSkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKQAkoASWgBG4qAXpphrpCEo+XHDHoLEePUOtRar1E2X7rUUrJKxTywNNUEE63NY/SUF+fEXIvyquU3qd0THS2g45zoY5QxYs1D09Visc+ONkUMK9qO4TcAtrZDoHU0waBF16rFEcpRNHLlcv0bvVBZL0J5qVS/KkE0psA8CrbsLt3IPQaHUGo4f7+nqssWstSAkpACSgBJaAElIASUAJKQAkoASWgBJSAElACSkAJKAEloASUwI0nMDDQb9rY3R2t2dZuKW2zafpPzBCJ6SQd+9q0zszCEBqtBeCVWcu8HaUIgdZTMwTvTYbrpbnlK+WAguPwNrXmrItdFxoesovi6ypN61jbXbCSVDgN5E0wiMcaXvVzOZBDg/3y+OFdGRke/FyqrPVUAkpACSiBMgGGd2DY38swhvbg6LVmjCPHGO6Df0mMflM7O4FWuJ+9FN3zsgkwcsz/PC9iDg+EkfmM7adXRTnUS/ozPoJadSWgBJSAElACSkAJKAEloASUgBJQAkrgqgiYGKtF9gqpKQEloASUgBJogcDcyiZizGfkt7fGEabBI2t7MVna2T+Vw7fTo+JrMpz4qZ1v0ArOKUBh8sGD+xfeqgTmDX/x8qX86Z/+2DBvhgFhSJBtzBUwNDQk05hg/jobI1zMzb2R27dvmTkerlNdW+HOelOOZQ2dAABAAElEQVSMXllblzt3Zq9TM1qqy/b2jjx79szs0454Mf0I+zI2Ntb0qMHryGB9R8x8IJxmoxlb2tuQ1f3tU0m/nbgrfsbOuSSLpZOyvLcph+mETPeNyFBX74mShjGo9eOqyFd3T6zWL0pACSgBJaAElIASUAJKQAkoASWgBJRAiwSerz+Xx8OPZWF/QYJezM+ZT4nX0y5HUpSjIuYa7Z6W5YMlGY9OyLuddyYNos+aMLVM0yYe8bX7JZ5NyO3eW/J2+62EfEGzP7dlC3kJ+zskV8hiOWdC4No8/d6ApPNpyeazMts3KyuHy2Za0Hwxb8rdiG9I/ihnymL587sfJID+CG+bT4YiQ/Jx/6Opqx/1PkwfmDyc5dv6c50P+7V52kx988VSuFyvx4t2jcviwaKpA0Pzsm7zu/MSCUTMOm5n+xFzV1K5lNzpv2O2+9tRD/wNR4bN/oH2gGkj0zGfPNrKeqXBk1zZfk55yvzc6lhdxnp83eTR3uaVTCFj6rWZ2JSIp/X+TW+hUNCwui1eGJpcCSgBJfClE9iJwQsykz2BYTAalr7OctwGbFnbj0kM4qkKoyVMDGVBoe9TW1dXp/Avk8l86qo0VT7nPlhfXzcT3De1wzVOlIEwvbm19VmLoxbvH/7wj8K5KlZWVuX13Gv5h++/b+p58rox4AP4/EpRHs7gDaZJG432y2Dn8fQGSxAsKVxepjCaw0vTy7UP0htG6Bq+bbnYYK9H5haKEkt4pPM4Mo9LSl2lBJSAElACSkAJKAEloASUgBJQAkpACdQjMNhZit4Z8Ych4oUgdxalcFSQKMRBioE0D0RFWlcwal7V2e9XgMCYzWUgVvol4odgV36HDwdK83ty/3gmDhGzlP9+el+CEE0pUNLa2tqxi0eiyDML4ZBG0dPMH3pkfB1NvvFs3JTF7cyL3015+E7RkXXlPtFQKfSvs3xbfwqdLCvkC0kCIm7QUxrw3Y460GwdmBeN9WT6gC9gvrP9frTTRqfldvbj2bZwfwqtbCPT0Sr1KrfPto3b3OpYXQbrxjwC5bpwv7NOG+ptxySqn3cQMTZfTQkoASWgBK6KQL5wJIvbezI90CvzG3C5Kls7fnDby5HaKTjsxZMy2nszYtDbNlZ/8gf/p5+eyv3798Q5T4Bd/xDri3hoePXqtdm1t7dXZmamzTL/m5//YJYPDw/lMBaTyYkJmZqabOpHfQ2CIffnA0Bvz7FQwwwpfL579152dncl4PfL9PQ0vEQbh2Rn6F96ae7v46ElEDBegbOzt4XPCouLSyZfp9fj8+cvZHBwEH8nJlUwbbqI/8gtHo+ZrH799Rketjwoa8gw4srDwxja+U4ODg4g+HbJ3bt3pbPzeKTY06c/y+joqKytrcne3p5ZnpyckBcvXpiHtSMcv96e3pJgOTvbVDvqcf/4cUFWUVYGk9izHrdu3TZzQPDh+KeffsLDcV6yODY//PCDadPt27OVOSLW1zdkYXFBkvACHhgYQFvuNOUpS29ktmdqalo+fvyA0LAZI76ODA8Lj+ebN29N2yORMLxvS+VxXTQaPXVOONevrq4Zbjw32ZaHDx9KR3mOC1bej/OKfzynl5eXjVDq8/lqnnv1GDA8cQznv/PcYhlkHUcoaq6vd6zrbfv551+kB9fH5uYGRnYWZWZ65sRxZihdHBbpOj5tWHRd44O4fVHgtb6XjMlY9+VcA7YiLO/bCZwTeJn4YeGVXX3ikw76vZ0iB7EixFF3AfXEDvpFCSgBJaAElIASUAJKQAkoASWgBJSAEnAlsL9yIHFvAn07M6ZvJRgMSjtevJPJFKY9HDbTVY0NjZm+iwz6YgLBkmBIsc+fpXdpUcJdYYnvhmVxl56kI3CaQH9p0SORCAabr6+KzdODPtWjo6KsFffEn0F/HOYfXVpalgD65ha3j/vjGJVueX/F1KOI9KlUWpb2l4VzkHYJRMOdbYnlN2QY0dcOXs+Jx5eRNtR5P/1Gevp6JdSPkFOwlferMvxwWHJ7+ZKAOh6VjYVNUx9uPzrKiCeyg76UTfQHPTDtzwZz3CRZeKxSDH2Tfmu+B3qD0iN+OViZkwj6hWi+KFhg0HY0EJWXL1+ZPFj3NPrLfH6f5PCvf7jP5BtBRDuPt03WDuERmi2YOhwexEybUult6TrMSiGXED94HvrguYr5TiHjSm9XqS/U5s8+sFatJDW3upemVwJKQAkogS+WAEPnDnV3YhRSaRSRG4g4fpyz+QK8nI49Sd3Sfe7rKEzygYDCplMc5Q8yRaUAHk5oDKW7vLxiHgKcbaaISa9ICk/j4+MmXCmFRqcI5Uxvl+mx9xrC4e3bt/FAFYHn3pzdZES/Fy9eihchT7/5+msjkL1EyN2enu6GYhsFrOGRYSP2Mvzuq9evZGFh0TwIdnd3y48//gihdUoogiUSCdlqwgtyb29fnj1/Xqmfc+Gf/viHukIwH0ALuZz89w9/h0B2Bw9GQdMu5kFBjfWZnJw0QiLFxdeo7/fwYLQWQxjbuTdvZAppbt26JYlkwvDh3K/ffPONvHn7xoh5MxCPP0BYbCTy1uPOMsn8EY6lHw96fOj75Zdf5I9oI3k9evQIIu4hynwrjx8/NlWkuEjb3d2DgP5K7uM8iYQj8uHDByNGU5huZDxmbA+F0YmJSfPwmAMzGo+7z+eX7777zjzQ2vqw3F0I59WC+frGhgm1XBLJ5+TJkydGGGX+1aPwKKSyHArwPA/ZRgqF9c69Wgwobr6fnz8lju6BC6+rese63jYy4LXJ64zCOUV0XivO45xMeyB0FhHahalbt4N03HiED0S6W9+5hT3acK+xoyzr7RYKeSTxeTiF12uGblMCSkAJKAEloASUgBJQAkpACSgBJfBJCbC/LQohbmdn1/S9sf+FgqTXV5LUKFzSGCoWWl3ps1xj9g/R0YAD2iOdIcnvw9sSXUCb24L+uVL/EfN35tnZHZHYURb9K6X9uD/7YugMYPpfUA/2QTJviqqpdMr0AbE/hutC3VHJY1B7Dn2SGfTFBSCGmvqhX6UAQTcAwZX9L4wmR8cM1o15U7B0tpH1Yt7M06azdbXbCujz5bLJv1y2B31Ctjwv6lFdFuvOv1Cw1Fdqy/TAEYLt5Hr+sa1sn20TZFqTbwH9gO1YH+jtkSz616rzN4la/M8cSR1b3iI1Ta4ElIAS+AQEKDzwB+NTWiyZlgP8fTU5IsmqsLrOem0h7G5vpAMPBmVXUufGG7ZMD7wYHi4G4e3397//aIROCocUE/mjT6PYSUGKDx7V1o9RW1akoocef9wbiaMU2ejZSS9I2ujIiCwuLZllClsUgShYURTiw1QHROotzDE6Bi/KesYHG4pRKdSf+4Y7wkYE5T58eDL5bG3DA3PEjJDrw3yT9mGwVr7c77tvvzm1mWSqBbfqRMy7gIcsGoVRjoSzxrkvaXyQ40i5zs5OjKpbMvOp2gc0budoPj7M0VgXO5KMYjGFSB6/bjxAvnv/3qSp91897txvfHzMeFDyGPJBjsa68UGVdU9jJCGPh7MdTEPPVh57PlDzoZRt4vGkOGzPIaarZ9PTM/A4LY0AZDrmQ1GTwigf5uk5Sg/P/f2Sl+0GhFAaxUx6VpJHAaI70/HYW2PdOWKx2tg+toWeyTzfeX9qdO7VYsC206OW5W7h/KIX6YMH92UPHswjOLfrHWuyptU7DzgnKtvHcig88zq0xyCD0Zyh0vvMiSauHmybNp1YiS+9HZ0S8h9PTrp+sIvwOWHMI1I6T6vTt/K92TLr5en3FQW3B9in/a2oV0fdpgSUgBJQAkpACSgBJaAElIASUAJK4LoTiGPAPftWqj1H85j2hsa+C25nv00um5MMvC3pUMAoWPxOcW9jY9Os29lZwtyaPnn4APNwIjJbDtFyuW8n+qnodco+liLKC+CFnp6eoakpySGiF2O+elBeEGVQe7SenxyQD0lRMtmM6YdiPwejwLH8VfSXUXTldJrs05lEfyXXyWLSlEnHAZbJfpFEfBD9gAjfi24gaI/oE9oxfWTdUgrFa4+R7UPh9+ptNk0Q5TiNfXA060zizMOZrtEyRd1qYz+XNZu/7e+z65v5bNyTg74VekAcHsbR8dRCzLFmStc0SkAJKAEl0DQB/mhSiPiU9mFrT/o7IZ7hFzOJkTy0BH5QwwgdwZCnNIbd3Y4l5O7osVBjNtzQ/yjK0GuPIg1/iOmRR282im7NmFPI8/sD5qGm0X4m1Gl5hBbT2gcBLlOAo/HByIqx3dHuShhQs7HGfxTTnv78s3RAiIxESvOSUgCzNjaKcCEQ8kbgXcqHvbvw5mxkFED5MHbRxuuBAjF5W2MIXYYhcRqFv2prLwuufIC1I9QoDDayety579u37wwXhjm2beYDaSNjWyguOtsyhHDF3LdZcZQCr9OyeBCndXSUBGUrklOApBjPc5XnBz0/6RHL+vJcNukg5tPT9tmzZyYPcr19+5Z5sDcr8J8V5ikI/9d//U0oQHJ0H63Vc48vDBQuef4xZEscYus06kbBlOsZErnWsW7mPLDXB8uh5THC0VrA75FU5uQ5w22HKQi+LhNPRAIYyVjemS9EBymE/R0ct9md67OZMhsVkM158FLVKJVuVwJKQAkoASWgBJSAElACSkAJKAEloATqEWB/XS3PUfZ7sP+EfRYMs2sGbMPbkus58L3QVgoPyz4nekiyb4frucy0FF6Zv/WitF6S6FQVHwVTeH764LzAviLTNYF9Q/AEZd8jRUfmF4YjhJkHtezFSW9Pmz+X6eXKPhO7rrpMOiTYrsUYBlkH0Jdg+7LqcblJ27wEfLpL6LiJ7OoOotM7ho4qFUePueiSElACSuCqCewh3noEP3yf2h9oB3OJ8s+KPu83d+Xe6AC8qUoC2C7mTKRQGoXA9iUYH0oo6pRCzN4xn2QzPT3dVPMbeU+6ZUKxhyKSNT58WbOhWicmxut6oPJByh5Du+/CwoLxgOUcqjTO+en0ImQ40rcIC7uysmpGoPWVQ3TY/d0+6anIcK5u9s///KemxT/zQOjIxLaTc3PWY2gFMceuZ16sx52c6Jn5+9//zoy+o/i4urp6qiyO3Ks2toVtuHfvbvUm853Hl2GD+eBtRcnqhNXt9JXDvFAs58MtjzXnM+Uy/+gFzFDP9Dre2d0xAiS9na3R25Zl8fi9RMjfCB743TyPWXeKzWyvFSEbnXtuDKIQ8CkOHx0VZHhoyNSNLxlsV71jTcGa1ug8sO2q/uwIFgXjOSCYMqzN8db7w1PHX2osbcb36f4sPR3HIxZtUr6A0GuYHs/Wi9huq/XZTJm19rXrk8mi9JvD+Kl/KWyN9FMJKAEloASUgBJQAkpACSgBJaAElMDnR6Ce5yi9IClUsh+E0/kwohbnHN1HJLf2tpKTAdexf4SeojQO/DaeorGMEUYhfUpuZ0c64SkaQdSzw/fz0o4+hCz6OdhnBzVVkugFdkbzst6Ydp3th2H+To9O5zK30ZyD6qu3oxllO92/YbfcxM82djbW7j7hFsQ1hpdQBuETl1dLIdhuIghtkxJQAkrgOhPg/ZeeYNEoQhKgM/5ThUz8ampEvi7/3RkueYYyxK4VRslwcz8uw6hnPcHqOrNutW4UbhgGd2VlRYaHhyAa5vGAdGhGj7WaV7Pp+UBDMYqjvyjCUJi1xpFjAbiOLS0tGw9W/s5T4GJ6p1EI24Uoxv2tWGXC2EK8o5DGELIMxes0tnUAYTIokDJcrXlYcyZwWe7FXAAUQd3+mtmfgiBDvTK0qlPMZb70LFyFJyvrz20MK2Lb4lKVc6+qx91mzrla6YlJ/tXGY0MPVR4Pp9hLpjyGnJ+V6+mByfCy1ihwfvz4UZYgvjZrFOTobUmBlvWhpy/NPkj3dPcYMbe3t1f6evvM+cvRizSKsRT8eQ0zvRcP5JxPwmkUg/mgzzlp2SYej2bOvVoM6GnNa6gXdWGdKDR3o460ese63jZnfWsth4LwbIYoepiolaL2+o2DHRnEXKNu9zqerz/DC9t5HGvn1NyWXD4nqVzGnCPZQmn5COeLNR6ivbhItLP2k71Nq59KQAkoASWgBJSAElACSkAJKAEloASUQG0C9Oxk5C32vXGZfVhmzlF4cdLsNFP0CKUwyk/+sY+AA73ZL8P+Ffa1cF/mQU9RkxbbGSKX3qEMR2s9RT0eiKJ8zUc+ZjsGt6tdHgGv6Zg0He3uhXATD2Q/vEO2cSKsrG1IJ+bo6uqqyMnuO+paJaAElIASOBcBiiQUrugxSnGjF3PmteGmfJ27vTkPaRIi7u2h0qTf5wLwGe1MoZHCIR9++vr6IdAdVbzdXr+eM6FobXPWIVJRCPruu2/tqpY/Wdbk5KT8+uuvZl+nxx9/1588fgxvv5fy17/+l9lOkYzrnEavT85N+re//V8jPn7//fdmLtGXL1/Kv//7fxhvwD6IVDZUqt13GKIohTx+NmvmWaPZxC7pJienzJyg79+/x7ye43LnzqwRpB89eiSv5+bkzdwbsxe9IZvxZnUW0coVVY87H4qnMCfEjz/+aLJ348P9JyYm5OnTpybNYxwTzhNqw9xSTLPG/Z1ziNr1zX7yYfzhgwfy7Pnzigfr3Xt3K3NtWjHSztPA+VqtcMqBGD/99FOlqH48sHOeWacxlC49RhlCmMeBbaM1OvdqMaCXKI3CKMVwmhVrOfig1rGut81k0uA/PudOj4ksY/xf78nIxHX3TKSTksVAiIHO02GbuSPv2bSLDEkzt7kkiUzJS3x1f1v493BkWjox5ykNTvzSi/EzGNOopgSUgBJQAkpACSgBJaAElIASUAJKQAmcg4DtB3F6Zzqzs56Yjfpu6GVq03J/p9dmCE4WNC/6PdzM9tm4bdN15yfg+bd/+7fiwvKuxBEbuZaxg77USZ+BNwwmosUMrew4U1MCSkAJfMkEGC6RYRMvyxiXnnOMhjFnID1G2zB6yMyP2EAeTeB+3hlx/1G9rLpel3zp7WZFlutSp7PUg7+59cx6qlkBhqKsm3HuU+ZFQcru45aueh29Amvts7S0jBCva0Ix9ToY28d2UoA9rxB1Edzpucp8ah2Teszo/cq2sB30mL0IY13s8WxFpLb7nbUuZz336rWZdap1rOttq5cntzGs7l9/Lsr3DwWjOC9m+MnTpz9LEiNE/xfCLLfCvVFd623/72dFuTflke4vKwpOPSS6TQkoASWgBJSAElACSkAJKAEloAS+QALsI6Dx0/6dpZ/mC0T32TaZEfM4gL4V87ITz4MOxXrGUfUM4RgMBeAuTM8AnlRcV7/zlinUlIASUAI3mQDvghfTle5GCT5tzBz/0WOUn614ubnlqOs+DwIfPnxEuNIF18r29fXJV189MdsaPdhZbz7XjOqstKFBnEkosHGeBIY7pRffdTGKvm71PUv9LoL7eURNimjNzk/ZbPvI5yx5nnU/W6+znnt2f7fPese63ja3vJzr2vEY/KfvLu5OTpE7Fo8bD+erEkbZnt89ubg2OPnoshJQAkpACSgBJaAElIASUAJKQAkogS+NwPP15/J4+LG823knXcEuyeaz4vcGJJlLyHT3tCwfLEm+WKgsF8qCbBBpUvkU+nDbpB19MkfQ0I6KRybd2+23Eg6EZbRzVBYPFs36kDckiWxCIoGIKYOam7fdJ8ORYVMGe55TuZTc6b8j3D/kC2IQdrvJg3Vwbl8+WDZ9yQWUNxmdNPszLxrza1SmTcc2sx3tbV7JFDKm7tw30B6QXCGLZAgdjNC/eUz54/cGJY32BvHJbcTAbSxvfveDBLw+8bb5ZCgydKo+tj2WEfOw7bZsNxNbyPNI8kc5Ux9bx83EpinP1+433Hp9rUcx9LIzqax0Mt8aVuqgZ5dLEZ5MPECqjdZApauVgBL4sghccl90KfuySIofHrUvg8DU1CTCxyLWp4tdpdhSXTxFtm+//fZEOJDqNJ/z9+vK/XNm+iXWndfon/7pj19i07XNSkAJKAEloASUgBJQAkpACSgBJaAEbgSBwc5B046uYNQIjgFfAJ8Y1A4Bj0aBMugpCY9cn8zEzPr+jj6jnu0l9yGqdkoUoifFTRoFUAqltCjy5fqIPyIFiKxm0DfKoAgbKpfBfP1efyUiFYVV6wnLPKq3s44csB2BgGq327z4vVGZWQiQJl0oauoRQD5GPyzv6/V4ZT+9b+rEdIWjgqkb881CGKUI6uy3HIoMSjwbN21ketbXWR/bHsuoHUxpTrbML9TeYfJx5k0BmOVZbmbHFv/zWhfj5vazHfTUhmHaT98cNk2lBJSAEjgXAb3ZngvfZ7gzvQ/P44F4GU2md+bExPhlZH1t8ryO3K8NHK2IElACSkAJKAEloASUgBJQAkpACSgBJaAEvhAC+ysH/z973/2fVpJlfyUhggDlnKNzaLu7Z3Zndnf+7t3ZXyb07Hem23a320k5ZwmBABGExPecQoWfMFHBltz3+oPf4716FU4VqKhT514ECK0zBOAxQkxSMJBMJYz3spXQqgwPDxkPa0t7y+aeO+5GqK+ghLYPDIHZ6m4VOQIh2dwiyXAKzCiAi9fJcTIjm0dbBkWSgQfhsEnfP9Qlm1tbkkmdyJEnKceufen2tUpya0caj48l2RmSpr2YuPxwHQtvsIKQOoENvvfLKe7HQsvShPxSkbA0tLZK7CQsAyMjEl9fFzCmkvRCeQnXs23+gGQOD6UFNWhwZcXb3S2pvX1J7Yaka2JcwtMz4spkxI21yUxiW3qfPZfE3p7UH0YldQSFK5SgJ5ljyR6npWN4VLzN7eYZ0sT1CPtV72qQk1RaDo53pQ7ve+7ekejCosTgtiuA8HSnJxFzXe62in89KqcoqyGYkV7UNfJhWsJ1B+I5Qrt8fkl0uqSzs9OU790Lm7SNQQA5ItK0hnwQlorlnWaAR5/fYFrLf0Y5enom+a3+QV2orx4rTakIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAInAbEAgEAkaVSBexvmafHIOAJEFKpWJzc7Ps74fMMZFMgBSFIhQEJO8xDUNT+by5Z9hWGw6KeQlEneZ4BgJDZnGzfiKRMNePMkfS0kLqUqSRxCfKotGXqw+htuCtVxqQN83TAVeyIEShgJSGJh/IzKQ0sY4Ndfk0bhC2J8mkIVGzJ3Bgizo2QABxmk4jDep6AHIW11gWLQBhxMlRAoTtKVSyPeaaDwRlCkrJRuTFmkD+KnVut2ShHOXzzmdI1maiMdQhpwLlfTfaYOoXjwOjXIhPXmf9s8iLhKd9b+6DsM2CgPWiXNad5dehjYVpWTlTHvLN6XFNdav+zyhHrTS26qc0oSKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCLwlSEQi8UQVqrVKEdJXFrSk0TnIZSXVjlKUjQK4tCQmyA6SYzSWytJU2vRaFSSIPnoFpYq1NQp4niOjhilKN+TIN3e3jHXmA+f7etFjNAVxhQV82ywOSipZEpI2vqhAE3u7koG77NQXp6mkyASoQCFatTlaxI36p3Y2hYXniGx2Ahycmdn1xCISdTFuqc9DR2YMlkO23EyvyCNUGPatqFkU44t2+dDfNRYt5BHPUXzIBBFffals6lJXHhZc57bazyWul7uHglcmreryxz5X2E+fH8ETGo1F1lp1YHWCpumVwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUAR+NoQuCrlKMlOcnBUlx5BkUnVKclPQ6ZCSXpSf5JTpNbXGTUqiUsqS60ylSQt60IlKo1Eqq+1RTIgBKnwNIb8syA3qRo1yk6oO6nW9HR2gMiNosygIUT9cMlLBeoJ3NAyT9bDlsNzKjNJ4tprhWWTGMZjxqKHUK6iOJKpt9Xq/vznP2eX10MSP0re1jZovRUBRUARUAQcCMTxhzEY+Lhbx3Hrqz+Nwm0DJxtqioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIvDbQ4DKTRqP9kVSUe3rRYDK0SaHerWaltZzcKhb3Wqg0jSKgCKgCCgC1SKQgQ97tfMI8I80ydvPbfw7v7u7h1jtCE6udmMQCIcjZpfgjamQVuRCCGzuicyu1P5oBp9HfjZvgi2sZ2V9+2bU5SbgUa4O6Uxa9uPo9Ftg5rs/ugMXUJmitQ0fHUgy/dHNU9FEFS4y712UcVPGMqsbOYrIzuGWebG/brtxVzfH3Ali+VzEKo2Di+T5tTxzfJKWUHz/ws25Td8HF26kPqgIKAKKgCKgCCgCioAioAh8xQi4cv6F1bHuV9zH2jRFQBFQBK4Fgen1HYkkUvLd+CBcM+T+jmyHo7KJVxruGfwetwx3tEiwKecb/loqcYsypW9/usy4f//eldSaROvq6ipiEmzLgwcPpKenu2i+XBh98+aN/P73v6tqBxVjDExPz8jExLi4EVz9NhtJ4fRxWgb6+29cMxYXF6W3r1cYr6GSfS198uOPP0osFjfNbYIrl+6ubhPbotpNektLyybeRyvcx9wEw0dF5tey8mSy+nl0Mp2S2d01OUI8EOxOlDZfQKZ6hq81xMUJKrp1GJKNyK6B7fuR++fg624TeflBpLdT4Orn3K2Kbw6OQiDHdmWq+478vPpKHvY/Erer9PfG67VfpMXXLCMdY+fyfrXyQjoDXTLUPnzu+k17E0/HZHZ7RjrGAVYVthvdlvTJsQy0DlaR+mqTZLOnMr8zK4HBZ+LzfLpDemkP30EtvdLrrvwdxJoxfWtTK14YMGeWPk6ZMjr8HRjONQ4em0mR4y+rP0sije8KfEa8Lq8ZFx2B6jBPnSQlmorJ7uG23OvzlB2PRYq+cZfo1mp2a1qeDH4jTR4E9qnRKo2DwuxOMW6mt97LRNcksPMU3v6q3sdScZnZnpZ/G//DhdpV6/fBhQrRhxQBRUARUAQUAUVAEVAEvhgCMzOzxoXt+PiYif3JtRnGHY3H4/Bah/ifZ7FFG905t7KMEcq4oVyf29zaMvFBPd7cnLqhvkHS6bTZWDo0NFg6lihd3iL/crFEjyMRE0s0jpWETrjNdZbFmKRUT9I1Lo/+KvLzdrRLfHVNMijXjfxsvl8M+M9YsIudqqYIKAKKgCKgCNSCwH4UKkhG3XbYMQjR5b2wTGGFvdXvlbX9iCzj9UjJUYPS4OCACW7ugOzCp8fHx/LTTz/JwMCANMAtyFWqdpjXFiZxDAx/242xETghvInkaC3Yfk19MjY2Jv39fSbOxutffzUxLrq6qiM9QqGQ+SEicjPI0e2QiBc8YHMNnryXQltC8uG7kXsgzTLyem1ODuIRafdfX5uW9zcllIhKACRYNHX0ydALNNVJiz8rG/tZGequnuhlRqHYvnhAoMRARh2DBCxHjDK9r9EryeNPQ3mkMinxVUnSMZ/bYnGQL6a9rbelxqXreQClqbeRP+w/kqOlU1/+TgfI8sHWAQmBgJ8FgUWrhiDtDvYIX1S0fg3GjczfDD0XDz47n8P49yZyFL6wUvVz1PGqymjxNsszYKumCCgCioAioAgoAoqAIqAIFEOAMTlbWprz8TcZk5OhvMincZM3iVISpIwFynU6GmNy0hgzVDCFN0dzJRcrlLFHKZxg3NHCeJ61xhJNRw7zcUtZlo1Jyt8QzJ9WTWzS1EFYGkCkNoDI9XZ2CvP9rZiLP4BqWwb5rUCj7VQEFAFFQBEohgBd5q7sHchoV7ssbH90R5bO5Fz3BX1uM0nwgzXYPowZ4q5aZVix8m7yNf4Nffnyldy7d1f8/o+KDnv9Aa5nMWF6/x6yLFh7e7uMjY3iLGcLC4vm5PDwUA6jURkeGpKREajI8Ew542TqD3/4dzPp2tv/2Af2GQZbn5mZlqNEUvr7+uzlikfWMxaLmnSvX/9qFMHd3T2mTrzIfOfm5iSCXWqcaN25c+dcjNdXr34G8dUvm5ubcnBwYM6Hh4fk7du3ZhycAq/2tnbZ2YXSbHJSuru7KtbpIgkimMix/QnsmKPFoFikffPNNyZQPCeyVCFydx3dDZM85U5AiztVvqw/J7pr6+vm2SePH8M98a5pexSkK3cEkqzjTjyqgSvFruAOwQ8fpjGp3peuri7JZHITZ2ZOl8tU64bDYXFjIt3Z0SGTkxNQ8TWYsXOZPjGVL/Hf/PyCUQdzQr67tydNPq88e/YM/V4PVfKaaXsGn+ue7m5TH07gWc/nz5/lsWLWfJ7Xv/32uflhwHHN/GhDg4PnxjzbREUyX35gx7FvydGtrW1ZXlmWo/iRwejOnSmTbn1jQzbQD1SdJkB2r66uoG98Jt9q6jM3Ny/76CsPyhwdHc2rrMuNA6qO2d+s7/bODlSuXWaMONXUBxF8pmvkNI9BiPo9PuGuUR9ePB5B3dxu0Lqe//paO2WsawBk0X5RcpSltuF3U/iwDuRodXXYCK/Dbem2JDNJcdW5ZAdE1Gn2RH5eeSmPBh7jB2Bu52xhbj53k+yDUKUt7C1IAEq4Tj/IcXw3NDXmFIxbkU1ZPVjFZ/NYgiAv7vTclcYyalRbxi9QrrZB1Ugl6yl2x452jEgXSDIa+3pxf0H2onu4c4rr3TLeOZEfx+XK3IpsYKPPiknbDNVrNRZJRmRua0aOT3Of8xdLue+gJ4NPTVsycEc7B1UnXdvWQ3HZ19JXlWqWxPq7zXcSS+LHKjHzQHncPQViORdn/DBxiHxnQLynPyES6QL0AxSBRyCyiWu1blrX0RdbkS2Q32mDw/rBurhBkj4eeJKHYi28Bq8RmyBPvTLeNW7y5800SG+28xD15TgZ7BiS3ubq/ia5+BnB+BjAiwq/1dBKvk2HiYjM785L6jhhSMNJYMA2VbK92C42cS2ZtrjqG6WnpQe45zYCvV3/VTqCnfn6HQOvX9dfy/3e+6Ye5fJ+hXHf7A3KHsY2/46MYOz1NPeaRyphsLAzZ8ZELBWFN46IuBvc8nTomflu4D2OJdr93gfYjPFR5UtXu0u7i6YtHAd3oN6298uNA5NZif8+YGyR0Ke9XX9j2tIV7IIXkFFzrVyZJkGJ/8qN94W9eaMO7gcRTqMym58zix/V16E4Nsbg+4HjkPag/0HJ/ub8i/1xr/feOaVt4XV+V9FlcUO9C6rcpyZf/kdSfQ/fIfUYf1TGUynN7wq78aPc90EifWSUqDw2oh/H8Floh6qa6lS2qXDs83qLr8W0ld+p23AHncLmESp22d8+T+5zna+cnigCioAioAgoAoqAIqAIfFYE7IZ7p3I0CiaNayPc9E1lqVGSHsXNupJVjfI614j4nE3T4Goway1c/2A6kqlcXyC5ynWXKNbbEkcJeMtqkY29ffMb1uSN9bdiKtVGpKFqlOb0SNZaZDO5C2svfFVrJIR/K1ZvFgIrLML+VsDQdioCioAioAhURmB1Pyw9rUEsZp13odcEUqfZ55HFnQPZicRkPXQoA1hxt4RT5ZxvXwq2jUQSiU2nkewi6eOBy1ROZkiecTJDFaPTOAlaXl6WPhCYD+7fF7pa5SSrkrFMuxutWNrZ2VmQtQF5+uSJcfdRLE2xa5y4PUQ9aFNTU/Lo0SMz4eN7knsvXrzArrkW+f7778zxw4f3vJU3kobTMzPS1tYGouxbacaEiguSdAE8OTll0rHNYyCoFpdyxHD+4YITkpZ//dvfi75IfpazQMBv6t7b0yNtra3mnG2xBCaJURJf9+/dk0cPHxrya38/lM+SE9MNEHIkK5nmLkhgTpVYd+I+MTEua2trBqMkdg4eYJddJVtbWzeTX5KPHBPWvSyfI3FDF7v/9m+/l8eoZzgSxrjIBbK8bJ+UqxfHI8luEoAcK/39ucVpYjE/P2/Ix4dw2UxikfXhhJvjunCMkjS32LKdxO/7776V70GiOjcNsC47IBr544DKZ6brQ7tpodABiOD3Mjw8LN99953BZGVl1dwjMcn+4w7NQaileT41NVmxPhx7b9++MwT4N0+fguQfkXfv3pmxzIzLjYMMSEy6rOaPFWLDDQHEwWmxRBaL1xgYNdgAiMpQ/FDWDnZkYXddTkB2dV2japRV84HIqlRLL9oRiWWrbkl7Uzu+3+EqFhhP9ExJAwg+LvyPdo0ZsqFURlSHknQivjsgQTfCG0LVKM0D8oPx/5ZAmg4h7wf9jw0+K6HlUtmdu54AUbZzuCPj3RPSBdUhyTNry/uLchALwYXxpCFbSdDa2KHlysyAoKU72b7WPpnsnhSSTtVYwB1A/R8aYsQP4ornfFnSeBl5xqDmvdNzBzgOCAnIqmIfAu8gyMInICbpZpUE4vvNj9/D87uzRoF7v/chSNDzKmGWQdzvgVgiiUmysxrrBsnHupOw6YMbXp6TiHMaSb37ffdNfdZQDo3E09uNt5JBrMwHfQ9lsH0QZN4CCNPqynXmHwTxSCKexuffbbwxZCQJ2maQojNwO1udgTTHGH02/K0hrtYP1vLjIAjyauNgI5/NTgzxWvH5JEFbyUjSHsQPML6mQHR1yyLGHsnnajBgu9g3JOnu9z2Aq+OP5DE/Y5PAmoQZiXFrJFzpapduju+jP+g69/3WO3sbY7/0OMgnKnIy1jkOUjE3B+DniH3d19JvUlYqs0h2+Uvlxjvb5hwT/Bw7xybdUh+AHOUY4+d3EvWCv+V83oUnZl6GP9iHZ6SyvU83zWlgTZKVdrfnntmUcET3zQ5jHN1IIgxFvNv0Bz+nJNVplb4P3oNcrqurx3OPMB9uwbj8YL7v3NgsEsb4KDR+5qkIJpm6sr8kw3Ar/mz4O5DRIOxLN7EwG32vCCgCioAioAgoAoqAInBNCFA5She5XCOhQIAucrkuwbURXuN9rs8xFAbNrtM5n3OmoYqU6ymc23MNhXNXrg/x3PlMYVk2HcuiOpT5NDYW35B8TVB8tdm6CO4pFiDVFAFFQBFQBBSBSghEj5Jwt5aUJ8Nwi1ngVpcLOR1BP8jREJQHOT/6wTPf+pXyvc33SRZyhxcJnJ9+emHifzL+QCtIOU5caFQXkmQpJJV4rxMuK2y8UE6ySDQx/UWNu89IYD14ALULJmwkm6hwrMY4kTvBpIzmg4rQuftsD7vSaJykJaBIJdnLmKfWDYi5if+oqKT6ldbcHDSqSJ63tbVKAIQt8eJOuDmQb+WM2D1/9k3RJM56FUtAso9pOFkkyVqYnmrQLuDOe7QWtImuhO2uO5snSW2nUtCkRd1b0QZae3sbCLRg3n2KuVjiv1BoXwYHh0zb2c/EzhonwSQRExg3JGD9Tf48qX0VfWLLKXZk7E8qNGl2dyDVrVQ5sy9pVB+TKCRRy/4nsXt8nJEP0x9Agn5nxhv7lWZjaLD/uDnA51BU8z77hJN/puOmghS+KzjeqTYmLpzkk7RlOSvAiGXyGb6o5CEezv4sVx9uUiCpOTExYXDluGB7qWqlWriacUD30pwr83MaCUfymLAtcXA17oJQjvHkkYST5xfbmZYkVk9zOzaVuM33wnoEyloQXe3+ZrS5gUkubJXKrCZjhkhBl7JKZiNApWeoUIsfx6FUazIETfokhfb15BWMpZ5vcvlAlh1DCRg1JEUSRAjJIcarpIqWCk6ScCSKUrhO4mvrcBNE1gQUlrnv01J583pvay/Uo+0gEIPIa8OQDlRVbkN91uJrBWGVI5ioWN2GCo1xTsuVSUKGdRs+Uxd2Bw9NfcrVgfeMMhjlkhQ5BUlmlZ32uX2QPcSrnapZ2C5I3f3YniFTbZpiR34GGK+VhFI0dWiUglRR0ujWmNdJbrG8YRmRaZA11ugWt7+1X1p9bcCnuWq3s41oA18kfaieK2wL8x9rH5UAyEUSe3NQO9ISUCCSNOwHwUcCnH3agHyoBBxoGzJpqv2P5XNwchFhF6QljUq8I+RP4pRqv3gyKn6cl7POQLfJg0pWsyAB9ShJ5A7wnz3BXpCjiAeMejO2J5XRvWfqz3J52nvdIEWpEuRrE+OY5JwH6sFqMCAuVEjTOE6tkTijArHQ2Je0MSga+V1LMm0aJDkJTPZTuXFQmJfzPctzNeT+LvpAIjr7ulyZlWKTXnS8O+tGJWilcmx6qjEPMR66gifyavmF3O27J3GQoCRG7byMqswkvrdKGT9n/O5vC7SbTRFUtpb7PkimEwb/cWyiYPkBbwCf6V0JJw4MUUrVOo3EfgtI7Y4m7PI3mx2C5jlbj0ZXo3Q2Xo9XDVuGHhUBRUARUAQUAUVAEVAEqkOA6lCa3fRtVZn2fWEuXOuiFT5XmM65pmHv2Wdt3pXKss/p8XIImCUd+yOhmqy4C587Ya2/5DRcga2tbUovWPSmpo+ufqrJS9MoAoqAIqAI3C4EFncPpBMEaALExhFIOFocrkv9IEFJlpIYfTLciwXbRiwsxuTd+o58PzFoFphuV0urry3JmSWoIElqkowhEUnix5JFlXIiMWbN7fYYNZ19f5GjVSSSgKJd1d9mElZ0+eokWulC9/Rsh5ytK1Wjhca4qDTON+rq68x4OIFqsJxxUZKEWDHjvYsa1YosmySybQt36RWWRaKukBhlmai9qb9tE+tC5Wc5IwlL9aydAFuSzj7De69+/tm4tQ0Egnkiz94vday2T0o9z+sd7Tk3LM40JGid45KTc45tGkn/KEhNbgCg+1vWPXIYgYvkbnN/FG6UZ+bm5R//+D9DRE5OTEpHR7u5x/84PoaGoDiEUUFKBS6Jc7aFc0zbJ7xPd77Ettw8tVx9kmdulbkpwW5MaG1pNcRVNeOAeduxxrFgMWDdaAitjEXt3Ln9PwWC6rAIOUpyhw5e5/Y2QEyBkO4eMuTMy9UZECkgztty+Nl8ajlWKrOavNL4Ovfi41bNR4sqJ5JRB4hLSMXaAhWa6Du61u0G2VhOaUd1KI1EYJu/zbjLpKLTxhtNHqdy4wDkoTWSnSQY6xsqk6NUadKsQvMESkmqJVk/kod0z0kjUUfiklauzChINFs3pvVXoSJkukp2CnUaCVprrDeJrUrGzwhdhtJNaRDkC1WZNF4n4UyzrlX9IEit8bcb87d9Q/KWhNxVmc2X4zwL98q0BMhtcwRplMCLRrK7ARsgajX2HQcnCXLGcCVhHXIo8dpASFLlWclImC9BoUfij0QZn7GKTA8U1iRX6dqUpCgJRhLY1ZpzbDDvKFTGp+gjGttfDoN2uG6txdiXJArtd6PfnRtLKaqyz1w5FxsHtZRRmLZcmZVIy4uOd1sH5l+pDJuWRxLny/vLhqAmHlSeEhuSltUY+y//3Y8xfYTvPFq57wO6sqbZvrCfMZbLjTGsBwlUEvN0r073ySSj7UaKPmxcoEthGsfzBDaE2O8xc1H/UwQUAUVAEVAEFAFFQBFQBBSBK0fA/DrlD+pKxthYi0ur2G2fU44E4bJuanIMPyizsgU/yVzYuqoF2Ep10fuKgCKgCCgCXw6B/dgRFraP8oTQPAjRu/1dWJhNY/GqwRCjrF3LmWo0gVX3Js+nyocv14KrLZnqSBJEdNNKV7Q8ktAZHR2tqiC7AFdV4ioS2b/FJGipsqMy7yJWODewRCFVhuXqTKLxKoyEIgm2YkbXtHZXXbH79lqxepKYpHUgNgPVg6XMBfXGVZkhQ6GOJOlII7YkFq3RtTKVx4xdS2PsV5vWpuHxIn3CuKpJKH07OzuNMtOZH88LSWF7zUkEklj0nJHt3AxA1SvrwvFON7lsC8lkGpWiT58+MfWnW9y3cGP7n//xx6Jjxo+55BYUqTSOL/bX3bvn3XWam2f/8T7dVDqtXH0sOUoytlCNbbGsNA6cZRWeB/yINZJifT6S9e1wkctXMWOZiXQSxEu7aStd0ZIoPUjEzpGjYShUmZZz62qsXJnVPM80R2gH21OtkVCim0ou4keh0OIiP4nS873zaW4kcxjrkbEZ6YKU5N4uFFXt/hyBTtUUtlDIXajErsryn3mUUUyxWK5MEl5W8cX60OVnrVY4Zvk8yT1nXjz3gACqZHTvSWL0+9HfmTFEso+KSVpTY44gS4NgZn+QRLRGAoa4k/ATb4sZX4zpWotxdPB3XzErNnI89bm/+8NQiVrytNiz1VyjOpaEJo3uTml3eu+azSrmTZH/QKWivjmilrf5mSIxOgpFIBWu7Jd/LfyTd/JPM/br/A7IflgA6uNaCLmEA+8U+oDq02oxsJuO8xWpcEISmmQl28TvRX6v0JgPSTdasXFgblT5H/N2WrkynemKnZcb74y5S1e21pzj1l7j+K3FghjjxIfxhwfhqpYxRDl2GQv2Mlbu+4D40FIgQBt9UIzj+5CfMV7ni5sRVg9WjMvvEJS/VOK2oJ7WqFQdbh81StMZxCumcpmqazVFQBFQBBQBRUARUAQUgS+HwJutN/Ko95HM7s3mfxt48bstkUngt0g9wstgszx+T3DuN9o6KmuRNbP5jb/vuEGVvzV98J7UE+iR9cM1bNg7lvH2MVmJrMDLjOcsnESdmcczhIPbhd9xyNuLI0NNcErOOX5voBd50/sY5v7Ie6pzyrxnCAr+PsrNqU9Ql1MZbhk29eXctT/Yb8pi/VgPelMJmI25XCfMms14xfJme334TelsG3thIbSI8hrNb0u2qTAd623zS2I+zrqzXOKVw2dVBluGqqoT826Cx6qB5kGDK6A2m1vZvrn9OWB05nEK3mBs3u2Nn27+Z73LWW4LNnOvYLNzi4YYHR4ckHtYGKVbqoLfTGVyOP/jqkxCx61an6k1vaMoPVUEFAFFQBGoCoEnI33y9Ow11ZtzB0gXuz4oRVsQbzSdOZHDOP3nZ7H4fYQFIfjDp7/Gr9hI6pB4WYer1t7eHiyGZYybUUsWXVfTSX5atZ09JylLQpSuQzc3t4wKle5KazESCYzZSTe6TkUkXcimQe5tID8Sl7y3s7Obd01bSxnVpGU9/vSn/yr6qoYYZRlUPx4gbqjFide4kNwLd7FbwIfqRxqJQBJS12l0U0vXtFSssm+cZlznnmHKeKp0++q0y/QJ27m0tJRvqzPfUuetIOWIG9XQJEZJ+Heg/jRuBqCrWhrdQVP5yfFmSVbG3aAqk22i6+VCspz3SPwyxugm4rrafLtADrMcxm/lojxx2t09jwPz28e4ZB524b5cffyoF0nd1dW1vLtf9jP7+yrGQRs8eIZqGDYss9kLd53RA6NmJKFBlWmbL0csG1Dx36tXr+RnKImvyvh9nABZw+9nzpZ5fowfZU5jGN+2QHVzabraHDxzizrZPWXIGJJKo4hXSEKokjHeJdWFQagIqSTkuVU5dgU6jTrr4CiUGwdQXVGlehmj2rsVyjwqW49SMZNVAq5Uw2euScuVSRenVHwxPimJRSdRWk2dAlAiRpMx86yTJKWyjcQN82R8Q9arpekjUVI6b+SC/iSZRAUv3bdao/KRBMwmCFP+sHbeYxq68tyJ4DsImDJNrUb3tVTgMW9nW0rl0wTVZD0UuiuIp2mJPLoYpbvdaowkcBzYMeYs+2oIJBetHe5IOWY2wojZiwUHqop34KqX505rAcY7wJiqUy4G8PNHxTD7k+83Ee/Wqlztc3SJi6UNox7tQXzVWizXnykTn5L5cuxcFoNS5VtSLd/XhxtmgYKLEZXGQak87XUSkXTlu4cx75wDlCvTPlvqWG68s5/CUKFz8YduaKkyvazR/TM3A4SgUGcsZPY3443yO+cyVu77IKc2bZD1s8/fFsYXjd9xNKpWc4r5doxhqOZRt+am3D2jKIXSOPc3otkogjMYQ2qKgCKgCCgCioAioAgoAl8Wge5gzsMT55H0JsJXwB0w5CXPGdKC82TOw2mci+MivNR4DQnJ60xP4/y0B2E+aHyG1/m8mb9jDs5zbibmPc4Lmd7e4zM2rfVYw/csh+lw06S1c3YSoHbNxNbP1BvpmTfz5fO+s3oX5s0yeM0+e4iQLjTWn+XZNhWms5saGQ6G81/bfosP86TZfMvViXmbtiE968tz2z7mnauzN4+9zdsUUMN/LgJViRrlousBFpOGhgZkcCCnsmhry3XUUSKnfOAi6sLiMpjqOhkbG0E8rmazwLW+gZgrUNS0w+cyd+5zoWoPC2dbWzvS3BLAAuG2BLF4OY5n6AIwmUwgDhnc4MBlmxsL6gS1r79HuqHwWFxaMc/6kG4MMaC48MwFtiVc38diGtWsjA3Fo5oioAgoAorA50XAB3XoQFszVBchLHKdYodPo4x25RRSn7cmn780ut8kSUoiqKODsSxP8y5ZP3yYNvEUba0Y25Iud58/f2YvXeg4PT0DAjNHHs0jfidf3yH+I/82jo+Ny5s3b2RxcdHEjqy1gOHhERMTlHkODg5CIThpCOCHDx8izuS0zKBsGkkxp8vUasohUVGtWZeB1aYvTEcStQ19868ffzKudP/4xz+YfpmcnBD2y7/+9WP+kbt371alRs0/cHbCiSVdBVeyQcSqePnLa/n7338wWFolJp9jPIp3UFj+5S9/FbrrJWFIctBp19knznJ4Tne2B6EDefHihblFdSbnVzSSnnSv3NHRYQhR3iNpaY1k/OvXr007PPhMTE1Omsm3vb8EopYvjtN2uPQdOJtXkmglaekkBUlid3XlNmHw+X5sPphbWJS//e3vZuz9/ne/K1sfjp/Hjx7Ju/fv5Icf/mGqwLrzGu2y46AbfPHsigg8iEvzeX7T5F/sv+G2bpnf35QXK9PmB0wLyNLe5o+7G20cXNbzqiwGIvD95lI+u9drc3AP65NH/ePmWvwoKxHwVQ8nK49jmwldQ5IM4DydsRXHOsfsrYpHuqmly1WqqSxxYF2A9oDIiONHJuMnWiOx2XX2o9ReK30834bs2duJrkmZ3vogr9d+yT863DFqSNNyZVI5yLJnt9BfMMZYlRo4C9a9GaTiq9WXlC7K85HvzI7jcRDJbxF78NVK7jPGdIx5Wck6EKN0E7FSf1r6l0naCjWsUYOePTiKNs3vzJo4qr4zV6s2zwHETPx1/Vd5sfyj+WFJ4rIWI8k0vzdvyiYJS/UqBvFZFvb4MUe6wL3f90A+bL2Xl8s/mRtUEN7vQ0zUj8lKnpFI2o/vmx+7U1CJkrikkYAfh8vRhb0FWYXrVBrrQ2ycNgQCfx5pXgAr9uEEiPxRKAcXdhdlLbRq+iHn5vlj3VnnLriG3gVJV5ifM+9i58zl1UqunT1wy2uVhNVh8LEONm+S37+svrJvMXZzGybuQFVNLKiCXoESli98yco94Mq/R7Ry48AkqPDfUPuQLO4tmRisHcBjqueOUf+WK7NcluXGO91mk8h/sfSj6ZOcWvdTPMrlX+xe0BfERpCk2a3eShfe0X3kn1PVGvfKe4v5x/7f/A/m/Lux3+evFTsp931A7KlmnsZ4/2lp3zxOQt/GbSVBTELUxpTlpo+gJ7chIoXd7u833uaLpGqZMU7VFAFFQBFQBBQBRUARUAS+LALh9YjEXHEZHx+TdChtNg9GT2PYfH4k9yfuCb1lJdwIEcRqYk3gYC0s9JBFL2UMI0SuK+yKiL8fXFW8ztzjda4dMs94+AibVzNmTekkfSqdwx0mT64vckNqT2+XLGAN5KQJXklw/9iVERNKC0swrkSjWTdyueslA36M3ktaOnPzy75gXx64Fsw5+aLZEBD5m2cnA83n555UnFqzz/I9n3fmUSqd87p9jkdbTjV1cubR1dTFx/NW+J43mLfTA1o+cYWTuv/+7//Orm8dStTh3q3wGe7u/zAzJ08fPzTkpvM+ydGff3lrCMk+LFqtrm0YUvPhg3uGyOTiHslMEpskRu9MTUA5sSvzi0uIT9UhLcFmmZ1flOFhEK8YOO8/zBhFwOTEmMzOLRjGfGpyXFbXN4yqYwIDh/XZ29+X333/XJYWQZiGQvIAruii8Zh0QO3Q2Jj74eOsp54rAoqAIvBbQSB+lMB3MhZwv5BxUpCBCq7xvpXvBAAAQABJREFUzH3p56wG3dtet2Lzc7TH7vAqVZZdAC11n9ep+KDCjpMqa1eRL/PgpikST1YtaPO/bUcSUZynEKPLErHlsLX9ZbFjefaaEzNu+Cp1z5mu8Nzme9V9wvHDceQcQ4VlF3vP54gtidRajeVxfHFsWXeoteZRLD3zJE7F8L3MOFjbQqzHJIiJ0WKllr7GOJjcTclNhU6jcpYEMcl6kuafw2bhnafRlZXRvvN1+RxllyqDSq8U4ypCwWZ3n5ZKW8t1Ki6JfaNxPZTbtWqfL1emiVuKH6dXHQOQikq6QKrVrSrVn1RBFvveMt/9UEcWcwlrviuIK3cK54lNi8D1HVlf/rgn7ldVLvOj61h+jiwRWU0LiAFVisXw4fNv1l6bOLMkU6s1kmv3+h9iBzU36ObcYhU+ex0YsK9NW4r0Z7lxUFi3Wt6XK7NSPuXGO++V6pNK+X7u++W+D+xnrNh3TLl62uf4HXOV33nlytR7ioAioAgoAoqAIqAIfM0IcH5F49G+SErWYhsQ/bVAAMiQPVyfSEDU14zN4fT4xfUOXmtsdBnCknlzTYfzZZ/Plz9neYODA4bX4gZ+Z56sF7068fcg10C4NlGYp/csZBnXChoQyix7mgvBE4ZHL/62susmfL5aL2u1YHCb0pIcLQypVKn+Li7O5YZK6aTsmErGTm5DB8dBlq6v59zFdbS3SjgSlRA6jz8i6KLNaaMjw6bz1+naLppzsWQWctGZPp83t4CFB9xQI9FNWxMGVgwL33R3RFVOCgOTqpVjxDylQpXkrBKjToT1XBFQBBSBz48Al9e/BDH6+Vt6fSUuYgMR41AWMyr2njx5XOzWuWtcNC8ktV6+fGVc/p5LePZmEgo/enioZJw3XIT0qpTvl7jPSaSdSF6mfM5dqGYsZd9++61xR1sJu4viWinfUvWqdL3WHw42Pz530Wc5brm78qqt8LPgzP8y42Cw92KEYikyLArPKZzM00X357KpIZZ0sXZcVx2p4LMxJq+yDBKKfBWzcmWW6q9i+dRy7aJkEImXUma+++uLb0ww3xVwpfS5rVx9L1oXLgQwtmqtRgyK4R6Ge+ONg3XET49CZTpZa7YmfTny/DowYF976otjUG4cXKhxZw+VK7NSvsVwt8+Uu2fT3JRjue+Di37GLvrcTcFE66EIKAKKgCKgCCgCisDXiIDdsOz3cxOkyM7MjiQgSKHqk6pREqFcv2DIpomJ8bxaNJlKGvWoExNLXBbm6UzjPLdl2muF70nAql0eAUOOVsrGf6ZACh9CBgwyspzxB5M1xiklIToyMoRYHy2ITZZzMWPv26MLi5OWoKVbtTkoSf/5I9xPwagI5U2SobSGxgZpamyS0dEms/DW091lFmkZv+vXt+/l7p1JuKNrM2n1P0VAEVAEFAFF4DYiMILNQ9x0VMycf2eL3S93jaSq3T1XmO4qSMLCPH8r70kE0mVvKbvtCttS7dLrV4/A8PAQvKkYtvLqM9ccFQFFoCQC9SBb6fqULmmtK9SSiQtuDNJ96lm8noJb+lYRUAQUAUVAEVAEFAFFQBFQBL4SBAIIDUklKUV8DDFEJSm915Ek5TXe5znVnYeHUbNJ/itp+lfbDBc7jDsVyxmZ6GZ09PLymungYCCI+GlbQiLT6y29c5nEKGN9tUBuvLcbKldE/l4YsU07O9pNbFOPx7pUqzPucg9jMfFjN70XStJUCpJjLEbu7u4ZcnR8fATufd/IEdwDKzmah1NPFAFFQBFQBG4hApdRspVrrpJ05dC53L1yysTL5axPKwKKgCKgCFw3As2+FpCjuVg8tZY1iPifaoqAIqAIKAKKgCKgCCgCioAi8HUjwHWfdYR+JCdl4pDupI2L3br6OqMe5UZnKkqZLn4UN+TowsKi8Q7FUD98LgZ+686dKYgId01IIbrKbXQ1ih/qwBMoUDPwlJpliKN0Uryd3ZKKhMXlaxI3ODYvOLP46ppkkM7d2SFxbPDsxHEbXlVp5OpmZj7GNC2nbmW5jI16VfVg+awLy2f79vb2kfeOPHhw32BCoQdFILxvvYWRlyShHELITIsp60PvbMT0OH1sNo9bTBlapa+318RhpcetQkxZh1rNVY0ChW6L7t+bgqJzSVZXN0wZQQSX9fk8RRQoH4nWoaEBWVpaNbFH6XI3b2dJPqbM3xFfkw9lrJtneJV+mx/evyfjE6MyO7Mgb99Nm8QkUJubA8anM2OW0ujzuafnfIBWc0P/UwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUARqRIAEnlM9Sl6NJB7DLviafXlFqY1DSjUpCUsaY4YyLZ9PJBLCZ5mfJQp94M4yIPxO4LbXGD2tgjxsMmGH6HM1KynGHUWaBsQh9XZ2ShqxT2nOEE3O+lVSt151PVgX2x62jV7xWAbrkUwmz6lrDQ5Q3l4lpiy/Vqv785//nF1ZP5CYBb5CDtnsqVGPNqDTqzHGK61Hx9chdlAlo6u/n17+LAMDfdIONjyTOZHXb97JYH8fWOJcHDQT/xSsakN9Qz67WuuUf1BPFAFFQBH4ChGI4/s8eOYO/StsXtkmRRGXmi4t1BQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUXgt4eADSnFo32RiLuMJfb2pA75kec6BrGXhbKxHh5O6wxJWi+nUDyCOAN56ZUsPLX6QGCqfT4Ejo6OjEq3lhJdJBsrudV1ZsjOb2ioTHTaZy4Sw2x/LyTZk6zEIBGmtTliiBbLr9Y62brpURFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBEohQDJzgwIuEwiaRSeno4OaYDX05NUCqRoVtzwanoChaTL7xcXFJ5qNx8BF8lGCnNvgpGkffrkoXGpm0lnpBVy4tGRoXPS4JtQT62DIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAorA14cA42Yyjubm1pakEAvUA3e2PDLeZRLq0CaoSDvhMrbR0fRGvFe7PQhcTkt8De10N7qlH4FV1RQBRUARUARuJwKYG8jJ6Ql87n90f347W3K1taZ7h5OT08/u9pfuQziha4cXhmLeF662lZpbtQiEwxFs/nIjfruv2kc03Q1EYHNPEJpCZGr4BlbuCqq0HxbZCok8HL+CzDQLRUARUAQUAUVAEVAEFAFFQBFQBBQBReCWINDY2GhiZjKmqHhFfN7c+g3jhTKOptrtR8CQowjhqaYIKAKKgCKgCNSEwPT6jkQSKflufNDElubDW+GoeaURM9rnbpQ7fZ3igYsJNZGdnV0zqbp//96l4VhZWZX5+flP8vnDH/79E28LJEffvHkjv//976ryvX+K+AjT0zMyMTEubrf7kzJu04Xd3T1JH6dloL//xlV7cXFRevt6qyJHv5Y++fHHHyUWy4VMaPI3SXdXt4yOjlQd3mFpaRleRVqNZ5Gb0KH4qMj8WlaeTFY/kz7BQ1uHIdmI7JomfD9yv2hTXq/PSyKdlO9wvwE/vK7LKtWnDb/33i5k5TBWJ80azvm6ukHzVQQUAUVAEVAEFAFFQBFQBBQBRUARuGEItLTkCFC7qX1mZlYYt7RvvFe4Lse1miTc6MYRGpJraLzvhaK0wdVg1qG4DphOp837Rlej+OG/9QRpM1CfZhGf9BS/+b2d3ZKKhMXlaxI31ju8He0SX12TDNK5oVqNS51Rr7K8Rqyz9kFUSAHEZfK6YTB/0eroivUXhV8LVwQUAUXgdiKwHz2SaCp9rvKp44ys7IXl3kCXNIFUW9wJyTLekyBVExkcHDATp6vAYmCgX3p6uvNZrWLiFIlQiejJX7voCcnULbgMIWl12y0Wi5mJ6k0kR2vB9mvqk7GxMenv75Ojo4S8/vVXCQQC0tVV3XdEKBQyPzREWmqB79rSbkNR6cX+gVpIw+X9TQklohJw+/AdCslpEdsGeZo4RsySz2CV6kNedrRPZHlL5PHkZ6iQFqEIKAKKgCKgCCgCioAioAgoAoqAIqAI3EAEuH5BwnR/P2SUo4lkwniHI0nKa7zP8yzijyYSCQhJ6g2ZSsKU5kMIyQxc8p5gPcQYw10ifZO5z8CXWUkdhKUBaRrgwteLGKfpyOHHvKBgZTkkaC+a1+FhFHUP5srX/8XFBbebEnNU+0MRUAQUAUXg5iOQgWvYlb0DGe1ql4Xt/XyFw0dJoxZt9uX+6HcG/TK7tWcmBpwQfI3Gv6EvX76Se/fuih8B163Z6w9wPYt42u/ffzC32tvbZWxs1Jzzv4WFRXN+eHgoh9GoDA8NycjIcEUlHd3jWhe5LGtndxcxuj+SmZzszMxMyxGCxPf3gdmo0ljPWCxqUr9+/atRBHd395g68SLznZubM0QsXYjcuXPnnJvgV69+BvHVL5ubm3JwcGDOh4eH5O3bt8J6nuLV3tZu6js1OSnd3V1V1qy2ZBFMHtn+BHbj0WJQLNK++eYboVsUTlapQmTciJOTE7Ojb3x8LI87d/ex/pzArq2vm2efPH4su8CZJHQUpCt365GsY6wJqoE5OS1n3C344cM0JrL7IAO7JJM5zieny2WqdcPhsLhBcHd2dMjk5ITp48v2Sb6QIifz8wtGHUwSeXdvT5rw2X327JmZwJNwZ9sz2M3Y091t6sPJPev5/PmzPFbMls/z+rffPpdUKmXGNfOjDQ0OnhvzHLdUJPPlB3Yc+5Yc3draluWVZTmKHxmM7tyZMunWNzZkA3Wh6jSBXZmrqyvoG5/Jt5r6zM3Nyz76yoMyR0dH8xsLyo0Dqo7Z36zv9s4OVK5dwjHiVFMfRETaa+Rp+1o7ZaxrQHaj+0XJ0eOTjCyHsDmhvVeWQKRet1WqD8tvCdTJ/Dp+L2Tr0O/XXSPNXxFQBBQBRUARUAQUAUVAEVAEFAFFQBG4eQjYDfhcG7DK0SiUnVwr4SZwp3KUatNoNGbWVEiiUjmawDoJlaNZeNsLQmkawRpRHdao6qE0pZrUA9VoDGtUjHNqzapXKbgoNBfWVPiq1mxe1ab/LaQz5Kiuc/wWulrbqAgoAorA1SCwiiB0Pa1B8eKPt9Po+jGDP+LWTkCE0Y5Bpnq+UnK0DkwBiV8Sm05ylGQXSR/PWTxJkmdra+tGxWjx4ZFEElWaDx48gLJ0UH6Fko6EIQm3ao2xK1MgjCzBxOdmZ2dRn4BMTd0BCbhUbVaG/Dk5PpZ//vgTnp2Cy1dvnvQjuffixQsZHh4GKTqFem+D7Hsv33//fT5/kobTMzMygjTj4+MSP8KkD+OAE0ISkzOzM6bNYyCoFpcWy5KjJC1/+Mf/5fN2njx98sTs1nNec54HAn559OgRSLQ1Ux6JRpolMEmMkvi6fy/n4vjD9DTya8lPQEkIboCQI5nNNCTRSAqxv6jO7YZqdwZk4NOnT+HeeA5Eavgc/s662HP2/zGwJfm4hwkxy7fG/OlilyT7MRTY74Hr8vKK6Q9Oui/TJ7aMYke6f1lZWZGBgQEhpnQFQ+NORLptvodxy1jw7NPG5UZDknNcc+LvHKMkzS22bCfx+/67bwXASRREp9N2QDTy+cPDiInB24d200KhA2wieG/KDGDs0u0wf2yw70hMtre1GZK9C654+RnhZ49Ed7n6cOy9ffvO1O0b9BU/l+/evZO2tlZDcpYbBxmQlNvb2zKKsUpsPnz4YAhWkuLWYomstLXUNov2NZZXdy/sbUhPc7t4gfvnsEr1YR28ntx3eSqdxXlt7f0cbdAyFAFFQBFQBBQBRUARUAQUAUVAEVAEFIHrRuCqlKPHWJugQpRkKM0FsQXVpB6QolSKco1F1Z3X3Zu5/F1GzcMVPzVFQBFQBBQBRaACAlGoQyN4PRmGW8wCt7qtTR5ZABHKuKN++MHfOjg0uTGm3ddsJNWimLiQwPnppxeG6CTJxNiIVjFLIomKM5JChdYJNxnWRW4wGDCTICfxVJi+8D3J1W4o+0gU0UjAkTB68OC+iWdJMpMKx2qMxN/JmQKSxKiNq8BnGdOARsVoAorUYDAI8nHVqAY5QbRG8ojqVxoncySkaCSkSHoRr1a4EpkrEjPVJDz7j9g9f/aN81L+3Fmv/EXHCdV+TENMSLIWpqcisgu48x6tBW0ijs7debxOUtupFDRpUfdWtIHW3t4GAi1oMDcXyvwXCu2DAB8ybWc/EztrxI/kegLjhgSsv8mfJyqvok9sOcWOjP1JsptmdxFS3Upi2BKBVB+TKCRRy/6ngpMk7ofpDyBBvzPjjf1KI4lOUpL9x80BPoeimvfZJ1TkMh03FaTwPcLxTrUxcXHBTQxJW5azAoxYJp/hq76+wZDTzv4sVx+OPSp9JyYmDK4cF2wvVa10tVzNOLAxUfk5jWAjgsWEbYknRdwFguF48kjCyRzJzDTWXKg7Sc9yFoa73UM8O9U1WFRVWu7ZUveOoVDeiYWL3u5FfRpQr0rW2MjfCXDvk64DOVoptd5XBBQBRUARUAQUAUVAEVAEFAFFQBFQBL4+BLjOQS9TXNPg+h7VnPQ8xjUMKke5QZ/rDnX1dRLGWgTVolyf49oE1zaYlpvJef8YZCg9rXFTuBtrqfTtSr9vXI/hGgk9i3ETOtWqXLMpFb/UqlDD2MDPOKYNqFuWa11Yi7UxS9kTXO9iWYVxSxNYC4OPKGl79FDK5VG4Xva19K6LO+/p21hNEVAEFAFFQBGohMDi7oHQXW4CxMYRSDhaHK4f/Fgxd2ECcLe3S7ZAFG6CGO1pATEWipjrlfK9zfdJzixBBcmdXZzwkIgk8WPJokptcxKLbrfHTJQqPWPvkwglqfcEyjZrJK5onKzRmpp85njZ/zjZo8tXJ9FKF7qniKXgtDYo/Aqt4Yxw5USSk0DOPU4waStnVhlYLA3vXdQ4EWXZxM62hRNOkm9OI1FXSIzyPieNLN+2iedUfpYzkrBUz1pSz5J09hnee/Xzz8atbSAQzBN59n6pY7V9Uup5Xu9o/+iuxaYjQesclyRuLclN0j8KUpMbAOj+lnWPQAVKgp42isn9zNy8/AOqXxKRkxOT0nG2G5L3OT6GhgZ5alzOrK2tGeKcbSGpavuE9+nOl9hy3JSycvVJnrlV5o8WuzGhtaXVEILVjAPmbccax4LFwNbFj49YumAYp06wOaEIOdrY0Cg99sESx7ndden0t0gslZB4GswrLJqKS9DjR51LY1AiO3M5kz0tWh/e7A62SWVqlBsucp9xj5vHi3/2TIX0P0VAEVAEFAFFQBFQBBQBRUARUAQUAUXgFiLAtRwP1j+5XsS1EHrd4poBBQ885zocvVD5EAbIGtdWuBGd9+2aGDeF+5p95hrXFBsbSYLGzXsrnqCHMq6f8XmuZ/BZrl3ZtT4bc9SqUANYZ6H6NIs1AMS0EsGzNmYp65LPoyBuaR2SkhukkrVcHl+rmtXFBbu6Cy642E7WoyKgCCgCisBvB4H92JHwZQmh+Z2Q3O3vMvFGWwJexKfLkXJh/FGmNTZcbFH/tiBKdSQnRXSTSle0PBKb0dHRqppgyZeqEhck2sWONZJ0VDBas2QoCVqqDqnMu4iRqHKaJQq5Y61cnTlZuwrj/IQEWzGja1qqTytZsXpyMkvrwK45qgdLmQs7/K7KDBmKnX8kHWnElsSiteXlZaM8pltdGuOM2rQ2DY8X6RPGVU1C6dvZ2XkuPqzNt5AU5nVecxKBnER7zsh2TtypemVdON7pJpdt4Y8DGpWiT58+MfXnrsS3cGP7n//xx6Jjxh/wyxYUqTSOL/bX3bt3zPti//E+d1M6rVx9LDlKMrZQjW2xrDQOnGUVngf8iC2SYn0+EobtIDf5uqjtxw+Fr1P+oIHN7qzJw95RafLkflxx1yhVu0ZlW8VnjW5z7+P5y1gixfZlEbP1Yzsvk58+qwgoAoqAIqAIKAKKgCKgCCgCioAioAjcNgS43kcvbaura0YtyrUTrvdwrYJrI7xHhSdjjNLrFNPxPr1m0agkpec5rptZJSnXfoySNH1sSFajJMX6SIOrweSxsLAIj1iHRoTB51jOJ0pSrEn4IdZwxjOlCjSBulglaRrrlFz/iCMt10PsmtrCWZu4dtQAEQE3rnP9ZCsbk966gMTgRY6qUYZQopqV9WW7SdJSdGC8nZ2eINxXbpO9xcHkB09VNr9jT700pnLrHOVUrA3AqAVrYzGskx2DMHahHBfIZdb7OtSrRjkKRL74WEzHI3K4tZavhyfQLMGeofx7PVEEFAFFQBH48gg8GaGTh5zFEil5t75jXOzWY0cSjdeavG5JY/F+dQ8uKBGbtBhBlcvh6/ifpA4nDutw1fqf//kfUHJuGrLUkkXX2cqNjXUZRLxIJ8acmFCxt7m5ZVx80F1pLcaJWwCkFd3oDg5686o9ErCMZbqB/Hp7ekyZTENVIJ+5amOef/rTfxXNtpyS0PkAd9ixvpyMERfixFcvJqlbwIfuca0qMo2JqJ0cOvO4qnO6qaVrWroXJqntNNaNZDZJdUO0w+1rM9wWW7tMn7CdnMBStVrtmGxFHWdn54wamjsY+QOgA/WncTMAXdWSlOSOxr///Qcz3izJyt2Q3BXJNtH1Ml3YOo2KTU6m4yBUNxHX1ebbBbfUjDnK3ZHsB6ZjPF1nLF3mt48xR5fIxIR9Wa4+TENSlz9IxsZGzQSePyrccPvNz+xlx0EbughfgTI+4Gxh+fNTzLlTmTQUpyeG5k0cp8RVhx8J+AHw3XAuBi5ziCRi8mFrWZ4P3T2nGl1cXDIxa7/99lvT9vKlVb5brj726cNYVjpb+dmxV/SoCCgCioAioAgoAoqAIqAIKAKKgCKgCPy2EGAIKW4e51oDPU1RJUoVKElLe4/rFLx205WkVglq6021K8lOrvXQuptapfE4twjANrONlhBlu7m+xPUV216BTsaJQ2F+2YY6rMnk1g7LqVi5MZsqVi/WiBoRmosOh31YA2Is1uswl905fx2ZV8qThCiNpGgqdr6BfM/rJEmVKK2EpN5XBBQBReBmIEAVaQrEKK090CT97bk/qjejdtdXC06KSJJyItDRwViW8O2P97QPH6ZNPEVbOt3g0uXu8+fP7KULHakgI5H24N5HQsVmND42Lm/evJHFxUUTO9Jer/Y4PDxiYoLOIy7o4OAgFIKThkx6+PAh4kxOywx2oNFIwjpdplaTPyiWapKZNNWSoKUyJMnWhr75148/GVe6f/zjH0y/TE5OmH75179+zD969+7dC5GjnAhyl18lG0T8iZe/vM6RiSDmrBKTzzE2xTsoLP/yl78aJTAJQ05KnXadfeIsh+d0Z3sQOpAXL16YW5wcM/YmjaQn3St3dHQYspH3SFpaIxn/+vVr0w4PPgNTk5NmsmzvLy0tCV+cSLfDpe/AQE69S6KVatWf4V7YGslLJzna39sjc9g1+be//d2Mvd//7ndl68Px8/jRI3n3/p388MM/TLasO6/RLjsOusEXz65gHhsDaZwTzpp8y/0XSx3J+82lfJLXa3Pihyr0Uf94/lq5E5LGNJLWV2GV6gO+XlYg7n08cRWlaR6KgCKgCCgCioAioAgoAoqAIqAIKAKKwO1AgIIAq1ZcXl4x6w/8Tc61BhJ8DAvU1d1l1jzsZnsbTqlUC206btQvZ4X3C98XK8eFtSa+rDnP7TVuZneazbdYfs50xe7bZ53p7Hmx9PYej4ODn+4y93Z1OpOca0thvc8lvMSbuv/5n//JrmyEJX7m/vASedX0aHR79ROlaHPvoLjPXJHxPs2pJuV9VZPWBLMmVgQUgd8gAvw+D4KY/BLGDTfHUES54Er3ssTWRepPsrBaddxF8v9cz1TauERCrpJRhchJmyVpmf4q8mUeVDmyf61asFJdbup9uu4lCUmMLjtey2Fr+8tix/LsNSc2VFSWuudMV3hu873qPuH44ThyjqHCsou953PElkRqrcbyOL6se5pany+VnnkSp2L4XmYcrG1lJZask3ujpUq+uuus51//+jcodnuMu56ry7l0TrshqmOz8s29yt85pXPRO4qAIqAIKAKKgCKgCCgCioAioAgoAorA50PArtHwaF8UNNRiVEaSlCMRSi9OVFly3ZHhfhJYe6WSkmsY9FpmSc9a8te0V4sAN9wXhlSqVIJRjhZboKv04GXvW9KTqtDOiYefZGdJUB735t8aZSmfsdc/eUAvKAKKgCKgCHxxBPj3xH1FiqYv3pgvWAFOuhiHsphRsffkyeNit85dI1FWSGq9fPkKrlLPe2qwD01C4cfYjJWMfXwR0qtSvl/iPl2h8HVZIxlINWMpsy5QK2F3UVwr5VuqXpWu1/rDwebH5y76LMctf2BctRV+Fpz5X2YcDPZ+PtIwhngbNKvidbbhus67oI7tav98bbyudmi+ioAioAgoAoqAIqAIKAKKgCKgCCgCikAtCFi1IlWQjCf67t37fFxRs/EaXsS8bq94MscmRmYGcTez3GSeToq3s1tSkbC4fE3ihkczL0JSxVfXJBOPi/ss9qdVpTrz5cZuxhtl6B0/SFhnHNEIPNPVId5nPe6zLA/zvKZYnLXgdJvT1v3v//5vdmX9QKKI/fQ5bf2X/ztXHFWhNEt+2hikhe52B57++7nn9I0ioAgoAorAeQS+pHL0fE0+/7uvRTlKhRhfxYzk0UWJJ6ok7e65wrwvQxAV5vVbfM8JbCmjCpIEppoioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAorA9SJg176sapTHi66l2ZrGQWxyTS4OHo2b5O3GbqpGM1AtnljPrNiEn4WiFLJSPJoVPIRwTPbaiYmnaeN1NjcHkV/5fI+Rdz3imGZBwtJccMnLsjwgWa261dz4jf93YeXoaZYd9WXNKknt0daGylISp7xeSJTaNFdzzMrB2qK0DVYX8+lqytRcFAFF4LeIQGxtRo4jIXG3dYm/PxfILRnalMTmsjR4m6R54slvERZtswOB6yIqb7sbXAdEN+60nDLxxlVWK6QIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCJQEgEbc3RlZTUvNGCcTav4dD5YGO/Tea/YuVWl8p6N3VksTmepfG08UWc+xcrRa+URqCdrfhPVDCRFuyYfGJe7Ng5p+aZc7u7pSUaO9rcvl4k+rQgoAopAFQhkzzakpMP7SI0dRLDUwY45mp1F5kz/UwQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBH43AhQYMB4ozm1aNwoPC+rPv3cbdDyyiPgYucKfBPfJCsVh7RcHZPRAwmvL8lJKiluf1A6x+9LeGNZ3F6/+Dt78GhWtt6+kK67T4wMObQ8I6nDCM4bpHV4QsIr8yb7zTc/SqCrH+59B4xaNb67Ya77u/qgYB0y57tzb8Tjb5b43hbe10kbno+HdpBfWHxtnXg/adKdwL/0/tK0ZPAhamrvluZ++/xb8QXbJYa8u+4+lgQUZPEd5pWVAMoNdg+Y5+1/LM8FNVnyYM9IsoN9w6ZNO+9fSeedx+Jq9Jhnt9+9kp4Hz+1jelQEFIGbjgBI0nQsLI34fJ8mEze9tlo/RUARUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEvnoErCpzcJBczYBsb+/IxsaG0I3u1iaYHOhd6Em3pWVfdnZ28vFIC+OGJra2wCCBQ3r0UMLTMyYuaYPXK1mG04LrXRuDlIBSlUqlaqO7Ufp6e4XqVcYerTYPq2q1cUxrrWcDYp223LtrYqgex+LgpLziagEPdsYflqtfuWcZOqynp/vGjRnXqfF9fOPqVVOFDAm58EHah6fE29oO97tR48f5NJ2SUzD81k7gl7kOozYZOZBj+HLue/y98Nk6+GxuH70rJCF77j/Ds/VyFNqV2M46lKv38Xid7C+8F5fbY0jOk1RK0vUx6b7/jRyCkCUB2jF6R1r6R2T7w88gN/sNmbkz86shWgOTvXKwuiDx/R0JgCTNgATJeBLS9/BbfIhOJQqXwX0kNeF7+uQ4ZaubP7K8BhCgJD6ThwdysDInARC+DOib2NuRYN+QpKIRk1f+IT1RBBSBm48AYhCmw7tygk0cxuq4WUVNEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBReCmIEDV6MjIsFGTulw+xB0V8fkQA9RxnUJEvrfxSH0gUutAotJTYOogLIGhQRMv1HgVPGU80jrxdnZKOnJommmVqi7wVfv7IZNXLXkcHkaFcUwvWk+K91hPb1eXNPoDcor3virrV+nZm9KPznq4jFtd55VbeJ6EAtTl9RnVJqvvDbaUbUUjSMVTEKUHy7NGpenyuA1jz4cY3JaWiOxLE1SgbihEaV6cU+FJBSgt2NknDS63eFs6JXkUxbHDXG/weOU4cQQ+tU7oqpcDnQpRfAJMniRHaa1D4yBlG0G7IhgwiM+9xQ/S3DOIfNrN/cL//CifdWtCjMIIYqOmY4cShMI1xDb0DcoRVKX+dipk1RQBReC2IODCd9UxNjycJLATB4r3zFHstlRd66kIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCisBXiYCNOWob19HxkbchKfrRPnJRxeKGers6PybFmY0X6rxoVaq8llOqOu+Cm6oxj49xTJ35XLyel6mf81lnbW7Ceb2JNwoi7yZbOh6BGjTHnherZzZLEjIXt6/wfjb7adtcHp9Rbbqg1tqdfYNYo7lYf85nDXsPJae1Oii6zDV74exovBI7rlF1muU/kKG0hkY3Xl7xNrdLC8hPa8wvZ3VGgRoA2RoG6RlamrFJShyZd+7lOSOBiU0CsQt97ec/aCUy0MuKgCJwQxDwtGFDAz7PVLl723vN+Q2p2qWrcfIVeCW4NAgFGRwdHUk0enUEOP8W0FUHXVOUsgy3sVWwcDhidr1VSKa3PyMCcXi34G4/tduNQPwoKz++5Zyt+naYz3UmbeZ61T/1ZVKmj0X++WtWMqW/gr5MxbRURUARUAQUAUVAEVAEFAFFQBFQBBQBReCSCDDmqNrXjYCL5OhpmYXV62p+c++gielZKn8SoodwN+skRflMMfMEWiSysSKMO+oNtkkaSk53UxBx/PySQj70CX0U2ss/epyEl2SoMJlf9vREEoch8bS0mvtZut6Fb2XmE91ek0B3n7meONhFHNLi5eczdpwwhiAJ0FMsTAd7+o102hC4BStkpyfHxs0uFan1UJCGoCCl0a2vJxCUBrfXvE/DFa+nuc20g8QrZc109xuAC1/GS23weISkr5oioAjcHgRcvoDUYQNFFt8TjdhAcRvsIJaQ2a2P36es8+OhHvFBgU8Lw9n+3NY+XOZnpQn+8e/0QYHfmFPkmwS/4f92dnYNCXn//r1Lo3AUi8lPr36WkzPysxMuLiYnJ+DOI/d3gG443rx5IzHEB2iAO4/Hjx5JW1vu71xh4YuLi9Lb15t/tvB+4fulpWXEV2g1MRYK792m98RwfXNLpqZyccJvUt13d/fMWGlurm6sfA19Mjc3L6urq6Yb3JjTdGFM0w2MB+fV2E3EYHmzTno7snQmUpVtHu7Lyj5j0MPwUBv+Rkx1D+G0TlYPtmUjfP67l8meDd0RN+at12HkdEPxsKxiTpoCYft0YFK8CDFhDV/xEvDVycZeVoZ7qmykfViPioAioAgoAoqAIqAIKAKKgCKgCCgCisANRuAmKx5vMGy3qmpmxZq+kD+3BXuGQBoOgYBcNQSokwTl+e7cO1MlT6DZkJh84/Z/lP4669uIxaOW/lEJLUybxSS6n+26+xhudjsQ5xOLSb/8E8Qi/DufqTXT8ZhEECu0vqHBEMOMK0oXuVRibr59AQVml7TB7e0xSNbtdy9NUb7WTsQPhbKrCmOAXRKXnZMPZH/+gyFZ+Vjr4Lj4ms8Wp89WyjKppOwvot4wBuFtRtxSnEl4dR7ucodN/FLeY/zT6OYKT6VteNLUl+f+jm45xPWWrlG+VVMEFIFbhkBw5K7ZPMHvjNtiHpCd9wdyLsJZ58aG3N8QEqIzG3sy0tUmbX6vOV/aCxuC9La07TrrSbcYVxXn2+V2yzdPn0og4Jfj42P58GEaxNKa3LkzZZowMzMrTU1+efbsmczOzsmvIEr/449/kKv4ex8Khc5iJxT/m3ydGF5l3qnjjOzs7t5IcrTWdn4tfdLe3i7cPJBKpWVubk5WVlar7p+bhsFRIivbByJTI9V/t7d4muTJwIR4sVkukU7Kr5uLshsLSzc27PUjjAOP1lYPdiSaPLo2YpTl7MciMr+3Ie3YcEhyFBpYW3z+OAgHCL/MYhtiF7ylfP6fE/l66IkioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoArUgYMhRo2is5akrTJsjSXMZWqLUZk9lZylC1Kaxx0BXnyEvT6D8JNFJ47Hv8XeGALWxRHnd39FjSMVcWu62zy1cdY4/gAonfRZ3FDv2R+4gNmjOV1idw8Vu78NvmY0xD9RefQ7FV8+dp/aWUa/2Pf4+n6clZwee/vv5NI8+TdOLetc7ymwHIepugloUhK7Nx2QC15UkY0kEqykCisDtQCA45FCDIfawtbaH/2ZPb/SR35gkRI1bdkdNI0cp866r2Q9Xr6dyBJ+LfPG84StdNeffz5cvX8m9e3fF+vMnCPb6A1zPYjPM+/c5rwAkf8bGRpEiZwsLi+bk8PBQDqNRGR4aMmq5Qmxtent0gxzli0ZlXUtLi2zvbJv3JEtJFD1//hy4Nwjd+VJhSve57e3wrgBXvCRT9/f3pQsB1jP4u1mNrW9syMb6ulGjJpJJkLErIEl98vjxI/N4KpUCoTUv+yjbg7qNjo5KT89HEn1+fsHUOQbF5u7enjT5vCDC7gOb9wavU2DZ3taeIywnJ6W7G2zLNRgJ6pcvX0oa5Ggadf7xxx9NKRMTkwYfvtna2pbllWU5ih8ZjEg6W7ypyn379i36aVSWlhYlkUwZAs+FjVlra2sSRfva29oMEZ7CBii2MRDA3+8yxvFCfDY2Nw0uHsQvd0HxS2P/TU/PoP/CQkVlZ0eHUQmzby/bJ2WqJFQ6HxzAI4fXK2vod9qTx48lGAxg7IRkYWHejAWOaeLDdJU+C96mJjy3KHvof7aLzz558jj/XULy3o5tjulQaD9fRboZJmEaiUSkubkZZd4xdSmFwaNHDyvWxwOlNRWnm1tbxj31QH+/jI+P5etTahwkMf6pzO7p6ZUVqF0Dfj+eGzf1sRWOxOsk2JSVWoTzTQ4PIDz3QhF6CG8nJEUbMCfki8bxcoANfAOt1/MZsW1ogReU74bvSRpeTkLx4uEtgn4RfMULnAYIz9UUAUVAEVAEFAFFQBFQBBQBRUARUAQUga8BgTdbb+RR7yOZ3ZvFxuScFyUvjolMAmxMvTRgve8Um4hP4eVztHXUpPN7/NIf7Jf1wzWpr2vAq156Aj2yFlk1eaTBPSWOE/C25zO/7V1YF+4NVCfI+xowvWltyK28oSNvgjmJ0ovVpy5PjH58HkMVC5afWrG0OULVmdZJijqv13JuydpyzxSmqa//tM51BW7T4ntbcri7Lk2dvUXaXa40vacIKAKKwMURSIJU+nEef+Tr4TKyJSgD7c2GTDg+yUDx5MIf/jpZgGK0pzkg24cxOYYq/mslR0liktAhsekkR0n8kPAk+UKjGm5tbV1IqjiNhOIWiJkHDx4g4Pqg/Prrr4YUbAKJVI2RvGF8ShJEd6ZyqlHmSfOBfNyE21jGSPCAuEohti2N9SCBSlUpSapdqCersW4QqST9SAx2dXWbeloSl2TN27fvDKFHRSvb/+7dO+PK15KKbPvKyooMDAzI0ydPTL2pNmYc1m+++UZmZmegGEzJGEjVRZCOlcjRX355LRFgXGijIyMyPDxUeDn/nv318OFDkGyHKHNWHsHlMM3WMxQ6MITtPfRZAC7s6XaYCka6LaaRXGWdSYwODQ0bd8TE8xgkM4lnEoivXr2SiYkJ4xqXfVDJde/BQdgQo/fv3UP8xox8AJne25ubHLM8uj0mAX+Mz977D+9leXnFkHiX7RPToBL/MV7tBsaVUXOiXqwHp4ts4+vXr9H2IRCUdw0+7969l2+/fV7xs7C9vSNb29vyDIRoPchfYu00fo6oeiYBzb59AGKZxjJfvHiBfh02RCzH/Qfg8P3330spDKr5bJIY5fgn7rQP09Nmo0FnZ4epG4n7YuPAjgGPJ2xcVnNckxjn59xaPJkVP1zO1mocR3tH2CyRiEvyOC3jnf2fZBFJxkx/dAWKu8r+5IELXmi0884yMUXpfMaLPT7cG6Pk6AWB1scUAUVAEVAEFAFFQBFQBBQBRUARUARuHALdwdyG/6C3GRuUc+sXnU0dxqvSwVFYmr1BafEEDNnJygdwTqKU5qpvNMRpwJ3bLE8RHNcpPPAUxXWpBhCnJ1msl+I6yVJfY2790Dys/302BFxc0Kx96eaz1U8LAgLNvUPigjqn0Nh3rb0jqhotBEbfKwKKwLUh4HO75G5/l7ihWoskQHaBBA36oFxs8koG5EkD/sAz7mgCitERpCM5eoLrX7NR4RaFqo0kzU8/vTBEJwlLxuXkhIdGspPkG0mfQmO8UKuwpCqPCrlqyVESOySUqNSki11aJpNjMkhuzc3Py/fffWsIzWP0CY1qvMHBIRMzlOXZOI/mZpn/SLLyxQkd1ao2vikfIRlKRR8JQRKcVDU2+ZuMQpRqPGu8Zl3/MnYDn6MxHiqJSGLZ2tpi6m2fKXVkPicg3gvNkpyF153vWfckFJ+sp7MdTLMJ9SZxoRKUhC5VilQHUlFo+5PpRkfHQBJ38tQY1YckyFl/xnltA5HciKCMBwUEoE3vPFKhyRibNr8tEKrWqDplvgmMKWLrh7tkji/aVfSJLafUkYSfE1MSnDSLxwjI6J9//tnUrdJnwemWlWOov7/vXLEu9AcVqJzfxNBGu5lgby+nIGVfJPC9EwwGzbilCpn4lBqXlepDRSxxt+OoBflzswLJ0XLjwFZ6FEQ+x0pfX58hVu11HpMpePXw0g3tx1k2ic8duMktZr3wQsIfRdxkshcNQ3WfxE5SL9SjOYW485mtSAg/wvxQ8H+6kc6ZrtJ5NfWplAfv40+AJNPn21rNc5pGEVAEFAFFQBFQBBQBRUARUAQUAUVAEbipCCT3U7K0u2zWKdxxN9a8xs2Gbq5b+PHv+CgjLaMtkgxjtzA40K25bSMIWI2smfU/ru2FsgfiH/JL5uBEMnJi1lcy6RNwPY2SSabNcT8dMusgxsMbvKh53B5489rB+uJ949WLG8YbXA3wTNWIUrNygvWSDNa0slj3O8XagbezW1KRsLh8WHvEWqS3o13iCL2VQTo31jfiZ+sSXOugYIKeyijo4FoP28J1kK4qy81izTEIHCIfpqWOa4SoF+viYZmOcm5qnxbWy5CjhRf1/c1CoAlxRYsZXQmrKQKKgCLwORHwguzhi+bzwOVjIiWh2JEhR10gAtP4w7y8G5aJ7nazk4rpSJh+zUbChipCkpok++jSlhMXEjPVmNPlqhsTIJKa1dpjuLQlkUSXrG+h1Pz9736HSU7O9SZdsVJFSfKPro1J1JEEourREoKWxKy2vFLpSDTSSP5aAri1pdWQPc5nOto/dQFPIpFG4rEOamTupKMb4ErGujvJSpu+2DV7r5ojCTliyn601tPdbZR6zrxJghaa834DODG6vafKsJKRWCZJbo1jwo4D9tcrkI90QxwIIPbjGfls05Y6VtsnpZ7ndRJ/TmKU1zi2ed22takpt3mL6tlKnwUSkWGoZP/540+GQC5U+fKHg1X9tu3sGlJ/YKDfkKR0Kezsk36Q7lQel7Ny9SG+HGest82XPxBItNLKjQNbpm07n6GLZqd5PVmotT8So7yXwQ5SusktZsZ1Lm7Qne5jxB3luHm9PifLB9sy2TWYf4TK4kgiJlPdH6/lb9Z4Uk19qskSfwakv/F8W6t5TtMoAoqAIqAIKAKKgCKgCCgCioAioAgoAjcVAbNBO5kwayD8jc4QQ1yv4TmPCdyjcfM3jV6/uKZFwtGuWTEt18m4BsH1Fa6n0CuYXUPhkWsRTN99tvbE9yMjw+Y5rr3wPfOk+bAWlcHayQlj29DwXBZlNJn7XCPBWgTWXRqQpsHrAXHaKWl4TqOxHsyLdWC9uAaXO8+teVVT7jHWPZk/yVCaC5v5WRcPiFdbjrlxS/5zscPKLy3dkpZoNRUBRUARUAQ+OwIN+EOaYcA5GFVMxzjvDjRJAFKi6FHOhWzjGVn32Sv3mQpsbg4awpEqzim4tuWRk4zR0dGqasC/w5cxPk/Xp1SAkriyk7I0XHIODg4YQpSkLXeeGTIUEyQSbDSSgIyrWYvl5g3nZw6WQBsaGiyrerXEUy3llUr75s1bo1YtvD82NiajoyOFl4u+t4pB5022hW28e/eO8/In55w0XpVxUm1VksyTE1aL1fLyslEl060ujfFrbf+ZC/jvon1Cd76MZcryrWrV5smjy7pVdVxkvUjYcuywXEvCEo/mZnfZzwLT3L9/z6iHd/A5oftgxsFl+YVmiUcqZu34olqYZRazYhiU+2zys0DrwATeqW62eZcbB/yc0UrVhff83joJH/Jz8rG+PrjPud87ytsVjT+AWn0B42LXmdgoT4FBW1Oz87I55xiispYute0Pp08SOS7UUh/HY+dO8VUH97/4gZb7nXbunr5RBBQBRUARUAQUAUVAEVAEFAFFQBFQBG4rAtEoPLWZjdoHCC00aFSjXCvwgHSk8pJqTppdo6HHttRpyvwe57rOxEROaUpilOshPNIzGEMF8Zy/4V0IT7aN99b7HNcZuE5D47oFxQ2+toAcIPTOaGtOQBdvwFqep14aU6fSCU9slYye26xZsYQzNJjzvDCdfc+jC+uJfBWaveYspzDNTX2P0HAfF21uaiW1XoqAIqAIKAI3A4FILCkp7HCiYovn+9Ej6TwLNNfSlHP/6MEf/FMQJ1uRmLTC3e7XrhzlxIiKt3W46Ozt7QEZmTGTJO6+ui4LhyMmZiZJWBKfjHdIBSaJK75IljbBnQZtY2PT3LNKR97bRtxH7k5jPMxajS5N9+HmlBM5EmQ0P9zlMq7p6uqaIWh5nXW0bnNrLaOa9M+efSN/+tN/ffLi7rpqjHWmcpD1tO3gc11wj0yCm8QhrxOn3d29arK8cBq64N3b3zd4UYFMVyrWOBEnicu+ZpzUXcSJLbSL9gkVq0tLS+fKK8y78D0JRxrHDscA3c9y/LOelT4LrD8n/5zg04Utjapma2wjf1QwHeO8Ui3KuL0kUKnM3EBZFosdKEud5HYxDMrVh/NfxnWlC2PrppjjleOBdtlx0OJHPF3sO8DXZdW2Gw3BJXnSxCihOpREaEcBCbod2ccGlNaixCzdD9PF8VWO1xQ2WaQyOTI4dYIfenjvtCiEsA1wDnAmIHbe0nNFQBFQBBQBRUARUAQUAUVAEVAEFAFF4NYiwLULrh1w87FVjZIY9SH8ITc0Z8+8WVmRApWmvM/1QJKQ9hmmtfdImvI+yVLmz5BOVIzyOabhNZ7zxXKZrsnlkS6sDXC9iMb3DEtkN9XfWoBvQMVdXIhSgvQG9IRWQRFQBBSBW4BACOTB7tZHt5AkRlv9OckQ/9hP9XbK7NaerO7DxQJ2P91D3NHfgnGHF4kYTlo6OhjD8DSvdvvwYdoQSBYH+vKny93nz5/ZSzUfSTC9f/8+/xxdsj598iT/93xqalJ+/uW1/OUvfzVpnuAe+4c2iDiPL3Hv73//IUdqYbJVi/WDAJ5bWJS//e3vJq4oXfky78ePHsm79+/khx/+YbIjscVrtRjd0FZrnLtcZv7C/hoaGpJXr16ZIh+hrlRPMv4rSTKSTNZIohVTVtr7hUdOZrM11I/kXxMmzv/8579MVpwQW2Nczndwmcy+JAHeAXKbhK3TrrNPnOXwnETo5OSkTE9Pmxfr9OTx43xflPsscNfly5ezph3Ma3h4GJ+Fj22le9t//OP/DCna2dFhxg+xZJkPHz40cT1n4C6axvi1HWduXPi+GAa8Xq4+k5MTws/nv/71I5Mau3v3rokbe9lx0OSrk642kMj7WRnuqW5cHxzFZGFvM1cRjB8qRwdbP36HxpNHksbmi64gMi5iJKtpV/kD6ee12XxJ01sr5vz3Yw/z19YRgnakP0eQ5i/qiSKgCCgCioAioAgoAoqAIqAIKAKKgCJwyxHghmyu83ETN5Wj6xsbEjuMSR/WiKgcJa9GFSg3XFOQwHS8x83evMe1MqeClGQnNzPzHj2e8Vk+w435rnqXLGHzOtcw+BzXu1JnIay4lkKytTHolfe7a3IfoXdIlkZScdmMHuQUpPCK9WbrjTzqfSQ/b/6C9YQWKE1HZQ3xTzPZ3FrBceZYpjqnZCWyIg119TLQPIj7q5I4znn+s/fS2CBN0pbPv91+J35Pk3hdXngOPEbdGqQ/2G/yOEXoIJ/LZ+p6fJKWo3Tik/zXD9ekvg5hsVBeT6DHlOcGucsyEscJaXL7cu1vaJTeQO9nHzF1f/7zn7OrmxGJxj4udn/OWkS3V+Vwa+1ckZ5AszT35mIpuf2fxvQ6l1jfKAKKgCKgCJxDIA5f70G4tr0uoxvdE/whbwRpUQ+3uoXGP+pM8yXc6dLd53UqNgvbel3vnUrGYmVwksTJFEkyTtRIIBUzTrJIAhaSiMyfrkGd96ops1gZhdeYL/Ny5l2Y5ja8J75sC4mmUvhW245qsWV57E9LZDvzL9WXzjSlzq+jT+z4q7Wf+eOC45Y7KwvHZan62+t23BKfqyQAbZ3YlkLsLzMOqKr8ZTYrf3xKIt+2ovyR361p/ODwuj793JZ/UkD0/yxH2IX67//2+0/aUenZi9xPQUT6zzdZ+cOTOozbi+SgzygCioAioAgoAoqAIqAIKAKKgCKgCCgCV4+AXYfh0b643lKL0RObXXvgWgHXDrgpmesZXCdizNFmeFej9ytubKcnKpKkPDrvMT3XdLi+wLBCvNcK0QTfcx2TR5bDtRLGAaUylZv2eU4jUcn7fghUQsmY+E4aoDINIrQZvKGljsSN/fPceL4T35Fuf7dsxraM9IBk4+4RvG6dnph8SGaS2IykIgiPkzRk5frhen5txt5Lg+jkM3x+K7aNZ7MgQb0SS+f4w4HmAVkILRpiM+gOylHmyLTh5P+zdx/wTRfvA8efpukuLbS07L33RlBwIA5EXDjAPVBERRFRUcG9B+6Nfze4f+BCRAFFBUX23nu1FCi0pbv/e66kdqRtUtrSls/5Kkm+37vv3b0TasiT5y4ro8D195j2maZ9mKkX4h8iOw/tNJ8n+9nxpJnPPnxN4FTb6bGo4P++HG4rePmHmumX670p9hWhm7Yeq5I/MJp7HLHrV0pU87ZCgDS3CvcRQACBYyvgNGso6k9hRQMexyIwWth4KuPxTZs2i+416a5Emoy6jh072OCHa+kOd/X0WGHn9TnKf86TPgvrJ/dxDTBVhaJvfD3Zt9GTuS5cuMh+q9BdXc3C1G8gainKLv/z5e5ahR0r6rqFtSnuuPqUZEz6D4iSBpvdvW6LG6cn54sa09G8DnTF8T6dPYyKHhmoLkMe5AjwZNh56th/VCUkmH2Pm5dLYFQ7DzB/1U/u6t388gyaBwgggAACCCCAAAIIIIAAAghUUIH8maMbN26ywVENhLqyQw+ZMKRmh2rRAKgWV1ap65zWX7t2nf2MyXUuqHZQzt6jGrzVQGhMTIzNHNW9S/Xzj4zU7KBmum+6fZyUrgHWLNmTnihhUs0EFJ3ibz5jSTLBzDSzzU50zew9SevkysB0F3AMDwgX/dGigc7cxXXcday2yfZ0lfDA//Y3bRrRxHXYBj1zHnT2IBkAAEAASURBVJg7ua+v2aK5iwZgK1Jx6pOs2MeipCbGF9stAdJiiaiAAAIIIFDFBHTfzPr1875BcU1RgzVlUY5Fn2Uxj4p4TQ1m65tdd6WkgUJ31+LY8SugvxdO7tvn+AVg5ggggAACCCCAAAIIIIAAAgiUooB+XqNxM9eeo7Wjo+SA2fdT9xLV7ZA0A1RXr9MvK2txfYE8/znX3qNaz5U56tp71JU56tp7NHfmqNNsV6ZFz2nWq+41mmpieZHOELv/qGaPuo75+blfUc5egD8KFXDok+z+47pC25TbCV1aV39SEg6WW590hAACCCCAwLEW0P83a7afux9vlwHxdC7Hok9Px1bZ6+nyJ+6eSz2m7hQEEEAAAQQQQAABBBBAAAEEEEAAgYojoEmF+kX35ORkiYyMkF17YsyeobEmOBpnl8/VDE/dQ1S/rLxhw0Z7bI+po0vr5j534MABu+yuLvuqmaN6TuuFhJjlpkzRoKn2oYHRPWYfUq2vy/emp6XbfUd1T1PddzR+f7zNFD2QnCT7MrOzVXOyRx0Zstdkj1K8E/BuoWXvrl3i2hoMzb/cbkDoAfELPvr9Rw/vixUT8pegGjVLPL5j1TB+52YJNuP2Cwo9VkOgXwQQqAwC5n/chWWpVYbhH90YzUr2hWToHd11aY0AAggggAACCCCAAAIIIIAAAggggAACFV3A9dmg3ub+8Wbc+mV2XXA1MDDABkQ1U1MzPzVoqgFSfXzYBDXDQkNsgFP7CTD7z+ht/nNaX9tmZ4+G2HbJJliqbQ8mJNrjTtNfdHT0kX1HA82+o4flv+xRX5M96itBvv4S7h9o9gD1t4HWambPUz2W5kg3+5I6Ku1nosdqZVsbHL3+6ou9eV2UW90lK9dLp7bNy60/OkIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgaorUCEzR73h1kg8BQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIoXOFaZWsWPjBoIIIBA+Qg4K2twMfe4+WVePi8WekEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCovAL6ubrrs3U+V6+8zyMjRwCBoxNwuH4RHt1lyre1a8z6y5tf4OVrT28IIIAAAggggAACCCCAAAIIIIAAAggggAAClVMg92fqrs/ZK+dMGDUCCCBQcgGHKSVvfQxa6qa1WgiKHgN8ukQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCo9AKuz9ddn7dX+gkxAQQQQMALAaf+EtRviLh+GXrRttyrur7JUhnGWu44dIgAAggggAACCCCAAAIIIIAAAggggAACCCCAgIcCrthAZYkPeDgtqiGAQAUWSEw8LIeTUyUtPV1McLJ0RmrinH5OpwQF+ktISJBH13RmZGRUisCozoZf0h49p1RCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBYAVeAlISkYqmogAACRyGgscj9BxLE19chYdWCxc/PWWqxSY0dpqWlS2JSshyOi5ca1UNNP75FjtZRWX7p6eQIjhb5XHISAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAGPBVzBUf3snYIAAgiUlYAGRoMCA0zgspr4+/uVWmBUx6u/x/Saem3tQ/sqrjj5pVccEecRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQEEnITJHtGfGyK/2gxJv7KVnpUpW+XuBjnuQAH6eEOwKkjjNM6vuGS6i5X9KiS+lqxmhISGBJL+FxO+0jNS1NtM+iltitVHuOejx7KiKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQSgIaFF2Wtkt2pifYwGGww08a+AaKn4+jlHqoOJdJy8q0Qd/t6fGyIjVG6jpDpYNfnRIFSXWPUV1Kt7xKSHCgHDyUVHRwlKVqy+vpoB8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKqmwL8Ll8myFWtk89Ydsj/+oGRmZHo1UYfJLKsRHiaNG9aTDu1aSfeuHbxqT2UEylJgU1qc/JOyXaKdIdLCP6Isu6oQ19aAr5+PvwmG+ku0hEhcRpL8kLRaegbUlyZ+kV6NMS093e4x6lWjo6is+5lqn0UVZ3GbkhbVmHMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBw/ApoUPS7aTMlbt8BKWwbP90TsLiiwVS9hv4sWLzCXnPQgH4ESYuD43yZC6xOi5G1abEmKFhdAk226PFYIn2DJcTHz2TO7pYUyZDWftGeM5g9jT35HeD5BYuuafsqZh9lu+doZmamOBxVL+23aB7OIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEkFvvl2usz8bZ4NijZr2lB6de8sLZo3loga1e0l9+0/IOvWb5Z5/y6WDRu3ehUg0SDpB59+I1u375SLzjurpEOkHQJHJaAZoxoYrecMr5LL53qDo4Hhej7h1iNAfL3OIPWmr7Kua4Oj5RmxLesJcX0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoWwEbGP19rgmMilxx6XlyYq+uBTqMqhkh+qPn/pq3UD794lux2zNmFZ9J6rqYBl+1ECB1iXCbX2DlmnXy2VffyaIlK+2pLp3a2qWZL7lgYP6qXj3WPUZ1KV3NGK2K+4p6hXGksjrU9g21LlHmNtQRUJLLHPM2Ts0YPd6CowcPHZIMk6Jfo3q4pKdnyN64OPMLOlJYYviYvx4ZAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAFF9CldGdqYNRsKzry5qukdctmxY5YA6QREeHy6lsfmwCpiah6GSBtWL/uMV1id/OW7ZKaliYtmjWukjGV5JQUSTiUKDVNMLsylQefmJATFHWNW4OkrkDp0QRIl6XtsnuMlmQp3bW7t8rnC+fIlJ2b7LAuqNtEOtZpJOd36eMaZqW9VQ/de1V9egc0rpTzcOiSut6WL6f8IPqC87Roff2pKGXCS2/KuIeetMPZtn27tO18sgmQ7qsow2McCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUWAHdY1QDo1dcOsijwKhrIhpE1Tba1tuifZa0LFyyXH7/6x/5Y958Wb9hs2gg0Jty/6PPyci7H5ZHn37Fm2aVqu5f8/6V6265p9TH/MusOXKHscvIyCj1a2vcyRUEdXfxjyb9z6tYVu5raNbozvQE0b02vS2P/fipDYxe1rWvTD73avujgdFHF8yWqYv+8PZypVp/1ty/ZOHyZUd9TXVRH3WqjMVR2AbJxU1GX3CeBEi1jr4Al61YU9wlK+T5fxcslhtHjK6QY2NQCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUp4Bmje6N2y/NmjQwy+V287prbaNtvY1N6B6k2ndJyuvvfCSvv/2RfGxiFXfe97gMufZ2mf7rbx5dSvdNXbZ8jTzz2L3yycQXjyprdNGSFXLP+Kc86reyVrr3oafl30VLc4YfFBgkNSKy96DNOVgKdzQwqrEnV7n68gvluy8m2h+97yoay9Jld70t2zPiJbwES8Zq8FMDoePPuUJa1m6Y86MZowuGjbPD0OBpceXR116RHjdeZ38uuWuUvPfFZ5Kcmlpcs2LPr960UXbs3l1sPU8qqI86lWbJ/Vzlvq995H98NP06SrKkrqYh65rNxQVIXenMWvfRBypOgNFHPF/PPDZ2r2zduv1ojGmLAAIIIIAAAggggAACCCCAAAIIIIAAAggggECVEFi2YrWdR68enUs8n5K2PZokrEHnnC5vv/KkTJn8tpzZr4+89vbHsmpt8UGzPbGxdp4N6tUt8XxdDeP27ZOYvXGuhxXq1pu4SVED37x5e57M3JN6d5eH7xtV6tsa5n8t6GONSWkALf9SurofqbdlV/pBCTbLx3pTNDCq2aFFLZ3rOqfL7hZXXrxphMx/9315/b4HZOaCf2XewoXFNSnX8+qjTqVVBl06TO4d/0xOEFTv6zF9TjUYro89Sdr0ZDw2OFqSpXU12FlUgLQiBUbjzJK5t4+6TyLqtJZzzh8qCxYtKWDzxZf/k96nDJCmrXvIA+OfkOTkZPnhx59l3MNPy/yFS+WsgZfKiy+/mafd9u075byLrpTf5/wl3Xr1l4cefUZWrVlr66YeieCrrbZdumyFbfvCi6/Lp5O/sn1oXzcMHyXr1m/Mc10eIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQEQU2bdlhsz5bNG9S4uFpW80c9TZ7dPPWHSXu09XQ19dXRgy7UqKjIuTTz6e6Dsva9Ztk1NhHbTBm+O33y6bNW2Xv3n3yxLNv2Dq33jVepv44w97/ZdYfcu2IMbbu+McmyKGERHt89py58sqb78uHk76SC4YOF63nKj/P/F3e/eBziYs7YNu+/X+T7Km16zaabNbH7LVuG/OgSUrLjiW42rlubx09Xr745nvRsWnASJeq3ROTHbjduWuPDLttrOjSuJddc5s8+9Jbtpn2f8Ot99ixjHvseYnNFZjVZW41o3bwVSNsmx9mzHZ1ZZfA1XYrVv8XPH72xbfk66nTcur89uffMuLOcTnj1j1Z9XHS4WR59c0P7Rx37YkRNRkzLnubQ2188GCCXZ5Yfa4ePlqmfD8955pad8JrE+WTz/9nx6TGf8z9J+d87jv5l9PVxx3atZK2rVoU2OYxf93c1ynsfrxZLjbAx1nYabfHl+7aIg92O9XtudwHdbld3Y/U0xJdM0p6tWsvu2L32CbL1qyW2x5/RK4dd5/89Ntse2z33lh5buI7MnDkLXLP8yZWtWF9zuX/9/N00exTrb9k3Vp7fP3mzTLu5Rdy/g7u3L3HtvPm76T6qFNpFY05almxam1OgFQf63Park1LvVvkMsq2god/OLSew2FvPGzyX7XCAqQVKTCqf8Gvuv5W2bx1m/w24xt58P67JDau4DczFi1eLu++MUGeeGSsTP5yivxsfhH07NFVLhg0QJo0qi/PP/OwXHrxBf9N3txLS08zfzH/lXvHPSYvTXhCbh5+rd2wWIOpuQPO+jgp6bBtu33nbhk5epw0M5s2f/3Ze7LLvOA++HBynuvyAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBiiiwPz47UyyiRsmXSi1pW1ffR+uiK2qefFJP2WwCvVo0yHjP+KelXesW8sqzD0qL5o3ltXc/kmrVQmXIJYNsnZE3XSN9e/ewAciX3/xALr/kPHn+iftk3/798v20X22d+EMJMmPWn7Jo6Up5fPxoOaH7f9m1XTt1kBNMtm1wUKDcM2q4nGcyWTU+cM+Dz0h4WDV58qEx0rhhfZMZ96LdF9VeMNcfO3bFyDff/yzXX3WJ3Dt6uMTtj5eJH35ua6SlpZk57JVXTLBz9G03yDWXX2yDijrOPr26y4NjR8ohE5Qcec8jctgEL7VoYFTHOmbkjfLY+Lvy7AmamZklMbH7TN3suIbW32kCnftMn1r++nuBPP/yu9bw9RcekZNO6C6hIcEy8uZr7PmBZ/ezc4yKjBA10biIFo3X3Hnfo7LVJJ49MOYWGXDGqfLeR1/Kd7n8Zv0+T7aYIPhDY++Q5k0ayatvfWTbevKHZo/mX27Xk3bu6qRkpYufj3exsyk7N0mbOg3dXa7AMa1bXIk1iX8bt26VGX/8Lh/N+U26te8ge/fvk+tN8HPUldfIa/ePk+lz/5StO3dIgJ+/nNH7JPn2pVflvFNOk4+mfGMv//eihTJp+jR5bez9tn5YSIg93qRBA1lj4mYbtmzJrrd4kbRr0syrZaPVR51Kq2jMUZev1sxfDYjqMsn6WIs+1vt6rDSKDXtrJLgky+vqAHSwrmCoK51Vo/AVZSndDRs3y7x/Fsn8P3+SZk0bW7Oz+p+W5xsSevCpJ8ZLregoad+ujSxctExmzp4j5w06WxrUryM1zV/gDu2zI9b2Avn+ePHZx6SX+cuvZfu2nfnOFnw4YthVcv21V9gTl118vrw18cOClTiCAAIIIIAAAggggAACCCCAAAIIIIAAAggggECFFMgqhVHpNTzfAq8UOsxziRrh4ZKQmGSP/TVvgQQGBciVQy60sZIrLj1fbrr9AUlPT7f7o2qlNq2bmwBgiPxoEqt69+xsAoMn2LbnDewv30ydLkNNsFSLZqY+PHaUVK8eZh+7/qgZWUPq1I6WoOBAG+jR49+YTEwNGN43+hYJCPCX9m1bydz5i2T2X/OkuUmwyl9uvPoyE2DtYg8fiD8kE00mau5Mv7tGDpMeXTra8y+/9b6JiTSU66661D6OrhlpMjvHm2zQtdKtcweZaYKQ110x2Mylqz0/yAQ0X3z9fXu/uD9+/HmWdOvSXoZenD3nhg3q2SY1a0bY26ZmT1kNZuUvm80Whhp0ferhu+1ce3TrZFbW3Cx6vUEDTrfVNXj8wN232fsOX4f8/e8SG8+JMuPPXVwrm+Y+pvfzL7erx1wZiXq/MpVf//1b5i5fIrNMpuhbt98pLZs0lTnz/5GWEZGyfstm+xNivJasXCmD+p9hlzP+6ffZ8veypfLL6lXypIn9LVi5Qob0P1NqRUXbqTepm/1c6ev08jPOlll/z5XmjRvL9L//kjHXXH/MefK/bnI/zn3/aAdqg6MlDYy6Os8dINVjFSUwqmPZaIKjWho3amBvPfmjuUnpf2fix55UtXWamG8veFOcfpbdNomOqil79uz1pjl1EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4JgI1wsNkr8lo04zJ/AErTwekbUtStO/SKrv2xEpkRLi93Op1GyQxIUmGXndHzuU1eKRLjeYvGszTpWOHXHt7zilf538ZhhpkzR8YzamY784as+VeU7NypQZGtWispoMJkK5eU/xWfI3q17WB1ZjY/1bKbHwkSKnX2rBhi5zd/2S9a0v9enVs4Hb9xi3SyNTToGyzpt7FNlzXUoPzzunveujx7abN22zdNq2a57Tp0qmdzH9/aU6Q18cERF2lRvXs5+dwcsGlW4dcPKjAEqu6rK6W/Mvouo67ruvJrS4Zm5aV6VX26AV1m3hyaVm1a6t4UnfIWQOkd9ducqtZQnf/weysXc0S9vPzEw3uaxl0Sj+pEx0t85cslmc/+kDuu+4Guf6ii2WaCZC6VjjNFP0iQsFySu/ecpVZaveMk/pIsrlus0bevR7Ux9ulhwuO4tgcceT+VsHRDEEDpBoUvfryC2026dFcqzTbtjZp8Fp0fXBPy98mJbzrkW9XaJt0s3yup0VflFoSjqwxXlq+nvZPPQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEykqgcUPNPPORtes2lbiL7LbeZ41m913ibnMaHk5Olp9nzZFO7dvYY40bNrDL3X7z6ZsyZfLbOT8tmhUMdtWvX1t6meVxc9f7+uM3c65d3B1XwErrab9btu+ygUpXu9VmD9KmHiR7LV+ZvXekZqS6KzrOtRs255zaG7ff9tPQBFV1tUz/AD9ZfyS5LKfSkTsOR/Zz44pz6OGsjMycanXr1pIly1flPC5wx2QsuivaTsvGXPGatSYwrfu/epvEp1mE+TNCP5r0P9Gf3EVjVrpMq7cl3BHg9ZKxnu4l+uiC2dKxjmeBSA3S3zb0Cnnxs8lmb9tD0rppc1mxZ7dERUTICZ27SNvmzaV+7TqycNVKueDkU6WrLr174EDOdHt06Ci//vO3Wd74kOyKiZHVm//7exthAqyndOwoL3/ykQw6qa/Xz4EuqatOlbGUWnBUJ68B0pK8yMoSrnGjhtKqZRN59bV3ZdeePbJ02Qr57oefC3Q5/eeZdl/Qb7/7yWwA/LOcfdZpto5mhS5aukpiY/dKSkrBbyfkv1Crls3soe9/mG42a46Thx59Nn8VHiOAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUCkFXFl4f5nt7EpaStrW1XdJ+j10KNHu8fm3Wbb2trselIz0TLl66GB7KQ12ajbo/336hRwwe6omJCbKkmXug3+n9e0t8+Yvllm//SWpqan2mpu2ZGdEFjeuhvXqyv79B03m7X4Tb0i1QVbN4Hzvo88lbt9++ezr72wG64kndHN7qT/m/mvHt3jpCpk67Rfp3qWDzQZ1V/nUPr1FA6i/mCCw7kf6xrsf27rt27SyQbDeZnneKT/MMFmq6+35qd/PyLmMBuQami0Hf50912QIH5Ap302XjVu255w/5cSesmrNBvl++ky7h+kf8+bnJKhFRlaXxSamkpaWnifoq41bNG1ig9DvfvCZ7DD7kP4x9x+ZM3eB3bs05+Je3NGYlAY/CysaPC1pzKqOM0ySMj1PnNMxtKydvd/o1EV/FDYk0XMPdjtVzu/Sp9A6esLnSIBa77dv2UpONkHPz374XurWriUTbhohI597Rq41WZ83P/aIxMbtldNO6C2TfvnZHvvDLL2rxWYit24j3du0kf6jb5dhjz0soYFB+t2GnDLABFT/2LBeendx/5rLqejmjvqoU2UsTm+j8ZVxks88Pl6uvfEO+fizb6RunWg5xfzy8nVtpHvkRfD3/IUy6u6H7PTuG3OrDL4ge5Plrl06Sb9Tekurjn3s7Vefvf8fwZG2DpPq7ipBQUHy6INjZPTYR+3Pww/caYOzrvN663D1be4fD/655859BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcor0L1rB/nup19l46ZtJrg1X/r07uHVZLSNtnU4HF59Ph4ZUV2075KWH3+ebfa2nC3hYdWkXZvm8twTV+Qsf9ukcUO5f8wt8tLr/ydTv/vFdtGja0fp1CE7s1QP+ByJKJ179uk2uPnyWx/KBFNfyw1XXSJNTLZn7s/+7Yl8f3Tq2Ebq16st1424296++eLjMvbOm2XCG+/Jd9Nm2uDlrTddKZ07ts3XMvvh1u075KobR9sHzZs1kjGjbrT3XXEGn1yxB93DUxO4XnvnExuk1Hk/+9hYCQsLtW2GDB4kYx96Vu4e/7R9fOIJXWwWq31g/rh08LnyylsfyDXDx0ibVs3sHqOucxcMOktizLV1z9O335tks1DvGz1C1PHSCwfKO+9/JtN/nSMP3Xd7HhM/s+XghKfGyQOPPS83jxpnL3e6ib+4gtT5/VwZrK5+3d26gp+616hrOV0Niuqyu0ezR2V933BZkRoj0RLirttCj40/5wobAO028XEbBG1TJztgqg0+XzjHttM6xZXxt4zMU+Xe4SNyHvft0VP6dO9hgvgJZh/cUPv3qFaUyNSXXpF0k+Eb6O8vo8zyulr0/rBLh8pV518kTqezQDBdA/x9mjW3QdecDjy8E5+ZIr2MU2UsPjNmzMjq39/7taHLY7JLVq6XTm2z157W5Wk13Vy/sVCSot++2Ge+eVHTbNrr+kWR/zrxBw9KgHmhBAYG5j9lvjkRa39pujtXoLI5kJR02Pxy93F7LXf1OYYAAggggAACCCCAAAIIIIAAAggggAACCCCAQHkL6Gfn3gYq5y9YKu9/8rUNuo269RoTPMve3q64sa9as84EID+0n/Pr5/SFfVbv7jrXXnHRUQVH3V3T3THNlAwODpLAgKKXC9V4xb798VKjepjXcYtYE1isVi00Tx/ar+6xWZjJBUOHy8jhV8uJvbqZjNU0G69wN/78x/T51azZwvZB1YxVDZxq4Cx/0bYa69Cxuit6fv+Bg2bv1up5xn3YZOHq0sURNaq7a2aPaYZuSHCw2T+zYL+FNirnE3NTNkuyWTo20jfY6541Q3Tpri0yZWf2Mra6x6guu+vKLvX6gqXcQJ+7b37+Sb74ZYaMv3G4dDQZpt6UuIwkCTT7svYOaFxss12790qd2jWLrVeaFYrr05l7fevS7LiiXUuDqlFRReOHhxWe/lsr2oTdvSj6y5OCAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBVE9AMzi0mi3GmWXb1pdc/kKuGnm8ySHsWOU1dQvXjyVNLFBjtd0qvcgmM6gSKCujlnqAGlAvb7zN3PXf3o0wSV/7iab9BJrlLfzwtGhspLDCq14iMcL9nqZ7TtoUFRl3n3RkEBZkxmp+iSvXwwuMxRbUrz3Md/OrID0mrJcTHTwIdfl51rcvm6s94r1qVX+WUtDQJDQqWp0beKc0bN/Kq42SznG5MeqIMDG7tVbuKVNmpf4EpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIAnAprdOPi8s21VDZB+PPlb+WveIundq4u0at40J+CmWYlr1m+UuebcBrOUrgbbdOlXu/prlic9idnurpdcdN5ZnlWuwrU0CElSVvk+waGOAOkZUF+Wpe2Wej7h4pdr2eLyHUnp9xZsAuwDTj3N6wunZWXK7owE66I+lbXYfGVdsrawVO3KOjHGjQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmUj4AqQNqxX1+6XuWnLDhsAFTFb5JmYgxaHCaLqbp2apJUdGDVL6Wq+VpYeL7roUq2DBvQrt4zRokdz7M9OfO3pYz+I43AETfwiJUUyZG1arNT2NUshe5lBWpXINGNUA6Mt/aJEXSpzceq6wgRGK/NTyNgRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECh/AY0t9OjW0QYw/124TJatXC2bTZB0v9lPMjMj0wwoOwjqikHY20IyRh2+Dqlhllpt3LCedGjXiqBo+T+d9FiIQGu/aAkQX/knZbtEO0NKtAdpIZeuNId1j1FdSlczab0OjJrfE+WZpKl9mcBnkbZO/bYGBQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwVkADnq4gqQZKbWAi10XyBEZzHecuApVJQAOCUSZzdFnaLlmXuk/CzZKywSaLNMDHWaWW23U9J7p8bkpWuiSZbNH4zBSp6wy1e4yWZCldP6dT0tLSxd/fu31bXWPx9lb70j6LKkWfLaol5xBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABI0AQlJdBVRfQwGDvgMaS4Jci2zPiZVf6QYnJTLRBxEISoislieZcatBXA8D1neHSyzdcShIUdU0+KNBfEpOSyy04qn1pn0UVgqNF6XAOAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSMCGihs7YgWXW6XUrxASEiQHI6Ll8TEZAkJCSy+wVHU0D4yzJLeIdWDirxKpQuOZmZm2s2bi5wVJxFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBIAf28nYIAAgiUtUCN6qGy/0CCpKalSUhwoPj5OXOyzY+2b13KW5fS1YxRDYxqX8UVZ/71v4trcKzPV7bxHmsv+kcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwJ0An7e7U+EYAgiUtoCvr6/UjAw32aOH5eChJElLTxezQXHpdGP2PdY9RnUp3eIyRl0dVprgqGtT54yMDBtNdjgcrjlwiwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAl4IaNao/mjQwrVfqBfNqYoAAgh4LaBL7OrPsS4mxlh5goz6C1rHqwFS0v2P9UuH/hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQqo4B+vq6fs+vn7QRGK+MzyJgRQOBoBJz6i09T5yvDL0Ado/7oL+x0k3Krt66fo0GgLQIIIIAAAggggAACCCCAAAIIIIAAAggggAACVV3AlS2aO2O0MsQGqvrzwvwQQKB8BZyuZWrLt9uS96bBUNcvbr1NM5u3si56yT1piQACCCCAAAIIIIAAAggggAACCCCAAAIIIHB8CLiSj1xL6ern7RQEEEDgeBOwmaOr1m6WVN38tAKWJSvXux+VyXbNDorqrfsqHEUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFsAbMwoynZKzSaZRphQQABBI5LAacGGBs2qC1ZmZUzwkjW6HH5umXSCCCAAAIIHJcCG7fskNYtGh+Xc2fSCCCAAAIIIIAAAggggAACpSPAMrql48hVEECg8gpk7zlaSQOjys4v8sr74mPkCCCAAAIIIOClwJH9171sRXUEEEAAAQQQQAABBBBAAAEEEEAAAQQQOCLg0MxLsud5PSCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQFUXcOjGy0RHq/rTzPwQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBmjmZmZCKBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVGkBGxx1OHyq9CSZHAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIOAwxSyrCwQCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQtQUcmZlmSd2sqj1JZocAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjYZXXFh9RRXgoIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFC1BRw+JjCq/1EQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBqixgg6MZGRlVeY7MDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEBCHGjh87Q0cCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJUVyI6KZmV5PcG09AxJTk/LaZeSliZ6jIIAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghURIHs4GgJthy96csv5dz3P7RzOpyWKgM/+FDG/TitIs6RMSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALiyLJZo95HR7PbZQtmFpN4eig5WQa+/758v3w55AgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMAxETgSHPW8b1cc1Men8ICqq47rqvsPJ0mKWXL3sFl6t7iSv21x9TmPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIeCLgzA5yFh+S3HPwoDw3c7Ysjo2RpuHhEpN8uMD1dx46KKOnTpWlMbFSJzhYHujfTzQx9ZGfZ9i6HyxeLN+uXCVPDRwg9avXyGn/0LRpUj0wSKJCQ+TTpcvkyk4dJNUEU2du2Cgvnn+e1AwNldnr1sl7/8yXO0/uK10bNBBtE+znL7Wrhcr/Vq2Wan5+cuMJPeXk5s1zrssdBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwCXgKCoD1FUpOT1N7pgy1QZGT6pfT5pHRNhMUNd51+2upCSJN0vontygvuj9J36ZKdUCA6SZqa9Fg6p9mzSSQKefq4m93XogXn5Yv94GRvs3aSJd6zeQ2IREe430jExbJyElxT5OSk3NaTNj0yaZtmat9G3Y0J57Zs4cKT7Mm6drHiCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwHEi4MzMzBQf819WEWHFtXtiZa8JTmpg9JEBAyzNykmTZXtiYh6mtjUj5ZULL7THxv3wg8zbucsEQp1ybts28veuXXKyCXxe0qVLnja5Hzxz9tnSsV5de+i75Stynyr0/vtDL5Mgk0GalJYqv23dJjsO7M+TlVpoQ04ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMBxJeAwpdgJb46Ls3W61K1XZN0g3/8yQptGRNq6a80Su54WV2DU0/paTwOjWmqZ5XW1JKUWv6+prcgfCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwXAnYyGhmZtGL0baqFW1RNu3b5zHO4t27bN2GETXEFYBNzUj3uL1mnGqJP7K3qWs5XY8vQEUEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgl4AzIyNDfBxmWd0iAqQto6MlwOlr9wUNCwiQtXvjCiypq9dcGhsjXyxcKNvjD8pKUyc6KFDqVa8hIf7Z2Z0/rVkn9cKrSxezp2i4OVdUaV+3jny7bp28NXeudKlbVz5asrSo6pxDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEihRw+Pr6imQVnTnq4+Mjd/fpYy80ecUKWX9gn7SsUV388i3J28bsOfr+osXy4/r1Uic4WCYMOs/sZipSIzhEBrdpLbuSkuTx2b/Jkh3bixyUnuzWoIF0jI6SZbF7ZfKy5XJ1p47FttEKZqgUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoICAz4wZM7J6n3SSyRwtcK7AgYzMTIk/nCQ1QkJt0LNABXMg3WSiHkpJMQHR4AKnk9PTJNGcizTtPS37TUC1elCQCXoS9fTUjHoIIIAAAgggUDUFNmzZIW1aNK6ak2NWCCCAAAIIIIAAAggggAACCCBw3AhkFZO0d9xAMNEcgfKMA2Zv7GlDnUVnj+rofE2maEQxgU2nyUR1FxjV9oFOP/uj9z0thV3L0/bUQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQOPYChw+nyIH4Q5J0OFlS09OP/YAqyAimT58pW7fvqiCjKf9hRJmVaZs1bSi9e3WRBmbbzbIuR4KjZd0N10cAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEDheBRITD8vumH0SGOAnUTVrSFi1kOOVosC8331vl0x4+oECx4+XA4uXrJSlK9bIp5OnyiUXDjCB0kZlOnWnTV0mfblMkbk4AggggAACCCCAQNUVSMhKkZ2ZB2VPZoIcykqVlKx0KX5NlmProRtWBPg4pZqPv9RyhEpdR5iE+gQc20HROwIIIIAAAggggAACCCCAQJUVOGwyRffE7pOAQD+pVye6ys6TiZVMoHOntqI/H3zytXz5zTS5csj5Ur9+2WWQZgdHdT9PAqQle8ZohQACCCCAAAIIIHBcCmhQdFVGjOzOTJQwR4CE+PpJdZ8g8fNxVAqPtKxMG8jdZYK6a9LipLYjRNr4RhMkrRTPHoNEAAEEEEAAAQQQQAABBCqPgCbp7Y9PkAB/AqOV51k7NiO99srB8tGkr+XPvxfKpfXOkbLah9Rhit1x9NhMk14RQAABBBBAAAEEEKh8Apsz98uM1PWS6pMhLfwjpJYzREId/pUmMKriGsTVMevYdQ46F52Tzo2CAAIIIIAAAggggAACCCCAQGkJaHA0OTlFqrGMbmmRVunrdGrfRjZu2mZyOstuXS6HRl3LsoMq/QwxOQQQQAABBBBAAIHjTmBtRqysNhmjTfyqS6RvcJWZv85F56Rz0zlSEEAAAQQQQAABBBBAAAEEEDhaAY0/6U9KWhp7jB4t5nHSvlPHthK7N86+bsoqfunMyMgwaakO00nmccLKNBFAAAEEEEAAAQS8Fdiydbts3rJV/Pz85MRePWzz3btjZM269fb+CT27SWBA1d+zUrMqN2buk3rO8EqVJerp8x3oMEsc+YTLxvR94m/2JG3sqOFpU+ohgAACCCCAAAIIIIAAAggg4FagrAJcbjvjYJURKMvXjdNmjkrZpaZWmWeBiSCAAAIIIIAAAsexwJSpP8rrEz+23/L894+frMTiJcvl9nsesvf//HVKlQ+O6h6ji9J22uzKyrKvaElesjq32r6hdq41/YPZg7QkiLRBAAEEEEAAAQQQQAABBBBAAIEKK+Aoy8hrhZ01A0MAAQQQQAABBBAod4Gx4x+XO8aMk+07d5Z736XR4Sqz3Gy02Z9TsyuretE56lx1zhQEEEAAAQQQQAABBBBAAAEEEECgKglk7zmaSeZoVXpSmQsCCCCAAAIIIFDRBJJTUuSbb6fLtBm/yaGDCRVteMWOR7NGd2cmVqk9RoubtO5BqnPWuVMQQAABBBBAAAEEEEAAAQQQQACBqiJgM0d9fKrKdJgHAggggAACCCCAQGkJbN+xU9at3yhpaWmSVcz7RR/xkZSUVFm5ao1s27ZDMjPz7mcfG7M3Z1haLzk5WVJT03KO5b6TkZGR57w+XrEy+7paz9U+LT1ve3fHdezaV3p6uu1Cb9esXW/2T90mel1Py87MgxLmqPp7qub30Dnr3CkIIIAAAggggAACCCCAAAIIIIBAVRFw+vr6imh0NIvs0arypDIPBBBAAAEEihNIzEqV3T6HJFaS5KCkSlpWRoXfgVxjc34+vhIm/hIlwVI7q5qE+PgXN1XOl0BA9xId99izsnbdJts6rFqINKhXp8grfTr5K7snqatSg3q15d3Xn5emTRqJLqerWaOucunVI+zdAWecIi8//7jrcM7tjF9+s3uZnnrSCXLbiOvl+hGj5eChRDnxhG7y/tsvSoeep9u6Y++6Ra6/eqi9r1tFuDv+5HOvyKefT5G7br9RgoIC5fFnXs3pp2undvLGy09LRI3qOccKu7MnM0FCfKv+crr55x9iltfdk5EgLX2j8p/iMQIIIIAAAggggAACCCCAAAIIIFApBZz6QVJmRqaJjxaTDlApp8egEUAAAQQQQCC3gAZF1/rslRifJJsFF+Lwlxo+wSbo6MhdrcLeT8vKlJSsdInJTJL1mfsl2gRJW2bVJEhais/Yps1bZditY2wwUi9bOypSdsfGyYrV64vs5fWJH9vzGkjVQOa2Hbvl0quGyx+/Ti2yXVEnFy5dnhMY1XpdOrQtqnqR51545d0C5xcuWSGTPv9abrv5hgLn8h84ZP7uVPcJyn+4yMeamfr2Z5Nk1sIFEhkWJqOuukZaN20m973wrNx2xdVSr3Zt2bx9m3w05X/y4G2322v9POd3mTR9msTGx8v1AwfJ4LMHyOr162TiN1/Jb+vWysXde8roG4bJ6g0b5O0vP5cEkxU75Iyz5OxTTrWZsPn7a9GosdsxFDnwXCcDfJwSk5WY6wh3EUAAAQQQQAABBBBAAAEEEEAAgcotYIOjDocPiaOV+3lk9AgggAACCBQrsC0rXpbKHon2DZEWvpHF1q+IFTSI62eyRUNNULeWhEpcRpLMTt8sHbNqSQOf8Io45Eo3phdeejMnMDrp/16V7t06S+zeOBl194Myf+HSQudz+aXny12jbpbQ4BCZ+P6n8tzLb9vrTJ8xS55+bJxcMGiAXH3jKNt+6ufvSZvWLQu9luuEBlm1vPPa09KrZ3f7hT7XuZLcXn/VpTLixmvkQPxBGXz5MDu+2b/P9Sg4qkF5b79EsGjVSlm5aaN89uwLErt/n4QEZQdX1+/cKa4lgVPNsr9bY/fY6cxfsljenfKNvHLPfRIeHi57YmNk7/79ctUzT8pbt98pz9x1j6zdvEniDx2S659/RiY/8JDUjo6S8a+8JG1btJCYffsK9FfYGDz10znr3CkIIIAAAggggAACCCCAAAIIIJBXQLf3OWy+tFw9PCzvCR5VeAGHKWZZ3Qo/TgaIAAIIIIAAAkchsEHiZJ1PnDTxqy6RvsFHcaWK1VTnonPSuekcKUcnkGFWE5n37yJ7kV49OtvAqD6IqhkpPbt2KvLitw6/TqqFhNrVSAadc2ZO3eUr1uTcL8mdx8bdJaf2PUkCAwIkONi7zM3c/ekyv2PHjDRBxzBp1LC+nHpyb3t689btuauV6v1GdevKpj175N0vPjP7q6Zan6I6mL98mQw1WaB1atWS4MBAadKgoc0aPbNNO+nWoaPodhhtmjWXVevXS8uISFm/ZbP8MX++CboGypKVK8Vdf+6OFTUGziGAAAIIIIAAAggggAACCCBQ0QV0paYNG7fIjJl/yLIVqyXFfPH4WJR5/ywyXw4vuFLVsRiLq89lK1bJvPkL7c9is2LW7j0xrlPc5hJwZmZmmv1Gcx3hLgIIIIAAAghUKQHNGN3iEy/1/MK9znyrDBCBZk9EnduWtHjxz3KSQXoUT9oOk9HoytY87eSTSnyl2rWjxbW87o6du0p8HW3Y77S+R9Xe1djfL+/+tI0a1LenXPN11SvsVpeX1WWdvckejTIBzC+efk5m/zNPRjz1hDxw7fVyYrfutgv7HjxfZ4dTUiQ1PW+WZooJqqak5/1HXpr5R5+fn5/UMNmlWgad0k/qREdLYf0VNoZ83bt9qHPWuVMQQAABBBBAAAEEEEAAAQQQqAgChxIS5OkJb8vhpGSpU6eW7J0dZ75gHCT3jRkh/v5+FWGIx3QMb7z7sezbFy9NmzSQjZu2yS4THL1g4Blyx6032C9dH9PBVaDO7bK65iv+JkDqXYRUX4BZmVkSFlatAk2HoSCAAAIIIIBAbgHdY1SX0m3irO5VUCf3NSrDfQ1Y1XaGytK0PRKRFcQepCV80tJyBeZ024WjKZr5qIHHKLNnaVmVLC/fv+Yeh7799aZUM8s5Zy+tmzfIWtQ1du7eI0Emq3PgaaeLLrWzcOUKGxxt1bCBzfpsXL+B/LVgQc4lOrVqLZ9M+0H6nXiiRNWIkG27dkqrZs1k7AfvyUqz72jb5i3sHqWtmzaXFXt2m2BohDRt2EgOJRySELOcsbv+Gtdr4HYMOZ0Wc0fnrHOnIIAAAggggAACCCCAAAIIIHCsBTRj9LW3PxF/p5+Mf/g2CQwMsP/e/nfhMgKjuZ6cSy48Ry6+cKA9MvefhXLv+KfMdkdnmYBpo1y1ju+7Th/zyZD+l+Vl+ugHn3wpBw4elPH33HF8CzJ7BBBAAAEEKrDAWp+9do9Rza6s6kXnGO0MkbUZe6WL1PVouhpc27lrj/j5OyW6Zk23bdLS0iXp8GEJDQkx37Az2xG4KekmqLh1xy6pFVXTBKnyLv2qQbEdO3dLwwZ1xems2Bl40Wb8rjL/38VyzZWXuR56dbvLmO6OzV7muGP7NratI5edmpS06HtXV9m6bYfrrhw+nJxzvyzu1HKEyq7MBLvfrafX37R9i7w0eZJEhoVJnHnf/Mwdd9qmg04+TR79v4ny8hefy6Wn9su5XL/eJ8qGbVtl4L1jpHFYuJzUvoOMuu4Geea6YXL3yy9KsL/Za7dGDXnqzrtkwk0jZORzz0iUyR7VTNIJY+4Rd/25O5bToQd3EjPTpI6ZOwUBBBBAAAEEEEAAAQQQQACBYy2wfcduiTWfN4weeb0NjOp4AgL85aTe3ezQ9LOBn2fOkYVLVkpiYpJ07dhWzjn7NLsnaOzeOHn7vc9k0IB+8u2Pv0pCUqKcfGIPGXj2f/8uX7h4uUz/9Q/bR+1aUXLlkPOlrslO/dt8RvLTz79L/MFD0qJ5Y7n68gvN5z+VY9uqrp3aWxv9bEqDowkm8fHNiZ/KrDl/SY0a1eXWG6+WE0/oZpfffeyZV+TaKy6W581SwX1P7C4Dzuwnz7z4hrw+4XG7glWmSZi8+Y6xMub2m6Rli2by/idfSM2IGrJh0xbr3q1zBxl2zRC7nZHttAL/YYOjGm3P/UFTBR4vQ0MAAQQQQAABDwU0azTGJ0la+JZd5p6HQym3aroH6bqMONG5hxST7bZu/UZ5+qW3JCnxsB1fzcga8tj4MfYNc+4Bv/jGRFm0eIU8+9h90qB+waDrFrNn5fgnJtgmaalp0u+U3nLjtZfbx3/PXyQvvfF/OUHVO2+7Ubp1zn5TmruPinK/WmiotGttshJXr5efZ/0hS5etlPbtWpv5L5OPP/+myGH++NMvMvTSi8w+Hyny5HOv5NRt16aVvd+yWdOcY3P++ls6dmhrFi7JKtGSLs0aN5QNm7fKrNl/ylWXX2z3I33wsedyrl8Wd+o6wmRNWpzUkhCPL39S954mU7SHHDT/8Agztq732yd06SpTXnzZXsfPfNv1msEX2/sOh0OGD7lcrht8iaSb9+eafaul34knyam9ektSsgnSmwxRLX179JQ+3XtIQqIJ2B7Z67VWVHSB/jSz1N0Y7EU8+ONgZop08yv4uvegKVUQQAABBBBAAAEEEEAAAQQQKFWBLeZL0vrl6/r16ri9bkZGuuyN2y9XXnaeWUUpSN774AuZPWeeXHDumZKeniH79h+Q76bNlEsGnyNbtu6Q6TN+l549OktUZIQsWb5KPvlsqpzZv690at/afCay2q7EtHjZKvn8qx/kkovOkTq1o+z9P/78V84642S3Y6hIBxMSE+WHn2baIennO7rFz70PPi1RNSPltecflXXrN8lY8/jXHyYZn3Szf+saeenN9+WeO4eLbke0a88eWb12o2n338qz+jgpOcVeMyYmTt7/+Eu545br5Pknxsmrb70v//vuJxl167CKxOB2LDb9Ifc3+d3WcnPQ9eGOm1McQgABBBBAAIEKILDb55CEOQIqwEjKdwg6Z517cSXJfJvwtD695JOJL8k7rz5lvjGYJDN+/T1Ps3/+XWQDo3kO5nvw1ZQfpWnjBvLhWy/IhKfGy8zf5po34vvsm0oNjF5w7hny8bsvyTWXD5YXX3tX4g8VP7Z8XZTrw9Ejh+f0d/GVw6V1l1Nk6HW35exFmnMy350nnntN2vfoJ91OHGC+ZZntOPLma6V1qxa2ZvXq4dKja0d7/9W3PpCeJ58jI0c/kO8qnj3s36+PrajZqedceLX0O+cy+WPuv541LmGtUJ8Aqe0Ikbj0JK+uoO+Zw6tVywmMuhprUFR/3BV/s5+oKzDqOq+BU1dg1HVMr10tNO+13fXn7pjrGkXd6lx1zjp3CgIIIIAAAggggAACCCCAAALHWiDGfA6g/8YurISaLybfcPWl0rxpY8nMyLTBzGXL1+apPnzYUGndoqmccdpJ9vjGTVvt7Z9zF0jrlk3l7P4nm3bRNvhZw3yW8de8BeaL4y3tl93r1q4lfU/qIQtMhmlFLq+Yz10uvPwmOeeia+XDSV/JXbcPE53L1m07bQD0xmuHSL26deTUk0+UBmalsxWr1uVM5+47hku3Lh2lZs2InGNF3bnovLNk8PnnSNvWLeQsYzd/0bKiqleYczY46sl+o/sPxMvjz71qPhwbKSPHPChrN2zKM4kNGzfL/Q8/Y8+PGvuIibpvt2s9a91lK1bl1NXjt44eV+E/GMwZMHcQQAABBBCopAIxkiQhjuNvr0Cds869uNLJZC5eOeQim7moGZMtmzeRDVuy3xBrW91f/TWzif1As/xKUWXfgQPmTXcjG/zSN89h1UJlvXmfpG84tZzV/1R77tS+vSXDvDFfbbIytSwxWZmu9053j3vcfFtvoz1+rP/oawLGrzz3SJ5hdO3UTp565N48x/SBz5F9SU/t20tG3XJ9zvmwaiFy67Cr5Jabrss5pnfuuG2Y8cnOfNT9SP9ZsNh+azFPJfPAdV097m7v02uvGiI6JlepbfY1ffe1Z+Qq83zmL74mqFhUcY2nqDquc218o2VPRpIkm6Vmq3rROepcdc4UBBBAAAEEEEAAAQQQQAABBCqCQL26tUVjVZoB6a7o8a+nTpf7H3neZDD+LAfiD9lVmHLX9XX42of6JeSAQH9JTcn+N/42s11S/foFM1L1+PIVa+019brffDu9wse3rhpyobz63MPS2Swr3LNbZzl/4Fl2ztu2Z29PdOPIsSZ4eqP92W+yaXXLKVepX6+2665Ht07fbE+tHFG9uuj1KkPJ3vhKt276Lyu2wLj1g7wHH3/BflD18P2j7L5br73zkUQdqRkbu1ceevJFE2nvI8Ovv8Ks1zxD3v1wsjw+/m4TjQ6TX2b9KR3aZe839dsf8+xazEVF9wsMgAMIIIAAAggg4LVAQlaaRPh4t/9BzD6z/8Jnk2TeqlXSpXkzuevaYbJ+y2ZZunqV3HDpEDuGNz79WPp07S4d27SRffHx8uakT+SvlSukZb16cu+wm6Sm2RPxw6+/kp/+nif+Zo/Nu6++Tjq3ayc/zPpVJv00TepFmT0bBp5n27vrL80sgZJ/DDXMvoqelgAfp+zJSjQRtuIadMPYAABAAElEQVRb6Huc9Rs3yTKzdMqKlWtFvx3nKu/83ySzh2iEnDfgDLMEySzX4QK3A844Vd5671OpXSvaLsOSaDJQ27RpKY4je2PuM2/aq4eH2SVkNXCq+2R2NxmUL7w2Uc7q19d8e+8mWbBwqd3TtMDFj9GBs82eEqtOP9Usn7JbggICJDIye2nmwRecm2dEZ51xmqxdMifn2PXXDDV7VMTa5Yd9c705dlXo2a2LzJ31nezeHSNpZrmWuuYfNfqPkfwl/3Xzn480+1lM/vBN2WP6ysjMsN921Dqn9D1Rxt+Xva+nq824sXeK/uQvt918g+iPN0UzKLs568iq9Bip5xcufj4Fx+7N9Spq3bSsTNmdnmDnStZoRX2WGBcCCCCAAAIIIIAAAgggcPwJNG5Yz0562co1Zunb7JiTHtBte3TVpNkm/vSnWVlq7F03S7T5IvVvc/6Wn/KtElaYmi6tu279ZpEz89aINkvQhoVlZ6TmPVNxH2mWaP16dWWkWdHrhlvukfPO6S9dzX6g0WYfVS3vvf6czY7NPYPtO7K/5J/7mGvFqyTzWZfu7ZplPi+oKsWpL5rsTw8Lj45uMdFkXaf56UfvtesM6+Q7mxfegYMHrYNuRhsQGCCXDT7PvgAvuXCg3Dn2Mbvh7RnmQ7+3zYeLqampdsPWWebFOXTwINuOPxBAAAEEEECg7ARSJMPr4M202bOkQXRtGX/LSJNFucUuVaLBvph9+3IGujturxw2ex9quWfCs9K/Ry+558abZNO27RJpviH20TffyJbdu+SDx56URLO5vcPXKf8sXiz/mz1TXr1vnFlZIkVuf/Yp+ezZF8Rdfx9P+abAGHI69+COBqx07p6URLP3gm42r0HSzp3aSvNmTWyzfxcukX/NMiAvPf2g+XJY0QEwXarFz99PPvjkS3sdXX7F9SWwtm2ayxNm5Y1TTzpBFixZbpamTZDEw4dzAoI7du8RzWw8s/8pngy3XOv46h4edb3bazLQ7JHZuFGDIsfpZ5aMbdAg+x8zRVYs5qT+o6e2ydQt79LIt4akZGXIRrP/aG1nqAQ63C+NW97jKq3+NGNUA6NNHZGic6UggAACCCCAAAIIIIAAAgggUFEEdMWuzp3byseTp0j64HRp3ryxbNu+Sz7/5ge5ZdgVkpaSbrNBw8OqSazZ8mje/MUeD72L+Vzoux9nypy/5ptsy06yas16u7Rs9y4dbBbq/AVLbCamZqOmpqaZL2rXsquR6V6dFbW0MJ9zXTjoTPsF/Q/eet5uC1XHfLn/3Q8mmeWHL5Na0VGy1CQMaODUXWlstpHSovu26qphH03+2l21SnnMkR0cLXrs20yGg5bCPiBbt2GzJCUelmG33SM33Hq3jHngCfOicMjumFjzIupi2y5eulLWmSXmkg+nSO8Tuttj/IEAAggggAACFUugQ8tW8uVvs+Qbk+EZaTJA3WX1uUasWZ9Ldu6UwWefbfdObNmkib399d9/ZOjAQXaliOiaUTaTdP7ypdKgZrT8s2SxLDFZqJpRumnbNnHXn7tjrj5L+zbMvFn+ZOLLZqmRR+yyHy++PtF+oeuVtz+UKJM1+vuff8u3P/xsu502Y5ZsPbL8iGscaWnp8sBjz8ulF54jH5g9R3XZkp9++V3m/bPQVrn/rpFy201X2zfLI264UmpG1rBZlRrYe3jsKNHVN0bcOU4mvPquWcbXZLtSKoVAS2dNu9zsxrR4r/cgrcgT1D1GdU66lK7OkYIAAggggAACCCCAAAIIIIBARRO48tLz7f6fX0z5UR558hX54NOvpUeX9ibQV1N69ewi/v7+ct9Dz8nzL78r9eoU/FK1a6UvnVfuz71OO7m3nNS7u0z94RfbfvJX38nBg4fsHqOnndzLBGB/lHvHPytPPf+mrD2yNVLjxvUlLTXdrKb6S0VjyhnPtVdcItvM1k/fT5tpP7d7+bmHZE/MXrNF5u3Sb+BQEyidbOdpMh9tG4f8lyQQaFYTu/n6y+XF19+T84fcKBE1qts9SnMubu7kTirQz7sqS3FmD7bwrFGdSLMmjex8NK22UcP6BebWwKzDvHTlannvtWfzvJhcFTXKPuevf+wHgh3atZJqodl7TbnOc4sAAggggAACpS8QIL6iy2N6s/Rn1/Yd5P8efFh++v13ueKBsTJx3EN2YOlm6dL8Jc18S05LugkQupbZ0McHTKZpWlr2OX2sRR8HmjenruVxbx96hURFRErzxo0L9OduDHVq1cq+kAd/6px17t4U3WR+gFlK9q2Jn0iKmdepfU6wzQ+ZzNLk5BR7P9F8ESwlJTXPZbft3GW/INb3xBPEaQK+55zVTxYuXSF/zJtv3pB3tV8W69KxveiPBj91JY6G9evaazRt0lCee3ycbNy0VZ558U2Z9MX/zPYEV+a5Pg8qroBmVUY6gmVVRoysS9kn4b4BEmyySHVZZ2/+zh3LGerflZSsdEky2aLxGSlS2zdEzvRvJiyleyyfFfpGAAEEEEAAAQQQQAABBBAoSkADmkMvGSRDLj5X4k0WZ3h4NbuiqbbR+4/cf4dduUvjULmDdZp1OuHpB/Jc+okH78rzePD5Z8kF5/aXQ4cS81x30Dmny8CzTzNBxASpVi3EfgleG9Y32wU98dBdhe6Bmufi5fTgzZeezNNTDRPQ/H36lznHdFuo1yc8LgnmMy8toSHZ8TpNIMhdz9Xg8ssulAvPG2Bjf7q07lVDB7tOyb2jR+Tc1zt9zcpp+lMZypHgaNFDrV+vjgSHBMmnX0yRYdcOkbh9++0Hf02PpNT26NrJbHL7k/lQb4pZu/gMs3yeQzZv2S7t27ayF+5/ah958oXX7ZJzN193RdGdcRYBBBBAAAEESkUg1MfPBj78fPw9vt7aTRulUf0Gcs3gi2Xtls2yziytWyc6WpZu2CApJsC5Ny5OFqxbJwP7nmKPRwcGyc9z5si5p58ucfEHJDQoWE7r3Fmm/TZbWjRqbN847T90UDq1biOf/vSD3NSkqQ2Qxptv3ukSJ+76O2SW4i0wBi+Coxrs0bkXVx5+6kXp2rGdnHpKbzmcmCzTfp5pv8ilb56vv+qynOYa1NQlVS6+4Byb9anfrvtw8ldy7RUXS73a2UHbH376VS4ybxT3mz1Y167fJOeeeaptr/uw9+7RRZxmKdlX33pfGpj3VE0bN5QD8Qflx+kzZZB531S/Xi2zTEsNSUpKzumTO5VDQIOIPZwNJME3RXZmHJI95me32e821Sy7a3Y8qeCT8BF/H18JN78favtUk67+dQmKVvBnjOEhgAACCCCAAAIIIIAAAgj8J6CBz+rVw/47kOteWLXQXI+8u+vr6+v2uhqUdddfUFCgdx1UkNquoKgnw6mscyxqbs7MzEzxMf9lFfMBzvBrh8orb30gd9z9iA1ytmjWyETds9NrNZt09G03yBvvfSI/TJ9l++vSuV1OcLRN6xa2jWaYdO3cvqjxcA4BBBBAAAEESkkgWoIlJjNJQh2eB0f/WrBA7pzwvESFh0t4cLB0bd9OAkzGZ8t69aXPLTdJn2bNpadZelffA+ibwlfG3CsPvvGqvPPdFAk29Z4aOUqGD7lcHnvzdbn4nuxv3426bIj0P6mvbNq+Xc4cM0o6mX0sq5kg6vN3jxV3/X31448FxuANSWJmqujciysXn3+OvDnxY9FlUrRUDw+T++6+pUAz13Irrm8bbtu+UxYtXiGnn9JHojvXlHvuHG6WF/k/mfL9DNu2Y4fWct7As0y2bLqsWrteJn/5rT2ugdH7777Nfrvw8OFkWb5yjXw37Vd7Tt+03zLs6gJ9c6ByCGiQtKXT/AhL0VaOZ4xRIoAAAggggAACCCCAAAIIIIDA8SzgM2PGjKwTT+pj0n6L/3Z7RkaGzXTQdYVdHxDmx9t/IF6Cg4JE02spCCCAAAIIIHDsBBKzUmWObJOWARFeDSI9I12SU1IkNDjvMviJZrncEBMwdVcOJSbY+rnfHxw+fNhkTJolRp3/ZXGmpafZTetzX8ddf+6OuevX3bG1ZonTvtJAQjzMmE1MTJIMk+kXFlrN3eXcHjuYcKhAfX0PFBIcaPa2CMjTJjk5WdLSM9xuK6DndNne6tXD87Qp7MGGLTukTYvGhZ3mOAIIIIAAAggggAACCCCAAAIIIFChBLKyskRjS+s2beczjSKemdFjnyiw7G8R1av8KfV49vF7bZJB7s8bS2viTr2QJ4FRrafpxJERNfRuoaWGhx/uFXoBTiCAAAIIIIBAqQhocDA6K1ji0pMk0uk+qOmuI6ev0wQ67VuEPKdzBzTznDAPqoUUXK4kyHxZKn/RQGnuYKmed9efu2P5r+Xusc5Vs0Y9DYzqNUJCPLdx9ekukFrYe6DAwEApbIEVe86cpyCAAAIIIIAAAggggAACCCCAAAIIIIBA+Qg4NGLv4/Apn97oBQEEEEAAAQTKVaCVRJp9EJMkOTOtXPs9Fp3pHHWuOmcKAggggAACCCCAAAIIIIAAAggggAACCCDgTsCh2aBi0popCCCAAAIIIFD1BDSDspPJpdyVniBpWZlVb4JHZqRz0znqXL3JGq2yIEwMAQQQQAABBBBAAAEEEEAAAQQQQAABBNwKOOxREkfd4nAQAQQQQACBqiDQwCdcGku4bE+Lr5IZpJoxqnPTOepcKQgggAACCCCAAAIIIIAAAggggAACCCCAQGECRzYU0+go2aOFIXEcAQQQQACByi7QzCw165/llCVpMVLLN9irPUgr8tx1j1FdSlczRgmMVuRnirEhgAACCCCAAAIIIIAAAggggAACCCBQMQSOBEcrxmAYBQIIIIAAAgiUnYAGDyOygmRNRpyszdgn4b7+EuLwlwAfp/j5ZC8mUXa9l86VdfnclKx0ScxMlfiMVBMSDZbTpBFL6ZYOL1dBAAEEEEAAAQQQQAABBBBAAAEEykTA3+mUg4cSJaxaSJlcn4tWHYHFS1dKVM3IMp2QM0v3G2XP0TJF5uIIIIAAAghUFAHdj7Or1JHErFTZnXlIYjJN5mVWoqRIhhliRV9FwkcCxFdCffxsULSj1CIoWlFeWIwDAQQQQAABBBBAAAEEEEAAAQQQKETAx8dHgoIC5BDB0UKEOJxbYOnyNdK0SX3R101ZlezgqHZAgLSsjLkuAggggAACFU5Ag6S61K7+SNm9zyjbeVfWcZetCldHAAEEEEAAAQQQQAABBBBAAAEEKoyABrj0p1q1YImJOSDbd8VI/TrRFWZ8DKRiCXzwydeye3esDL3kXPu6KasAqcOUSvuZaMV6yhgNAggggAACCCBQNQQefeplGXzFzfL1t9MKnZAndQptzAkEEEAAAQQQQAABBBBAAAEEEDhuBDTAFRwYaJZKDZfUlDTZsTPGLrF73AAw0WIFdCndjyZlB0YvvOAsqV+/TtlmjuqL0i6tW+zQqIAAAggggAACCCBQ1QU0ILpk+Srp1L6NTPp8qqxYsVYevO+OPNP2pE6eBjxAAAEEEEAAAQQQQAABBBBAAIHjVkDjUDZAGqQBUjGB0cOyN26/7DAZgpRsgYYmGDh67BPHLUdUzQhp1riBDLlkoNSvlx0Y1ddMWRVnRkaGeVE6TIA0s6z64LoIIIAAAggggAAClURAA6IaGNWAqGaHaqA0f/GkTv42PEYAAQQQQAABBBBAAAEEEEAAgeNXQFcx1RIcFCSBAQE2aU8T90jey35N3Dzs8uw7x+GfruC53trVbo/cliWFUzszL7+y7INrI4AAAggggAACCFQSAQ2MakDUFRi9/LLzC4zckzoFGnEAAQQQQAABBBBAAAEEEEAAAQSOawENfGkw1MalCIwe16+F/JPPHSDV+2VdfKZPn5719tYdsiMhoaz74voIIIAAAggggAACRyHw9pkDpE2LxkdxBc+augKjrgxSd608qeOu3SHznjMzM0vCw6q5O80xBBBAAAEEEEAAAQQQQAABBBA4DgTIGD0OnmQvp1geQVHXkLIzR02EnoIAAggggAACCCCAgAq0a9fSZo/qbWHFkzru2r734Wey/8BBeeSB0e5OcwwBBBBAAAEEEEAAAQQQQAABBI4DgfIMhB0HnEzRSwGnRue/ufF6L5tRHQEEEEAAAQQQQKC8BZasXF/eXbrtb/Wa9aL7jmpp16qF2zocRAABBBBAAAEEEEAAAQQQQAABBBBAoCIKOH19fSviuBgTAggggAACCCCAwDEWWLFireiP7kHqruh+pK1bNXd3qohjZb9vRBGdcwoBBBBAAAEEEEAAAQQQQAABBBBA4DgXsJmjmZmZohvhUhBAAAEEEEAAAQQQcAkUFhTVvUh1Wd3B5w1wVS30dt/+A/LKW+/LsuVrJKpmhOiyOdFRkTn1123YJO+8P0k2btomtWtHyZjbb5K6taPljnsekRE3Ximd2re1dTdt2SZPPf+6PP/EAxLGfqU5ftxBAAEEEEAAAQQQQAABBBBAAAEEEPBOwAZHWdvZOzRqI4AAAggggAACx4vAEw+OKUF2aLZORkaG3P/wszYgqtdJSjosL7/5fg5dTMxeeeCR5+Xs/ifLLTdeLVO/ny5vv/eJPP3ofVKjRrj8/MucnODorN//kpDgYAKjOXrcQQABBBBAAAEEEEAAAQQQQAABBBAoiYBJGHXYD6xK0pg2CCCAAAIIIIAAAlVXoGTL5v7nsWXrdondu0/Gjh5hA6xdu3SQLp2yM0G11tz5CyQoMEAuv/QCmy162eBBsm7DFklITJSzTz9F5i9cKqmpaZKVlSW//jZXzjRBVAoCCCCAAAIIIIAAAggggAACCCCAAAJHI+DUJXUpCCCAAAIIIIAAAgi4BHSfUS1668nSua52+W+3bNthD9WvVyf/Kft47brNJhCaJFffNDrnvK+vr+zeEyu9enaR19/9WBYuWSbVq4dL8uFk6du7e0497iCAAAIIIIAAAggggAACCCCAAAIIIFASAbusbkka0gYBBBBAAAEEEECg6gl8/e000b1GdV9RvX30qZflwfvuKNFEWzRrbNtt3b5TmjRqUOAaDRvWlcWmj4/fmSC6mkn+0qtHZ/ltzt92r9KOHVpLaGho/io8RgABBBBAAAEEEEAAAQQQQAABBBBAwCsBB/uNeuVFZQQQQAABBBBAoEoLTPp8qg2MakDUFSAt6YTr16sroSHB8tHkryUmNk5Wrl4n8xctz7lcz26dbUbox+Z8/MFDdjndpStW5Zw/8/S+smDxcvn197lyRr++Oce5gwACCCCAAAIIIIAAAggggAACCCCAQEkFnBoc1aV13X1bv6QXpR0CCCCAAAIIIIBA5RRwBUQ1Y1QzR3Xf0aMpNw+7Ul587T0ZMeoB8ff3k5bNm4iPw8deUrNJ77nzJnnlrY/k2x9/tce6de0gHdu1sffbtWklfqZNmtl3tHvXjkczDNoigAACCCCAAAIIIIAAAggggAACCCBgBXxmzJiR1b9/fzgQQAABBBBAAAEEKrjAkpXrpU2LxmU+Sl1aN3cG6dF2mJ6RIQfi4yWyRg0pbNWSffsPSEhwkAQEBBxtd7RHAAEEEEAAAQQQQAABBBBAAAEEEECgUAGnnsnKyir0g6pCW3ICAQQQQAABBBBAoEoKDD5vgOhPaRWnr6/UjIgo8nIRNaoXeZ6TCCCAAAIIIIAAAggggAACCCCAAAIIlIaAQy9S2Df4S6MDroEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUBAGHZo1SEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgaouQHC0qj/DzA8BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKyAkyV1eSUggAACCCCAAAIIuBNYvWa9rFizTlasWCtLlq+yVTq1byPt2rUs1T1J3fXNMQQQQAABBBBAAAEEEEAAAQQQQAABBMpCgOBoWahyTQQQQAABBBBAoJILfP3tNJn0+dQCs9Agqf7oucsvO58gaQEhDiCAAAIIIIAAAggggAACCCCAAAIIVGQBR2ZmZkUeH2NDAAEEEEAAAQQQKGeBwgKj+YehAVKtS0EAAQQQQAABBBBAAAEEEEAAAQQQQKCyCDhMqSxjZZwIIIAAAggggAACZSxQWGBUs0T1J38hQJpfhMcIIIAAAggggAACCCCAAAIIIIAAAhVZwEZGs7KyKvIYGRsCCCCAAAIIIIBAOQm4W0pXu27XqoX9cTcMbaP7k/4/e/cB2FS1BnD8y2jZUPaSvfdGQEAQEAQRQUHFgQsRle3GCeJTFByICiioIA5EkaHIFkERZMnee88yW9ok75xTElvoSEuTtMn/vBdyc++Zv5tWyJdzDgkBBBBAAAEEEEAAAQQQQAABBBBAAIGMLmB3OBxisVgyej/pHwIIIIAAAggggICPBa5lidwNW7ZJ5UrlE/QwOjpaLkZFJzinX2TPkU3C7WFXnff2xOgxX0pYeJg89lB3b4uQDwEEEEAAAQQQQAABBBBAAAEEEEAAASNgt9lsUCCAAAIIIIAAAgggIBs2bE2zgi57x223JCg/67eF8vV30xKc0y8euu9OufWW1led9/ZE7tw5xGa1e5s92Xzf/PCzuBwutWTw7cnm4yICCCCAAAIIIIAAAggggAACCCCAQHAIpM+nSsFhwSgQQAABBBBAAIGQFli7flOax59Y2Vvbt5KbWzXz1Ll46d8y8ZufpEWzRp5zaTm4/54701Is0TIHDx2R7FmzJnqNkwgggAACCCCAAAIIIIAAAggggAACwSdAcDT47ikjQgABBBBAAAEE0l1AL5urZ4ZO/fpT0cvvJrU3afyG9dK57uVzL12Kka+/ny6PP3yv5MyZM3420QHKoW9/KN273ibjJ02RKLUU7z1dO0rZ0iVl9NiJcjryjHTr0kE6d2xnyo2dMNkENO+7p4un7P3du8hXX0+VyDNnpWO7Vp6ZoLN+nS/rNm6R5wc9Ycpu27FL3nl/jIx6d4iM/+pb+XvFWnN+9b8b5QFVX9MmDWXB4qXy7ZQZcuLkaalZo7IMeupR0+dDh4/K5xO/k9VrNkju3DnlXjXbtHWLpgnGsnb9Rvlu6kzZvmOP5M8XIXff0VFuvBwMPn06UkZ8NE42btou4WpZ4Fw5c5iy7w4brOrPIV9NnipzFy0Vp9r2omnj+tLz4e4evwSN8AIBBBBAAAEEEEAAAQQQQAABBBBAIM0C1jSXpCACCCCAAAIIIIBAUAnUql4lyfHoYKh7T1IdJO1+V6cEeZMrqzPOnrdQwsPs0rzp9QnK6RexsbFy9NgJ+fbHmTLgqUekyfV15cuvf5T3R4+Xng/eIx3a3SSTvp0mZ1TgU6ejx0+Yhz52l504+Ufp3fM+uaNTO9XP2XL4yDF9WU6cOiUHjhwxx/oPvQ+qDnqKuFS9raRgwXxStUp5GagCoDXV+P9avkpGj5ko3e64Vd56/Tk5pfLOmrPQlB//1Xdy/vwF+eT9YfJkzwckT66EQV6daeeuvdK4QR0Z+b/B0rb1jfLhp1/IhQsXTfn3Pxkv587GldfBXt2P/k88rPZgzS5jPp8kv81fLD1UkFcHkJf/s1aGv/epKccfCCCAAAIIIIAAAggggAACCCCAAALpJ2B1uVzpVxs1IYAAAggggAACCGRagWrVKibbdx0gvePexz1B0viZUyqrZ0TefmsbsVgs8YslOH752b5Ss1oVufP2DuZ8n94PSt3a1aXr7e3N641q9mpS6dUX+kut6lU9s0s3bkl5/9SSJYpLbhXgLFwgv1SuVF7NBs2lApS/y/X1a0uzxg2kZIliJoC6eOly06zFZpVTpyLl/IULUr9uTWlQr/ZV3dGzWzu2byN58uSWIoULmOvrNm42z1u27lSzSBtKoYL5pc1NccsNh4WFqf1TrbLwj7+l4y1qGeKbmpuZpnerWbR6hqqeRUtCAAEEEEAAAQQQQAABBBBAAAEEEEg/ATvB0fTDpCYEEEAAAQQQQCAzC1SrVMGr7ie2pK6eTZpUOn78pBw8cERq16iWVBZz3m6zmee8EXkuv47bASJLlixiU9eioqKSLO8uq/NlzZY1zUHFbWo53KiLUXJ/z4GetmwqKKqTni36ybiJ8vSLw6TkdcWkv5rlWkoFWOOnbdt3yafjJ8lJFUStUbWSuXTm7HnzXLdWdflt3h9SvVplWfrXP2ZMpUpeZ2a5OtRSutWrxeXXmatXiQtU7963XypXKGfK8wcCCCCAAAIIIIAAAggggAACCCCAwLUL2K3qm+okBBBAAAEEEEAAAQT07Em9XG5iwc/kdK5cYvfKvDt27zanrite9MpLPn+tZ2aeuxyc1I05E1k1Jf65EsUKS96ICHluYO+r+pZHzSzVe5eePHVaRqq9Q4e+9YF8Nnq4J58OcA4e8q5ZFvjdYS+ZWbLLVqzxXK9ds6qsV/ufvvv+WClcqIC8+dozZu/RggXymTw7du4xM2f1ix279phzxYsWNs/8gQACCCCAAAIIIIAAAggggAACCCCQPgJ2vbSZnj2a3BJn6dMUtSCAAAIIIIAAAghkdAH3DFBvA6Q6MOouk9TYjh49ITnVvpp6Vqe/UxUV8P1h2q+yYdNWtdRtLvl47MQEXdAzQNera3ovUovFavZE/fzL72XRH3+pIGd9tS/oSbl0KUZKqHyTvv1RWrVoKsVUwLJiuTKya8+BBHU5HE7zulyZkhKrAqXzFy0RHTB1pzkLFstNLZrIPd06Sbg9zH1a7Ha71KldTab/Mk8qlCsteqbsd1NnSulSxSVXzqv3NfUU5AABBBBAAAEEEEAAAQQQQAABBBBAINUCdv2BDYHRVLtRAAEEEEAAAQQQCFoBd7AzpQCpN4FRjXT0+AnJHZErSS/P30WvWNAk6d1JRdyrnyRWVi2N4mlLB0erVC4nr7wx0gRnu3frKBO/mea53loFO5evXCvdH+5n9vx88L6ucvLEafl43CQZ9emXJl+Pe7uomZ4F5fiJU9L3mdfMOR3oHaCW1Y2fwsPD5I7b28kXX081jxrVK6lZqLk9WeqoZYWnTp8t02fN89TRoW0L6XFvV3mm72Py5ruj5dVh75trZcuUkFee7+cpywECCCCAAAIIIIAAAggggAACCCCAQPoIWObMmeNq06ZN+tRGLQgggAACCCCAAAI+E1i7cbtUqVDaZ/UnVvHU6WrW5Yatsnb9JnO5VvUqUq1aRdH7k+pleDNLijxzVs3CzOEJqsbvt15F5ZjaFzV/vgjP7Fan0yknT5+WiDx5xL2fqS4TGxsrp0+fkfz58yb5BUM9CzU21iE51GxZd9KzT+97tL+8+PQTUlLtU6qv/71ilQmifvrhm1Iwf9zSulFR0Wa2afyy7jp4RgABBBBAAAEEEEAAAQQQQAABBBC4dgG7/jCIhAACCCCAAAIIIIBAYgJ6Fql7Jmli1zPLOb1faFJJzz4tVDB/gst6ZmqBfHEBy/gX9BK4BS7vERr/fPxjvSyu+n+CdDEqygQ9oy9dknx5I8wyvsdOnDTB2Lx5/ptdmjXrFQUT1MILBBBAAAEEEEAAAQQQQAABBBBAAIFrFWDP0WsVpDwCCCCAAAIIIIAAAikI6OBszx53mT1PR3z4mQmUFiteWN56/Vmz52gKxbmMAAIIIIAAAggggAACCCCAAAIIIJBOAmbmqGevpnSqlGoQQAABBBBAAAEEEEAgoUC7m1uKfpxRS/xmz56NoGhCHl4hgAACCCCAAAIIIIAAAggggAACfhFQWyjZ/NIQjSCAAAIIIIAAAggggIBI7mSW+MUHAQQQQAABBBBAAAEEEEAAAQQQQMC3Ala956jT6fRtK9SOAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIBFjABEdZVjfAd4HmEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDA5wJWlYTgqM+daQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAIsYGVJ3QDfAZpHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAG/CJhldf3SEo0ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACARSwsqRuAPVpGgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/CZggqMsres3bxpCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEACVh1u1areQpQF2gWAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8L2AiYq6XC7ft0QLCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAAFTHCUfUcDeAdoGgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/CJgZdaoX5xpBAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEAixAcDTAN4DmEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAPwJWltT1DzStIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAYAUIjgbWn9YRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBPAlan0+mnpmgGAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCJyAVaXAtU7LCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgJ8ETGTU5XL5qTmaQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAIjYHU4HGKxWALTOq0igAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACfhKw2mw2PzVFMwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDgBNhwNHD2tIwAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAn4UIDjqR2yaQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBwAkQHA2cPS0jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIAfBawul8uPzdEUAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEBgBgqOBcadVBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDws4BVJT83SXMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICA/wWsFotFWFrX//C0iAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC/hWwOhwO0QFSEgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBDMAmbmaDAPkLEhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACWsDKkrq8ERBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBQE2HM0FO4yY0QAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbiZo+w5yjsBAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCXcBus9mCfYyMDwEEEEAAAQQQQOAaBIb87wNT+pUX+qWplrXrN8r8hUtlx+69UqxwIWlQv5a0adlMrvULeg6HQ/YfPCw5cmSTAvnypalvaSl08NARmfTtT3Jd8SLSvdvtaamCMggggAACCCCAAAIIIIAAAggggAACARIwe446nc4ANU+zCCCAAAIIIIAAAhldYO36TaIf7iBpavq7cPGfqtyHsnTZSjl8+JisWrtBxnw+Wd54e1Rqqkk079FjJ2Tg80Pli4lTEr3uq5MnT52Sv/9ZIytW/uurJqgXAQQQQAABBBBAAAEEEEAAAQQQQMBHAiY4eq3f2vdR36gWAQQQQAABBBBAIAMJpCVA+sPPv5oRtGvTXD7/eLgMfXmQ5M8XIS2bN0r1yFwuV4IykZFnErxOrxdXtnMt9XpTV0p5Urp+Lf2jLAIIIIAAAggggAACCCCAAAIIIBBqAnar1XrNS5qFGhrjRQABBBBAAAEEQlXAHSD1ZoldHdTTs0V1uvmm5hKRJ7d5fPzeG2K32+XSpRgZ9NIb4nQ45d03Bku2bFlN3l/mLJAZv8yXLp1uUcvvNpW5C5fInPm/y85d+6RggXzSvm0LyZolq3zzw3STf7mawdm7/2Bp2qie3Ht3F4mKipbPv/pW/ly+WtXtkLq1qsvjj94ruXLmlOPHT8rLb4xQwdnGEhsTK7PmLjJ5bm3bUjp2uFk+GTdRVq5ZL2HhYdL38Qfk+vp1TRup/WPV6nXy/U8zZduOPVKoYH5p1aKJ3NGpvefv3XpJ4Enf/SQLFv0p585fkLwRuSUsLMw006dXDylfoYxM+WGG/L50uZw4eVpKlyou99zZSerXrZnarpAfAQQQQAABBBBAAAEEEEAAAQQQQCCegJUldeNpcIgAAggggAACCCCQooAOkE6dHjcjNLnMenWSsmVKmCwvDnlXZv06Xy5cuGgCo/pkuApAFsqX3wRQ/1q+0lOVDozqJXOrVCon27bvkk8/myT7DxyWG5teL/rvrr/N/0McV2wLkTVLFsmSNYtER1+SwUOGy4Lf/5JcObJLYRWYXLZitbwydKToYG1UdJSp+7upM9UYZku2LOEmSPvjjDny6JPPyZp1G8Vms0rUxSj5VC3/m5a0bMUqGfbuaBMY1cFcPZZvpsyQj8d95alu/MTvZPqseSYo2rZ1czl1+ozJpwOp4apP02fOFd0nm82mxt1QDh46qoK26zzlOUAAAQQQQAABBBBAAAEEEEAAAQQQSJuAnWW60gZHKQQQQAABBBBAIJQFNmzYKnfcdkuKBM/0e1xefO1tE/wbP2mK6EfnW2+Wu7veZoKkHTu0NgHJ2fN+l5tuvMHM7NTBRB0kvK5YUflpxmzTRrWqFaXP4w+a44sqcJk9ezYTxNT7lzasV1Oe7tfLXPv7n1Wye88BqVSxrLz56rPm3Gv/e0/Wrd8ih4/EzWLVJ3XQceT/Bst1xYvJ62+9L/+u2ywlrisiw155Vqx2q9zTo4+cOXNOjp04KQXz5zP1ePvHF5N+MFl79rhL2t3cUg4cPCx9n3nNBGzv6dpJ8uWNkCV//mPyDH6ur6k/MvKsCeJ27dxeypctLV9Ojquj/c0tpGP7NvLYQ9FiD7N72wXyIYAAAggggAACCCCAAAIIIIAAAggkIWBlv9EkZDiNAAIIIIAAAgggkKhArepVxJtldXVhHeQc8+H/1BK1D0qx4oVNfT/NnCNvvDPKHOu6cufOKTt27jWBSPcM0ratbzTXr69fxwQyV6/ZIA/2GiRT1R6memZnUmmtCnLqdOjwUXlBBWX1Qy9tq9OeffvNs/4jd64cJjCqjytXLKefpGrlCpJVzT4Nt4dJkSIFzbkjR46aZ2//OHf+vBxTS/fq1PSGhua5eLEiUqJ4EXO8cdNW85w7Ipd51vXr2bCHj8a1ExGRx5xvq5Yh1umLr6dKn2dfleX/rBa7CuiSEEAAAQQQQAABBBBAAAEEEEAAAQSuTcAER1la99oQKY0AAggggAACCISKQGoCo24TszRss0YyavjrMuDJh81pPZMz8sxZswdnJzV7VKelfy2XpcviZlQ2vxxYLFa0sHw0YoiaVdpYLqq9RL+ZMl36PzfELJFrCl3xR3R0tDkTpvY0zRcRYR61VQC2UYM6UqhA/ityx720266ekRmWxkBkjNrH1J10H9xJB111uhQTY54fuudO8/zqsPfl3kf6mdmuNapXMrNl9YWmTRqqWaxPiz538MAR+eCTL2TshLQt82sa4g8EEEAAAQQQQAABBBBAAAEEEEAAASNgPrGxWpP+9j1OCCCAAAIIIIAAAghogbQERid+84PUqFZFatesZhBrqkClO8VcigsUtmrRVCZ+M01mz11sZl1WKFfKLD2r8+k9RLNnzypPPtZDHuh+hzw18BWzN+eu3Xsle9aspqqTpyPdVaq2KsuiP/6WLNmyyDP945ba9VxUB/sPHIz/Mt2P86qZn3omrF6SV+9fqme+6tmk7tmrVStXNG1u3rrDPHe7o4M4HU61lG4pqV+3lqc/OnBcoXwZee2FAbJz1x555qX/ybyFS9Xyut09eThAAAEEEEAAAQQQQAABBBBAAAEEEEi9gAmO6n1HWV439XiUQAABBBBAAAEEQkGg+12dzDC92WM0vseqNetl2sx55lGwQD4pWrSQbN4SFxTUy8wWUOd0ypUzpzRuWEf+Wr7avL65VdySsvrFh59MkBWr/hW992Z4WJgKNF4wy+wWK1pE8uXLa/Jv2bpTPvlsolket37dmpIzR3Yz27J3/8HSrEkDtefnEYlxxMqLg540+dPrjwOHjphle+PX99yA3mov1nYyQe07Ovy9MVKzRmXZsHGbyVKlcjkpUjhuud51m7aYc2fPnhe97O5pFUzdvnO3lC5VQgVLHTLohaGiv8B4041NVDD4uMlbXgWNSQgggAACCCCAAAIIIIAAAggggAAC1yZggqMERq8NkdIIIIAAAggggEAwC6Q2KOq2qFu7urww6An57MtvzYxQ916ctWtUlYF9HnVnM88d2t3kCY42alDXc61Rg9qyccs2mfHrfHNO71t6X7dOZm9QvVTtnZ1vkemz5plZlevVfp4tmzeREW+9JG+P/ETNuNyn9iidbcrd2LSh2dvTU3G8A6vVEu9V3KHFEreyivXy81UZ1AmHCmJu3bYrwaVYFYS99ZbWEqtmg343dYb8e3kP1Ovr15b+fR7x5L1J9VOX/XXOIs85fRAeHiaffzxcWrW4QX6aMUem/PSLuV61SnnpxazRBFa8QAABBBBAAAEEEEAAAQQQQAABBNIiYJkzZ46rTZs2aSlLGQQQQAABBBBAAAE/CqzduF2qVCjtxxbTrym9F+iJk6elcKECZubnlTUvWLxURo+ZKDc0qqcCpz2vvBy3P6k6mzt3rquuxcTGytGjx6Wg2lNUBxfdyd1mIdWmPY17iLrrSsuzXp3liOpXgfx5xR5v/1Hdr8f6vGCqfPWFfirI6pTzakbsx2r2qzbq/8RD0uyG682+qjqgnEct05slS9yepWnpB2UQQAABBBBAAAEEEEAAAQQQQAABBP4TsOsPbUgIIIAAAggggAACCPhSQAf3ihUtfFUT23bskoWL/zIzP/XFB+/relUefSJPIkFRd8YwFXjUS9NemZJq88p8vnqtV2dxL6Mbv41ItYSuXh44b0RuyaXGlT9vhOzcs1fOnjtvspUvV9o86/KFCuaPX5RjBBBAAAEEEEAAAQQQQAABBBBAAIFrFLCzpO41ClIcAQQQQAABBBBAIM0C8xctlbkLlqgZoTnlkfu7ST4VKAz2pAOedWpXk9VrNsjjfV/0DNemZrc+/uh9UrTI1UFkTyYOEEAAAQQQQAABBBBAAAEEEEAAAQSuScAyd+5cV+vWra+pEgojgAACCCCAAAII+F4gMy+rm5TO6dORZsZkieuKJZUlaM9v3bZT9uw7IDGxMVJSjb90yeskZ86cQTteBoYAAggggAACCCCAAAIIIIAAAghkBAG70+nMCP2gDwgggAACCCCAAAIhKBARkUf0IxRTxQplRT9ICCCAAAIIIIAAAggggAACCCCAAAL+E7Cq5L/WaAkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIkICJjLpcrgA1T7MIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAfwSsDodDLBaLf1qjFQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBAAlabzRagpmkWAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8J8AG476z5qWEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAggAIERwOIT9MIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIOA/AYKj/rOmJQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCKCA1eVyBbB5mkYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT8I0Bw1D/OtIIAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgEWsKoU4C7QPAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIOB7AavFYhGW1vU9NC0ggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBgBawOh0N0gJSEAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIBLOAmTkazANkbAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIAWsLKkLm8EBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIBQH2HA2Fu8wYEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgbuYoe47yTkAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWAXsNpstmAfI+NDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE4maOOp1OKBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGgFrC6XC5hWd2gvscMDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEElIBVJYKjvBUQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCDoBawsqRv095gBIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAEjDL6iKBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIBLuAlf1Gg/0WMz4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEENACJjjK0rq8GRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAINgFrHqAVqt5CvaxMj4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhhARMVdblcIUzA0BFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIBQETHCUfUdD4VYzRgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRCW8DKrNHQfgMwegQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRCRYDgaKjcacaJAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIgLWFlSN8TfAQwfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgRARIDgaIjeaYSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQ6gJWp9MZ6gaMHwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQkDAqlIIDJMhIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAqAuYyKjL5Qp1B8aPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJBLmB1OBxisViCfJgMDwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQl3AbrPZQt2A8SOAAAIIIIAAAgiEqMAvq9fIws1bZPm+/bIpMlLOOp1JSuRS21FUyZNHGpa4TlpWriTt69ROMi8XfCcQY3GKQz1iLS7R/0suWcQidpdFbC6rhKkHKfACFsdxsTkjRZwX1N25pDqU1D20qCvhItbs4rDmEZetQOA7H+I9sF68KJboKLFcihGLS/2uTGoFKvXla5fFKq7wMHFlySrObNlCXC4ww4+OviSX1L2KiXWIU90v9Ssz0aR+RYpV3a8wu03C1T3LkkX93JGCSoD3QlDdTgaDAAIIIIAAAukkYJk7d66rdevW6VQd1SCAAAIIIIAAAgj4SmDtxu1SpUJpX1UfUvXqoOjbc+fL8lOn0jzuhnnzynNtWhEkTbNg6grqoGi01ZFiQDSpWnWgNIvTRpA0KSAfn7eqoKg19pC6C9FpasklWcRhL0qQNE1611ZIB0WtZ8+KxelIU0Uuq02cuXIRJE2TXuoL6UDY+QtR4krmyz7J1WpRXwTKkT0rQdLkkDLJNd4LmeRG0U0EEEAAAQQQCIgAX58OCDuNIoAAAggggAACCARK4N1Zv8od3/9wTYFR3XcdWNX16PpIvhXQQdEoa2yaA6O6d3qWqa5D10Xyr4AtZq/YYnenOTCqe6uDqnZVhy12r387H+Kt2c6cEVvk6TQHRs29U0FVXYeui+RbgXPnL8i5cxfSHBjVvdNBVV2HrouUeQV4L2Tee0fPEUAAAQQQQMA/AgRH/eNMKwgggAACCCCAAAIZQEAHMl9esjRde6LrI0CarqQJKtPBzEuW9Ato6roIkCYg9ukLHRi1Oo+mWxtWx1ECpOmmmXxFOphpvXA++UypuKrrIkCaCrBUZtXBsOgovVR1+iRdFwHS9LH0dy28F/wtTnsIIIAAAgggkBkFrK6k9gnJjKOhzwgggAACCCCAAAJBK+BUf2+NiokRx+WlAvWzfq3Pe5P0UrrpHRh1t6vr1fWT0ldAL6WbnoFRd+90nbpukm8FzFK66RgYdfdWB0j13qUk3wmYpXTTMTDq7qkOkOq6QyHFxsbK0WMnxJnG5W1TY6SXT03PwKi7bV2nrpuUeQR4L2See0VPEUAAAQQQQCCwAgRHA+tP6wgggAACCCCAAAJXCFy4dEn+3r7dPOJfWrlzl+R95XWZtuIfc/qzhb+b1zuOHImfLcljvceoL5Ov6/dl3+PXffLkKVn61wrz+HP5Stm+a7dcuhQTP4vfjn05w9OXdfsNSDWk75UOwLiTPl62YpX7pXle8+8GOXDwcIJz/nhhiz3os2Zsav/SYEn6/rh/5tzPW3fsCujw9B6jvkq+rNtXfU6u3uMnT8q8RUtk2sw5smnLNk/Wg4eOSO/+g+XU6UjPOffBrj37zLX9B9LnZ0TvMeqr5Mu6fdXnpOqN/7P2z6p/Rd8jf6T0vt/J9dmX98uXdSc3Jq4hgAACCCCAAAK+ELBbrays6wtY6kQAAQQQQAABBBBIm8AfmzfL7d98bwqv799HyhUubI6vnCHqdHk/80/P6tR7hHqTPmrbRu5r1kSyhYXLnmPHZeC3U2Tm/v0pFtX163ba16mdYt6MnGGbCkKP/OhzKVumhERGnpUTJ09LzhzZ5dUX+qlzpfzWdT2zU+8TmlI6dPK4jJn3k6zev1NuKFtZ7m/eQYrmK5BSMVO3biPMlbn/PfTZV99J6xubyL13dzFj/uW3BTLj1/ky7qO3JF/eCNErBb357sfSp9cDUrxYkRRd0iuDnjUq4t2Ms13LV8jicWNM0y16PyWl6qb8M6T3INWzR122lO91eo3JV/V8+vnXEnnmrBQomM/TRNNG9aViuTKe1/480DM7LWqfUG9SbHS0/D3mUzmwYrmUbNxYGjzaS2zhYckW1XXrNpzZsiWbLzNc3Lxth7wydKSEqTEXKZRfJn7zo9SrW0NeHPRkst0PDwuTvHnziM1mTzafNxf1TEG9T6g3aYX64sSoj8earAP6PSl1atdIsZiuW7eRJUt4inkzegb9s3ZWLT9crEhBOXj4mERdjJKG9WrJ0/0eU/fC5rPup+f9Tq6TvBeS0+EaAggggAACCCCQUMBusVjMP5j1MwkBBBBAAAEEEEAAgUALzF6/QWrkyinrzp6TRZs2e4Kj19KvhZu3eFU8m/o7cY/mTeVsVJT8q2b23FCpogy7o5PM/GC0V+V1O5k9OOoe6DtvDDaH59UHyU8MeEmm/PSLPDewt/uyQf0G+QAAQABJREFUz58dXi57u2rnJmlYvqr0vaWbfLFopny95Fd5+rb7veqfbiOzB0erVCwvm7fv9Ix3xep/zfGGjVuk2Q3Xy7HjJ8XhcEj5cqU9efxxYHVePVsusXajzp2TWUNfltuGvCVOtQypPu75zRQJy5o1sewJztlUG7FBEBzVg7qtfWu5p2unBOML1AtLtPezENf/+INERZ6SWz/8SJa+N0I2zvhZatxxZ4pdN20EQXB0xqx5kj9fhHzy/jAz5kOHj8iuPSl/mUZ/UeHNV59N0cmbDN7O7D937oI8+Fhf+fqLT0Uv+ftkn2dkwdxpktWLnzXdRjAER7XnrW1ben7Wlvy5XN4bPV527t4rFXz4ZYT0vN/JvSd4LySnwzUEEEAAAQQQQCChgF3/Q5nAaEIUXiGAAAIIIIAAAggERuB8VLR8um6DvH5DYymyfZdMUTMxH2lx4zV3Zvm+lD+s1o1cVLPsWr77nvxz6rRp8/ybQ1MVnPW2nWsekB8ryKFmjTa7oaH8sXS5+VLl7Hm/yy9zF8rBA0ekapXycv9dXaRihbKmR9N/mSMzf10gp9WM0xpVK8lTj/eQnDlzyNjxX8uSv+KWQ77pxsbyyAN3S0or2MRaUp41qhvtUL+ZR6OBCpJOWPyr53VKB962kVI9gbxepVI5mTxluunChQsX5bCaDVWndjVZ/e9GExzduXuPmRFVpHAhs4Tk5O+nyep1m0z+W9u1lDtuby/h9jBZvGSZrFMB1YjcueTnX+bL4492l+079kiB/Plkx849skItQVmubEl57KHuUqZUiRSHbHGeTzGPzrBbLZNdsEJVKXl5xnXuoiVlz6rVUr5J45TLOy+knCeT5xg7YbIUL1JYVq3dIGvWbZSPRrxuZgZfeS5Hjhzy0dgvZc3ajZI7Vw7p1KGNdGzfxow+sXt7U/MbkpSxpGIZ7a2//CItBr8s2fPmlep3dpVlo0d7FxxNRRtJdjQDXIg8e0ZyKW89Q1t/rlJU3Sv9SCwtWLxUpv48W4YMHmhmYr725nvy1pDnzQxvfZ/tdpsKrO6TjZu2S+7cOaXf4w9J7VrVEqsqwbmYWO9m+a5UP1etWjRVdVY35atXryyr1vwrTRo1TFBfYi+8bSOxshn5XAM1a1Sn/QcOSZnSJeWpgS9LvycekiqVKpjzI0aNlXJlSsrtt7YzvyP1z2DBAvll5m8LJUe2rPLgvXcqv/omr76HSf2+1Mv3Xnm/k8qrK9u6bacK2n5ulkzXKzfowHQhNTP5jZefMW0l9Ye394n3QlKCnEcAAQQQQACBUBKwEhgNpdvNWBFAAAEEEEAAgYwtsGzHdtPBJuXLS9tqleX3o8fM0rbX2utNkd7NYtPt6MDo2FtvkaOvDpasaqnEqWrJT29Tatrxts5A54tRM4yWLV8lZdQyuzptU7MU7+nSUT4Y/orkypFTRo370pzft/+gfPn1j/Log3fLR+++LpVV0C67mhk2d8FiExgdPvQFGfbK01JUBelSCozqCr1ZUtc0rP7Yd/ywTFg4Q9799Xt5qk1n9+kUn1PTRoqVBShDpQrlzJ6welnWzVvigirNGjVQwdENpkc7duw2QU39775jJ05IREQeGTp4gDzTt6f88NOvsn593Kzqs2fPy4Lf/5I16zeZJZQb1K0lR4+fkK+/myYlrisqrzzfR06dilRlfvFypN7tU3vm6FHJV+K/5ZrzlSwl+pw3yeLlsr3e1BXoPBvVXpULfl9qHov++MvTHX0Pxk+aIvny5TE/PzrIfeU5Hax59qU3Zd++g/Js/15yc6vm8sXXU0UvsaxTYvfW00AiBxZvlyxXAcHIbbsk5+Wlz3MVKSJnVDDem+R1G95UFsA8nVQAesfOvdL3udfkz2X/SKz68nliacvWHTJ6zES5767OaqZpXjNzUy9Z7nTELYer7+ms2QulcYO6MuSlgVK4YH55+/1PE6vqqnPeLjF/5MhRKVv6v5+1smVKy9GjevnrlJO3baRcU8bJcU7NWp8yLe73Wa0aVUWPUc+0v3gx2tPJw0eOyUn1e08n/XP0+5Llslf9nA1++kllWVJGfzbJkze535d6pu6V9zup3616AsNLQ0dIrRpVZOyo/0kl9d9Sp1rauPcj93vaSurA2/vEeyEpQc4jgAACCCCAQCgJ2PU3HEkIIIAAAggggAACCGQEgTlqVoZOdcuUllx6qb8Fi2SR2oO0R8Gm5ry//rhOzYLKniWLmQ2UVe0NF4pp2PBREnn2rPngX89iekJ9MKsDbH17P2w4Dh0+KtcVLyJ//7NG9IfMFmvcNh179x2QWtWrSNfOHUw+i8WqlnV1qv3djqi93Wr7ZN9Sh/rgONYRK3a1Z9xBtQdp3biJrCFx20pfnsWpZ5ytWb9R6tSsKtWrVZIzZ87JyZOnZKsKjlapWM5Y1KpeVd2bqnIpNkY2bd4meSNyyz9qGd66teNmkuk99wY/00ci8uT22DVqUEfuvvM287p1yxtkhppVmp7JERMrVvt/+y7a1LEzxrvAanr2I9B17d17UObMX2y6YbFapUWz/2bOFiteWJ7o+UCCFZ/in9u5a48J6uigWrUqFaV+3ZqyXZ37df7v0r7tTabOxO7ttY5ZB2x0sqkZjzpZ1f6Zl9Ss8VBKDdTvtP8NeU7tNTpVRoz6zOzPPKhfT6lZrYqH4dixE/L6Wx+opVxvk8YN63rOX3lwQ6N6nvv1VK8e0u/ZISoQd0BKlih+ZdY0vY5RP1f2eD9r+jg2BH/Wfpj2q0z/ZZ75Uon+udD3Re/PrH8vppSyqtmi7uXl9X9v9Iz64yqgWqBA3H7Bqfl9mVTeo2qvcx0gbX1TUxNIb6VWW1i5ap0UK5r4jOSU+pzYdd4LialwDgEEEEAAAQRCTYA9R0PtjjNeBBBAAAEEEEAggwpcVB/Sfrh2reldj88mSLQKmug0TS3716PZtQVHq+TJI8tPnTL1efNH+4mTTbZ1/fvIHQ0bSMVZs2XrhQspFtXtBEuqpwJm4Wopv6qVK0qRwgU9w5q3aIl8q5ZxzZYjmxRQM6B0Onf+olxXrKj06/2gfP7V9/L9j7+oZQjbmKBam5uayQn14fGIDz+TbFmzSK9H7pUm19fz1JfUgUUsXs8eLV2omPRs3Vm6XN9Sqr81UHbWaCDZsqS8Z6VuI7OncDW7uZCaZbZz1175Vy2X2+W2duYDdR3Q3qgCoNvV+fZtW5hhnlGzSz8c84Vs2rJDqqqAaYz6GYuMF8zS9yd+YFQXstmspqz+QwcQLqqlr71L+ksFl1LMmlMt23t061ZPvnPHjqoldut4Xid34JLw5C5nqmvt2tzo2Qfxyo6XKXFdgsCovh7/3O59ccuGV7q8vLW+Xlt9QUEHVNxfhk7s3up8iSWX+kKDxZX4DMj4+a0qOJS9aCG5qGbbZ8mVWy6ePi15KpSJnyXJY91GsKSKaq/KoS89LQcOHpYPPhkvr7/5gUwc955neEPf+cgE4vR8eG9TkctL827fuTvF4KhVWbq8mO2bX/2sbd663dOFo8eOST01Q9ybpNsIlqSXdu94S2szM1d/QeROtbS4t8muvrjgTnoWvk5R8fboTc3vy6Ty6tnhOgj708+/yZ2d25tltCuUK3XV7wB3P+I/816Ir8ExAggggAACCCCQvIDVvTdG8tm4igACCCCAAAIIIICAbwX+2bHDNPB4jWrSomLcsrq3XnedzD54UA6cPHlNjTdUwQVvUiMV7Ds59FUZ06GdPNewnpQuWMAUi/Rydo237XjTl0DnaXdzS7npxhsSBEb1DLVPxk2S++6+XUYNf10eurdrgm42b9pIvhgzQvo/+bDZW++vv1ea2Zz33dNFBQtGqv3umqgg6Tg5fTpumcIEha94YXd5F7j8bulcOXYmbo/YXUcOmFps8T7AvqLaBC+9bSNBoQz4onrViqKXZd134LBUV3u96lSnZjVZumylRF2MkvJl4wJWI0d/Jnv3HpAJH78jg5/tIxW8DGSlZcguaw6vipWqW08OrFspx3fukqPbd8iRrRtUcNS7gI1Ys3vVRrBnKnZ5Wdvde//bW3mr2rO5oJrNlpZtdFwq4O5tKtemtWyeOV1io6Nl86wZUqZlC6+KpqYNryoMUKZoNW53Kl6siDz2cHfz8sChw+7TUqpEMRn41CPyzZQZZt9fz4VkDrar+6dTieLFkskVdyns8szdlDLWVfv6zlezk3ft3is7VdB1yZK/1f6jNVIqZq5724ZXlQU4k/6Sh56N2+fxB9UM+h2yYuUa0yPb5QCwXgnBndyzo92v/fGsf2b1lxt2qvv09shP1Az/PPLi00951bS394n3glecZEIAAQQQQACBIBdQX/aMWwInyMfJ8BBAAAEEEEAAAQQyuMBctdehTs+2bydPqg/c9aNnsxvMucWbt8Qts6terd67Ty1/Fyu5s2cz1/7ds9c8J/dHy8pxAaPk8uhrZy/FyEn1weij6gP+N7t1VXuOhsuY+QvliJfBUW/bSakfGfX6JeWjU6mSJdRs0fMybeYcT1fXb9wss+ctMnvuVa1UXs04tMkFFZibPWehrFXLvYYrS/dSk97MPrS5/puh42kkkYMcaoZo149flxZvDZCOE0bIpLsel/Aw72YUettGIs1mqFNVKpeX1Ws2iJ4tmu/ybN66tarJ8pVrlXuYmUmqO6wDpaVUUMCqlkD+d8Mm2bBxq8/G4bTGzapKqYHcalZy/bvvl2/79ZbvBzwpjR54RHLki1uiMqWyDi/bSKmejHD9pJp9qWceuh/6tbeprJpVpmeajZ/4vSmv97788+9V0qxxfW+rSJDP5cWsa3eBWnd3l/1qX+YJN7aUoxs2SvUu3dyXkn1OTRvJVhTAi3qf3/t7DpSvJv8g+w8eMo/vf5xlfveVKvXfF3L6P/GI3NC4gVStUl4tvTvWM5v3yq5vVvuS6mV09Xvgi6+nmHtaqvR/9VyZ3/1a/4x7kwoVKiD9+/aSWzt3l4533CfPPN1H8qpAoTfJ2za8qSuj5Kms9mu+vn5t+WjMV2ZJXf3frBJqqfiFS5apfUZPq6V358juPXFfuPFnn/W+tctWrJaH7+8qn7w/TAb1eUz9bs/lVRe8vU+8F7ziJBMCCCCAAAIIBLmA2XNUfxvO6uW3q4Pcg+EhgAACCCCAAAIIBEAgRn0Y+M7KlXJjoYJSNCJuqVbdjQblyprezFy3Xu68vqG0K1ZMRqxaLQ82bypNypeXGrlyyn3TpksXtfRtcjOk2qsZMw3nzk9xad0NKjBa/u0RUlDtxVZHzRqdE2/2T0osDdU+pbqdYE6VVdBTf8D/9IvDzDDbtm7uGe6lS7Hy3dSZMm7Ct+ZcpYplpVmThjLrtwUybPhos4eavtChXUspWqSQp1xSB2EqOBrtxdK6t9ZvJvoReeGc5MqWXbxd/lEvqavbCIakl/XUSe836k7uGaT6PrhTty4d5Z0PxshdPZ4yswrLq6CaO7n3jHW/dj8n+Heid5N5TVGnrYDYYg+q40vuqpJ8bnhXN6nbKW5fU7vea9iL5BK1J7BqI1jSgt//Ev1wp5LXFZP33n7FvExwDy5niH8u3B4mw4c8L6//733p+8xrJkeLZtdL97s6m+Ok7u3lqq56cmbLJla137DFmfLSutlUIPvOL76U6LNnzNK6V1WWyAmX1Sa6jcye8qiA1cA+j8iY8ZPl51nzzHBy5sguQwYPEH1P3P9Nsl+e2dmn10PSu/9gmbvwD7UPcPm44cf7FRQdfUmeHvym+V2pv+jw5itPm3pScsqilj8/fyFKXJf3gE0uf7eunaXTbXHLyGZR+2p7k/QeuLqNYEyP9rhLevZ5QX6eMcfsk62X2B09bqL0fOp50b8769Su5hn2lT9HVjXD88oU/+cy/qrt7veCxLvfSeXVe5mWLVNC3hr5qad6/eWHJ9SS9DrInlzivZCcDtcQQAABBBBAAIGEApY5c+a4Wrdu7fmLe8LLvEIAAQQQQAABBBDIKAJrN26XKhVKZ5TuBKQfekuIY2q2Tn4VFNVLp+oZpJEXLkpBL2ZV/LJ6jdzx/Q8+6/fUbncGfXDUjXfm7DnJpj6sDVNB5CuTnk2l91LLmeO/ZVX1fTuh9nzVs1900MDbFGNxSpQ11tvsqcqX1WkPmuBoagauZyWdP39BdGDH18nqOK4CpLt90kysvXRQBUfTC0n//GXLnjVVP2eJtW29eFFskd7PXk2sjqTOOfJEBEVwNP749Ex6/XsuV86c8U97ffzGO6Mku/piQN8nHlb7AJ/xzPb2tgIdWD13LuV9sb2tL36+nDmzB21wNP443cex6u8VF6Oi0nwv3fWk9Xnrjl3y6hsj5YO3XxUdWI9S93by99Nk3YYt8uXYkSlWy3shRSIyIIAAAggggAACRkB9Wc1KYJQ3AwIIIIAAAggggECmENCzLwrlyW0Co7rD4So4501gVOfVszqHNo1bple/Ts+k6w32WaPxvXKr4HRigVGdRwfd4gdG9Tl93wqoGWapCYzqcnpmZ7gr/bcB0XUGy6xR7ZSapGcl+SMwqvukZ486rSnPEk5N/+PqLURgNAk0fW9T+3OWWFV6Zqcz+39fcEgsT1rO6TqDYdbolWPXv/PSGhiNX5f++cx/eWns+OdTOtYzBrNkTf/ZnbrOYJ01mpSpXf29Ij3uZVL1p3T+TORZNXvYqf/DaZZJz6FmIx89fkJKliyWUlFznfeCV0xkQgABBBBAAAEExB6IDeZxRwABBBBAAAEEEEAgEAJPd7jFNPvykqXp1rwOjLrrTbdKqcgjkMWpgqNqKcJLlpSX+PQUSuZAB0ZNncnk4VL6CTjCSoqorWqtzqPpUqnTVkgcdlUnyecCjty5TRvWC+fTpS0dGHXXmS4VBlEl+SPySPbL+2indVh6SV+doqNSXsramzZ0YNRdpzf5yZM+AvXr1pSmjevJU4NeMasw6EBpreqV5anHH/S6Afd9473gNRkZEUAAAQQQQCAEBSy//fab6+abbw7BoTNkBBBAAAEEEEAgcwmwrG763S+9xO7bXuxBmlyLeo/R59q0CqkZo8l5+PqaXmI32uoQl/pfWpLeY1QHRUN1xmhazNKzjF5i1xp7SN2F6DRVq/cYddiLMmM0TXrXVkgvsevtHqSJtWT2GM2VKyhnjCY23kCf08uqersHaWJ91XuM5lBLM4fajNHELAJ5Ti/TrJdYzqNWy/DsWZrKDvFeSCUY2RFAAAEEEEAgpATsaf1LVkgpMVgEEEAAAQQQQACBoBLQS+Dqhw6SLty8RZbv2y+bIiPlrFMtZZdEyqU+MK6SJ480LHGdtKxciaBoEk6+Oq2DmmEOq+ggqUM9Yi06TJp8oFQHRO0ui9h0WfUgBU7ALLGrltm16H1InZFqzd0L6u7oGW5J3UOLuqKWCbVmF4c1D0HRwN06E9TUS+HqIKklOkosl2LE4lK/K1XwJtGklgN1WaziCg8TV5asBEUTRfLdSbOsqlpmVwfGLql7FRPrEKe6X+pXZqJJ/YoUq7pfYWp/y3B1zwiKJsrk95P6s7oINaP4WhLvhWvRoywCCCCAAAIIBLuACY7qpXX13qMkBBBAAAEEEEAAAQRCScAdJA2lMWf2sZogKYHOTHsbXSpAGqsepMwnYPYKVUFSUuYQcAfGMkdv6aUvBXgv+FKXuhFAAAEEEEAgswqYiCiB0cx6++g3AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh4K2CCo3ovAxICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQzAImOMq+o8F8ixkbAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghoASuzRnkjIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAKAgQHA2Fu8wYEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBArCypy7sAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRCQYDgaCjcZcaIAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJidTqdMCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJBL2BVKegHyQARQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABuyZwuVzC3qO8GRBAAAEEEEAAAQSSE8j2wkvJXeaanwQu/u8NP7VEMwgggAACCCCAAAIIIIAAAggggEDwCdgdDgeB0eC7r4wIAQQQQAABBBBItcCJE6dTXYYC/hfgPvnfnBYRQAABBBBAAAEEEEAAAQQQQMC/AvnzR/isQbvNZvNZ5VSMAAIIIIAAAgggkHkEUvpLJzMWM8+9pKcIIIAAAggggAACCCCAAAIIIIAAAokLsOFo4i6cRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBIBMgOBpkN5ThIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA4gIERxN34SwCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCASZgNXlcgXZkBgOAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcLUAwdGrTTiDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJBKGBVKQiHxZAQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBhAJWi8UiLK2bEIVXCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQfAJWh8MhOkBKQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIJZwMwcDeYBMjYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBAC1hZUpc3AgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIhIIAe46Gwl1mjAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEDdzlD1HeScggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECwC1htNluwj5HxIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAnEzR51OJxQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAUAtYXS6XsKxuUN9jBocAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkrAqhLBUd4KCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQ9AJWltQN+nvMABFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAQAmYZXWRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIJdwMp+o8F+ixkfAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghoARMcZWld3gwIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBDsAlY9QKvVPAX7WBkfAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiEsICJirpcrhAmYOgIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBAKAiY4yr6joXCrGSMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACoS1gZ9ZoaL8BGD0CCCCAAAIIIJCYwMWL0RJ9KUZiHbFiYZGRxIg4hwACCCCAAAIIIIAAAggggAACCCBwjQIui4jdZpcs4WGSLVuWa6zNu+IER71zIhcCCCCAAAIIIBASAg6HU86euyBhdptE5M4hYWF2YZWRkLj1DBIBBBBAAAEEEEAAAQQQQAABBBDwu4CexBkTEyvnL0TJ6chzkitndrHZzMK3PuuLnQ+7fGZLxQgggAACCCCAQKYT0IHRHNmzqEe2TNd3OowAAggggAACCCCAAAIIIIAAAgggkLkEdJwyXM0a1Y/zFy6aL+1H5Mnp00FYCY761JfKEUAAAQQQQACBTCOgl9LVM0YJjGaaW0ZHEUAAAQQQQAABBBBAAAEEEEAAgaAR0J9J6c+m9GdUvkxWp9Ppy/qpGwEEEEAAAQQQQCCTCOg9RnNkz5pJeks3EUAAAQQQQAABBBBAAAEEEEAAAQSCTUB/NqU/o/Jlsqrky/qpGwEEEEAAAQQQQCCTCMQ6Ys0eo5mku3QTAQQQQAABBBBAAAEEEEAAAQQQQCDIBMLC7KI/o/JlMpFRvdkpCQEEEEAAAQQQQCC0BSzqr4RsuRDa7wFGjwACCCCAAAIIIIAAAggggAACCARSQH82pT+j8mWyOhwOPgTzpTB1I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAhhCw2my2DNEROoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj4UsDuy8qpGwEEEEAAAQQQQAABfwisObRDVh3cJssObJMJBzaZJh8qXkUaFa8gD9dr548u0AYCCCCAAAIIIIAAAggggAACCCCAQCYQIDiaCW4SXUQAAQQQQAABBBBIWmD8ytnSa/n0qzLoIKl+6GtjGt5GkPQqIU4ggAACCCCAAAIIIIAAAggggAACoSdgDb0hM2IEEEAAAQQQQACBYBFIKjB65fh0gFTnJSGAAAIIIIAAAggggAACCCCAAAIIhLaA1eVyhbYAo0cAAQQQQAABBBC4ZoFXho0U/fBn8jYw6u5TRgmQbtmyTUa8N1piYmLcXUvV88pVa+S1ocMlKioqVeXIjAACCCCAAAIIIIAAAggggAACCCAgQnCUdwECCCCAAAIIIIDANQusXrtR9MOfAdLEltJNaSC6jN6fNLk09vOvZP6CxclluaZra//dIMOGj5JTpyLTVM+OHbvlw4/Hy6U0BlfT1CiFEEAAAQQQQAABBBBAAAEEEEAgqAQOHDwkn477Qrre84hnXOfPX5C3hr8vzVvdJo/06i9/L1/puXblgdPplOdfHCJjPvvSXNJf4naXHfDMy6K/HJ5Rk1WljNo3+oUAAggggAACCCCQyQT8FSD1dolcvdeofsRPqw4m/5fzSZN/kE1btsYvkuJxalZj6db1djm2f4MUKlQgxXrJgAACCCCAAAIIIIAAAggggAACCPhCYNfufaK/gD1/0VJP9Xv27hOHwylTvx0vt7RrJU/0fU69dniuxz/4Yep0GTthsuzaucecnj5jtlolyyHfTR4nFSuUk5deeyt+9gx1bLVYLJKaD3MyVO/pDAIIIIAAAggggECGE/BHgHTZgeQDnBpFB0UfrtfuKp/kyvYfNFjWb9wqIz8YY74lqZe+3b//oDzw8JOSr2hlefDRPnLixElT521d7pMvJ34rbTt0k0cfHyCzf5tvvm35zohRUrZyA+nctYf8+ddy0fmq120u+h8JOul8LW/uLPrbmHv37jftfDZhkjS+8RZzrMvotG37Tund5xlTl27jt3kLzPn4f+h/oLw65G2TR5f/6edZ8S9zjAACCCCAAAIIIIAAAggggAACCCQq0LRJQ3l20FMJrlWtUkkGvzBQChYsIC2aNZFde/bLhQsXE+TRL/Ss0+dfHibPDXrCc01/GfzlwYOkaOHCcne3ziboevHiRYmNdchglVd/NtKqbWdZtWatp0ygDqz6AxUdICUhgAACCCCAAAIIIJBeAjpAOmWa7wJ1Ew5sStDVK2eIugOjie1LemXZ+BXdf29X87LjLW3kjdeeN8ed7nzAPM/88SuJjDwjrw99x7xev3GLDHj2NenSuYMM6NtLzpw5a/7iv2HTVnn5+f7y+5K/5dYuD0jHW9tK5Yrl5MVX3zRfStT5dADW4XSYpXH1sQ6cvvTcAFPvh6PHmWebzSZlS5eUyV9+ImXLlpLeT139bc15C3+XUZ9MkAlj35fXXn5GSpcqacryBwIIIIAAAggggAACCCCAAAIIIJAWgXPnzpulcu/t0VveHjZYcuXKmaAavZzusy+8pj43eU4qlC+b4Jr7xZo166ROzSqSLVs2WbL0L/ln1VpZu2KhfPHZR1KmdGl3toA9m5mjAWudhhFAAAEEEEAAAQSCVmDdhi1+HZueJeoOkurjxAKjKXWoXt3aJkuFimWluf6G5K495luSEblzyz8rV4vdbpcFi/9bbqbng/dIr0d7SPVqVTxVf/jem/Jgj+4SkSeXDOr7mPR8+H65u2tnOXjoqBw7dsKTL/7BMwOflA7tb5aO7dvInPl/mEtly5SStjffJMv+/ke2bt0upyPPyo6du+MXkzIl44KhI97/RJyxTqlZo2qC67xAAAEEEEAAAQQQQAABBBBAAAEEUiPgdDnl0qVLkj17NrNk7pXL6v7400yx2exqdmiXRKs9efKU9Bn4orz60jPmesWK5WXbjl3y2tDhclHtS5o3Ik+i5fx50sqSuv7kpi0EEEAAAQQQQCA0BOrUqipDBg/02WAfKv5fMFI30mv5dBMM1UHRlAKjV5ZNrJPuvyNfUsvq6mQLs0vuXLmkg9pv4+Xn42Z46vMFC+bXT1clvTKL/keEO2XJEm4O9T8wkktZs2X1XP5+yjRpcfMdYrPb5C61HI1Oepnf+En/A+OfP3+TOrVryL0PPSVvvvV+/MscI4AAAggggAACCCCAAAIIIIAAAqkS0J9/9Hmip/yg9h1dorb+WalmfcZP3/3wsyz5c7nUrN9CHu39tNl3VG/5o5NegvexJwbKg/d1M1861+eKFS0iq5fPl/Llyki7jnfLr7Pn6dMBTXb3nqMsrRvQ+0DjCCCAAAIIIIBA0Aj4OjCqoRoVryBXLo+rA6TuFP/Yfc79rMsml6pXrWhma3bs0FYqVapgZoAeOnRYHn/0AXGKS7KEZ0mueLpd+3PZCilT6jrpdOstMvHr7z31hl8OtOq9T3fs2C0HDhyUp3o/Irt271X7dvzryccBAggggAACCCCAAAIIIIAAAgggkBqBX+cskCKFCqgvYdcUPQNUbwVkD7NJdHS0/KKCmh3UNkRTvvncU+WP02bK8uWr5PVXnhO9v+jDj/WV8mXLyMD+/+1Fumv3HsmZI4f0uP9uuXAxSn5f/Kfc0q61p45AHJiZowRGA0FPmwgggAACCCCAQPAJ+CMwqtXqFks8wKmDoskFRnVZPbM0udS/z2Py19+rpG6jm+X48RMy86dJsmfffmncoqPc0OI2FThd4Ske/+/R7mOLWDzX3Qeea2pGqec4mXy63H3du8qp05FS+/rWsv/gIVOVLluvTi0TsH33vY9l95690nfQS1KpZlN1vE9eeLafu0meEUAAAQQQQAABBBBAAAEEEEAAgSQF2ne6x3yeoDPkK1pZ3v/wUxMY7ac+Z6het7m5prcLqlWjuuzZu18eeXyQ7N13IEF9+nMKq9Vqzo37/CuzVdDYCZOlQPGqps4JX3wtGzdukZZtu0irtp1l9Kfj5X41qzTQyTJv3jxXq1atAt0P2kcAAQQQQAABBBBIQWDtxu1SpULpFHKl/fKJE6elaJECaapgyrRZplzX2zukqXxaCqVlT1G9J2lKwVHdF723hv42Y0Se3J6u6UBlzpw5JEztO+qvFBMbKzGXYhIs0avb1uf1NzL1UjdOp1Miz5zNEHt2+MuFdhBAAAEEEEAAAQQQQAABBBBAwHcCZ8+eE71FUHh43DZBuqXz5y9IjhzZ09So/uzitPpcJULtN+oOpiZX0aHDxyV//ojkslzTNbveT0l3ypvOXFNLFEYAAQQQQAABBBAIWgF/BkXdiO4gZ0ozRd35vQ2M6vz6L//x/wGgz+VVf4H3d9KB2MSCsea8CozqpP8eH4i++duC9hBAAAEEEEAAAQQQQAABBBBAwD8CuXLlvKqhtAZGdUX6s4t8+fJeVWegTrCsbqDkaRcBBBBAAAEEEEDgmgV0gFQHPVNKqQmMplQX1xFAAAEEEEAAAQQQQAABBBBAAAEEMq+AXUdr3fseZd5h0HMEEEAAAQQQQACBUBXQAVL90MvsLjuwTSYc2GQoHipeRRoVr2D2J61dtFyo8jBuBBBAAAEEEEAAAQQQQAABBBBAAIF4Ana9pC4JAQQQQAABBBBAAIHMLuAOko7N7AOh/wgggAACCCCAAAIIIIAAAggggAACPhMwy+r6rHYqRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDKIgJUldTPInaAbCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgUwETHGVpXZ8aUzkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQAAavug9VqnjJAd+gCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4BsBExV1uVy+qZ1aEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQwiYIKj7DuaQe4G3UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAZ8JWJk16jNbKkYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQwkYCc4moHuBl1BAAEEEEAAAQQCLHDo8PEA94DmEUAAAQQQQAABBBBAAAEEEEAAAQQQ8J2AnSV1fYdLzQgggAACCCCAQGYTKFqkQGbrMv1FAAEEEEAAAQQQQAABBBBAAAEEEAgiAV9/ed9KcDSI3i0MBQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEkhSwOp3OJC9yAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgWAatKwTIWxoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkKWAioy6XK8kMXEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCQcDqcDiEfUeD4VYyBgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSE7AarPZkrvONQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAoBNhwNChuI4NAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGUBOwpZeA6AggggAACCCCAAAIZXWDNoR2y6uA2WXZgm0w4sMl096HiVaRR8QrycL12Gb379A8BBBBAAAEEEEAAAQQQQAABBBBAwE8CBEf9BE0zCCCAAAIIIIAAAr4RGL9ytvRaPv2qynWQVD/0tTENbyNIepUQJxBAAAEEEEAAAQQQQAABBBBAAIHQE7C6XK7QGzUjRgABBBBAAAEEEAgKgaQCo1cOTgdIdV4SAggggAACCCCAAAIIIIAAAggggEBoCxAcDe37z+gRQAABBBBAAIF0EXhl2EjRD38mbwOj7j4FW4B0zvyF8u33P7qHxzMCCCCAAAIIIIAAAggggAACCCCAgBcCVpW8yEYWBBBAAAEEEEAAAQSSFli9dqPohz8DpIktpZt0D+Ou6DJ6f9Lk0tjPv5L5CxYnlyUg1xYs/EPGfPalp+1ZM+fKhC+/9bzmAAEEEEAAAQQQQAABBBBAAAEEEPBW4MDBQ/LpuC+k6z2PJCjy77oNMnTYCHlr+PsJzsd/seTP5dK+0z3msXzFqviXxOl0yvMvDknwGUaCDBnghdVisQhL62aAO0EXEEAAAQQQQACBIBDwV4DU2yVy9V6j+hE/rTq4Lf7Lq44nTf5BNm3ZetV5fSL+35vjHyea2cuTydUT/9qffy2XufMWeWp9f+Qw+XUGwVEPCAcIIIAAAggggAACCCCAAAIIIOC1wK7d+2THjt0yf9HSBGXWb9gkm7duVY/Ev1x+9uw5ue2OB+T1l5+Vl54fIHff30suXrzoqeOHqdNl7ITJsmvnHs+5jHZgdTgcogOkJAQQQAABBBBAAAEE0kPAHwHSZQeSD3Dqceig6MP12l01pOTK9h80WNZv3CojPxgjzVvdJjExMXJbl/vky4nfStsO3eTRxwfIot+XyJ13PyT5i1WRR3r1ly1b4voy+7f55tuW733wiZSt3EAeePhJ2bfvgGn/7+UrpXPXHpKvaGXp2XugnDhxMsl6dAG9XK5uX7fx2tDh8tWk72T8V9/Kgt//MufXrF0vb7/zgTzZ7znP+L74crLUa9RaqtdtLqM+Hme+qakv6v6PGj3WtK/79cVX35gy+t8Brw552/S18Y23yE8/z/LUxQECCCCAAAIIIIAAAggggAACCAS3QNMmDeXZQU9dNcjud98pD9x/11Xn3Sf+/Hu53HpLK2lQv440adxQ6tauLu7Zo3o26vMvD5PnBj3hzi6xsQ4ZrM7pzytate0sq9as9VwL1IGZORqoxmkXAQQQQAABBBBAIDgFdIB0yjTfBdsmHNiUAO7KGaLuwGhi+5JeWTZ+Rfff29W87HhLG3njtedFb0GxfuMWGfDsa9KlcwcZ0LeXREVFS8cObeXnqV/Ktu075eNPJ5gyZ86cNd+2PHjoiIwc/rrM/HW+zPhljrnW/5mXJG9EHlm6cLrc0LiBRKjjpOqZOes3eaLfi9Lyxhvkx28/k6ZNrjf/2KhcqbxUr1rR9Kt06ZJy6NBR2bN3v6l/2vRfZODzQ6THfV2lf5/H5NWhIzxBUN3/90aNEz22Vi2bycDnXldtR8m8hb/LqE8myIT/t3fncXaO9wLAf3NmskiELLgiSoKEuPYlQpUKVVstVW5szQ3aUL0oWjSotdWiN63ea4+tWqrW1r6kiiA0EhS1J0ToLbLInplz3+dNz5jJYlIxM5lzvs/nM3Pe877P+7zP833PH+e8v2e5fEScefr3o/faa+Vl+UeAAAECBAgQIECAAAECBAgQWJLA5EnvRd9116k/vH7f9WLye+/nnbR/cOqZ2XOLk6Pvep8cf+zxJ+KZseNj/NOj4porfxV9eveuP7e1NgoNp+pqrUq4LgECBAgQIECAQPkJPP/Xv7Voo9Io0VKQNG0vLjDaVIW23GKzPEvffuvEDl/aLqqrq/P33/rPg2LYkUNio3/vHzsP2iHW6bN2PJhNcfvhR1PiD/c80KjY04efGPvuvUdsvcUmMf65F/JjA7bYPG7/4/1xRxbE3GXQjnm5SyrnnvsfjjV6rhZnDD8pvrzj9rHLzjvGeuv2idVXWzVWW7VHXq+uK6/U6Jr3PTAq+qy9Zhz73WFx5NBDY/ttt4q7732wPs93vj0kvr7vXnHYwd/I902Y8Hb0WWtBMPSiEZdE3fy62GTjDevz2yBAgAABAgQIECBAgAABAgQILE5g7vz50a7dgucl6XhNu5qYO3de3HrbH7PnHTUx+MCvNzqtX7/14tXX38xnxpqVddZOncdbO1lztLXvgOsTIECAAAECBMpQYPNNN4yzh5/QbC0b2qt/o7KHjbkzD4amoGhTgdGFz21U0D/fLNyBcNUsKFlKJ/3gRzHkyGMjjeTcfddBMWXq9NKhRq9dunTOek0W830XXnB2XHXpRXH3fQ/HJlsPikmTJseSykkjSju0b18fmG1U6BLepB8hnTt3qj/aoUOHmDlrdv370kb7rNyU6orFSD9Onhl9X2y+2cZxyNDvxo/PH1HK5pUAAQIECBAgQIAAAQIECBAgsFiB1VZdJZ/NqnQwzaCV9t30+zvisdFjYpOtvhxHHn1Svu5oWs5njZ6rx7NjHso7fu/2tcFxT4PO3KUyWvo1HzlqzdGWZnc9AgQIECBAgED5CjR3YDTJDezVdxHAUoC0qRGjizu3YWFp6tonn3om3powseHu+u00UjRNu7vNgK2yPG/X71/SRlrbc+Q1N8Smm2wU550zPM82YeLb+YjTxZWzw/YD480J78SlV1wTL738Sv2Phj69187W5XghXst6W86cOavR5Xbeaft8rdSbfndbpGl5H/rT41ngdqdGeRZ+8+y45+PFF1+O7x59RL5WyNhxzy2cxXsCBAgQIECAAAECBAgQIECAQMyZMyduu+OubITo3Nhmmy3zZxrp+cQrr7wWD416NF9/9ObfXhVvvPx0vDD2z3HlJRfGt4ceHGedcXK8+daEmDtnbgw5bHB8/4Rj4pE/j2510ZrSVGGtXhMVIECAAAECBAgQaPMCLREYTUhbrLFocDTtTwHSplIaWfppKa3ZedIpZ8UWA3eNvz77SJ61YWfCM079Xr6+5/U33hr77rVrfVGlPFVRVb8vbUydOi0ez3pOnnr6T/L9RwwZHAO32SqWVM6hBx+QB0B/eMb5ef699/xK7PqVnWK/ffeIu+9/MAZsv3tcf9Uv82Olf/9xwH7x+usT4ujjTs13pbVHj/r20NLhqK9b1Sd1S8HfE08+Mx/5mgLCF55/Zn1+GwQIECBAgAABAgQIECBAgEB5C+yxz0Hx5Jhn80Z277lB9pzi+EjPJPpt/MX6hqf9d9xybfxbNjL0iKNOjDGP3ZOPAE3PNNLziZT+Z8R50aNH9/pz0kZ6DlEoFPJ9L774tzj5tHOzMnrE+//3Qdz068sb5W2NN1UPPPBAcdCgQfWVbI1KuCYBAgQIECBAgEDTAuNffC369+3ddMbPmOODD6ZEz9VX+Uxn33z7Xfl5B+y752c6/7Oc1NQI0cWVmdYkbSo4ms5LPSHTtLQLr+1ZKjON3GzXvl20q6kp7WryNZ1TXV2INOVtKX1aOakOs7OemSt16VLKnk3TWxcfZeucdu/erT7gWX8w20g9OdOUwB07dmy4e4nbqbyp06YvF+t9LLGSDhAgQIAAAQIECBAgQIAAAQKtLjBjxsxGS/rMztYPTWlpnkGk5w9TpkyNrtl6o6Wg6ac1aPJ7/8gCrl0/LcsyHatJD09KPcmXqSQnEyBAgAABAgQIVKxASwZFS8ilIOfSjBZN5yxtYDTlTWtzltbnTO8XTp06rbDwribfL+6cxe0rFbS4OqQfEAv3xizlT68NA68N9y9pO5XXLfthIhEgQIAAAQIECBAgQIAAAQIEPk2gc+dOjQ4vTVC0dEJ6/pA6ei8vKatPQXB0ebkb6kGAAAECBAgQIPAvCaQAaQp6NpX+lcBoU2U5ToAAAQIECBAgQIAAAQIECBAg0HYFatJQVokAAQIECBAgQIBAWxVIAdL0l6bZfXLSq3H1pJfypgzt1T8G9uqbr0+6Wc9122rz1JsAAQIECBAgQIAAAQIECBAgQOBzFMin1f0cy1MUAQIECBAgQIAAgVYRKAVJL2+Vq7soAQIECBAgQIAAAQIECBAgQIBAWxAoWG+0LdwmdSRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYFkF8uCoqXWXldH5BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgs7wKFVMFCIX9Z3uuqfgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEPjMAnlUtFgsfuYCnEiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIG2IJAHR6072hZulToSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILAsAgWjRpeFz7kECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLQVAcHRtnKn1JMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgWUSqDGl7jL5OZkAAQIECBAgUFYCk9/7R1m1R2MIECBAgAABAgQIECBAgAABAgQINBQQHG2oYZsAAQIECBAgUOECPVdfpcIFNJ8AAQIECBAgQIAAAQIECBAgQKA1BZq7836hrq6uNdvn2gQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgRgUKWWuRCLkKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHWFMgjo8VisTXr4NoECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBodoFCbW1tVFVVNfuFXIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtKVCorq5uzeu7NgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBFpEwIKjLcLsIgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItLaA4Ghr3wHXJ0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgRQRqWuQqLkKAAAECBAgQIECgGQXGTX49xr77ajw56dW4etJL+ZWG9uofA3v1jcO33K0Zr6xoAgQIECBAgAABAgQIECBAgACBtiRQUywW21J91ZUAAQIECBAgQIBAI4GRf7k3ho25s9G+9CYFSdNfOnbZgL0FSRcRsoMAAQIECBAgQIAAAQIECBAgUHkCBcHRyrvpWkyAAAECBAgQKBeBJQVGF25fCpCmvBIBAgQIECBAgAABAgQIECBAgEBlCxSyVNkCWk+AAAECBAgQILDMAmec9/NIfy2ZljYwWqqTAGlJwisBAgQIECBAgAABAgQIECBAoHIFClVVVWH0aOV+ALScAAECBAgQIPB5CDw7/sVIfy0ZIF3cVLpNtSWdk9Ynbe708KhH47Irr23uyyifAAECBAgQIECAAAECBAgQIPCZBH570y2xxz4HxSFDhsWDDz1SX8Zjo8fk+9OxMU+Prd/fcOOaa38TO+y8dww75sR4480J+aEZM2bG+T8bke8/Ytjx8dSYvzQ8ZbnaLtTW1kYKkEoECBAgQIAAAQIEllWgpQKkSztFblprNP01TGPffbXh2yVuL0sHwtFPjIkHHvzTEstujgPLUt/mqI8yCRAgQIAAAQIECBAgQIAAgeVT4JVXX49bb787/veXP42jhh0eBx46LGbOnBXTp38ce+//zTjr9B/Eaad8LwYfNixmzZrVqBEpeHrxJSNj5OW/iG232Sr+88j/irlz58aEiW9HbW1d3HLjyNh9t53jO8eenL2vbXTu8vImHzm6vFRGPQgQIECAAAECBNq+QEsESJ+c1HSAMwVFD99yt0VAmzr3L2PHxTcGD40ea/SPbx5+TEydNi2Gn35enPLDs/Oy3nv/73kvyEdHP5W/Tz0tt91x91hng63j3B9fFNdef2OMvO7GePiRJ/J848a/EJMmTc5/LHTvuUEMPvRbkX6EpDRx4jt5njTKdKMtdogtB+4So/70WBz3vR/m5aUel6WgZ7reV/c8MN9/5jk/y39glM6/+fd3xMZb7hip52bqmbnfAUMiXetbR58QH3zwYX4t/wgQIECAAAECBAgQIECAAAECSaBf33Xjd7+5MnqvvVZ8abttYvNN+se48c/H6KfGxF677xxbb7V5bLftgNhis40WGT2a8h24/9divXX7xJDDBkcaMfr6G2/Fhv3Xj+GnnhCrrrpKfPlL28WbE97JA67z59fmz1XSc4+dv7pfjB03vtVvQqH0sKXVa6ICBAgQIECAAAECZSOQAqQ3335Xs7Xn6kkvNSp74RGipcDo4tYlXfjchgW9NWFifGXPwVFTUxO33nhl7LbrTrHySivFpMnvxduTJuVZ58+bHy+8+Er2BX9G/P3v/4hjjh8ehwzeP27+zRWx2aYbxRezHxUbrL9ebLRhvzj3zFNirbXWzHpdHhZvv/1OXHflL/IfBrt9bXD+OnfevLysG357S5yR/YD4aMrU2P+gI6Nb965x2MHfiJ/996Xx1sSJ2Q+KCbHP/kNipx23i2uu+EVcd8PN8ftb7ozS+Sefdm6c86OT4yu77BTHf/+06NZ15Xh81J3xxW23jq7ZtkSAAAECBAgQIECAAAECBAgQaChQmlX2ww8/imefeyn6b9AvJk96L/quu059tvX7rheT33u//n3a2PjfN4jnXngx5s2fH+nclN7IgqMpffzxjHyZoUOGHB0/PW94dOmyYjz2+BPxzNjxMf7pUXHNlb+KPr1753lb867Bs0wAABDUSURBVF9Nac3REkJrVsa1CRAgQIAAAQIEykfg+b/+LQ7Yd88Wa1DDUaJpe3GB0aYq88STT+dZfnLuadmX9bWbyp4FHleKNXquFpdecV10XmGF+Mb+++Rf/FdfbdWYtkLH2CHrKfnKK6/lvSVTYHSvPb8aXbt1y6eoee75v8Yqq/TIr3HeWafGl7bfNvvB8FSMy/afmU1fk9bsuPiSq+Plv70eUz5a8GOjqlDIe3Km4OfYZ5+LLbfcLD//5z87K/bde498e8AWm8f1N96a9QJdJw49+MCorq5ush0yECBAgAABAgQIECBAgAABApUnkKa9PenkH8WpJx0T3bp1jblZwLNdu0+eI9S0q8mmzJ3XCGZgNpXuH+9+IDYfMCgLpPaJzp07RYcOHfI8dcW6fIrdTp1WiDffmJDPetWv33rx6utvRpoF67BDDowvfKFXo/Ja400+clRgtDXoXZMAAQIECBAgUL4Cm2+6YZw9/IRma+DQXv0blT1szJ15MDQFRZsKjC58bsOCZs+anb/t2LFjw9359pw5cxfZ1759+3j04T/EMUcdHuecPyL23Pfg+mlwS5lTT8qU2nVol7927NA+f52XjRpdOHXouODHRNrfISs7papiMebMnpNvd+7cOVbq0iX+6+jDs0Drrvm+9K9H92712xdecHZcdelFcfd9D8cmWw/Kp/StP2iDAAECBAgQIECAAAECBAgQIPBPgQsuujimTZ8exx97VL5ntWxK3MmT/17v8+7k9yPta5hSIPSC88+McWNGxW03X5sfWnfd3vlr/sziO9+K32frjj72xJj4SzZidI2eq8ezYx7Kp+FNM2ndc++DDYtrle2CnuSt4u6iBAgQIECAAIGyFWjuwGiCG9ir7yJ+pQBpUyNGF3duqbBtst6PKZ3/01/ESy+/Er+7+fa8l2P/bJrctIbo6OyL/SWXXV3KHh99NCVuue0P8fVshOwJxw3Lp8hNU8ikUadjx70Qr2U9I9f6wprRdeUuccWV1+frgf7vpSPz8zfNpuBd2lSq15TsejsP2jFSr8vNN9tkkdNTj8+R19wQm26yUZx3zvD8+ISJby+Szw4CBAgQIECAAAECBAgQIECgsgUu/PmvYtQjo2PkFb/MRosu6NC9zTZbxh/ueSB/npFmwnpo1KP5+qNz5syJ2+64Kx8VOnv27Hjl1dezJYmq4667788Rv7DmmnHP/Q/Hs+Oey9+n6XbTkkQ12SjUN9+aEHOzDudpfdLvn3BMPPLn0a0OX5PWHK2rq4tCNkWXRIAAAQIECBAgQGBZBFoiMJrqt8UaiwZH0/4UIG0qNZx+d+G8G/ZfPy67+KeR1vBMU9Ou369PbL/9wHw63Nv/eG/s9fVvxjHDhuSnpdlX3pn0blz369/FD354bh4AHXHBWfm0uvvtu0fcff+DMWD73eP6q34Zd91+Qxw+7LjYfZ9D8ml477njhnwEaFqzdImp6pMjad2PKy+5ME465az4+cVX5Ne65carsmt1+SRTtjV16rR4fPSYOPX0n+T7jxgyONJ0NxIBAgQIECBAgAABAgQIECBAoCTw5FPPxI8v+FX+tne/rfPX/fbeLa66bESccer38ucZaef/jDgvevTongdDjzjqxBjz2D1Rm82Qtf9BR+TndM+m4r125MV5oHT11VaJ4048LT7MOna/m40+PfHYb8emG28U9973UP6c5d9W7RHv/98HcdOvL8/Pbc1/Vffff39xl112CVPrtuZtcG0CBAgQIECAQNMC4198Lfr37d10xs+Y44MPpkTP1RtPlbK0Rd18+1151pZcY7SpEaKLq/tlA/bOp91d3LGG+9IIzGnTpmdriq5c/z057UtT66Z1MxZOU7KgZJcVOzda3zN1QEwjS7tnU96WvmtPnTYtVl5ppYVPX+r3qcwpU6bm9fq0zo0zZ87K6lKoX/NjqS8gIwECBAgQIECAAAECBAgQIFDxAml0aEoNlx2aMWNmvr5o2p+eT0z/+OPFPuOYPv3j7HlE+0hLEZXS0j7PKOWf/N4/sqBs19Lbz/21Jj1UKT2s+dxLVyABAgQIECBAgEBFCLRkULQEWhoBujSjRdM5SxsYTXnT0hPdst6PDVPat7jAaMrTdeVFA57pe3bqXdkwLUtgNJWTykzB1qbSkurZ1HmOEyBAgAABAgQIECBAgAABAgQaBkVLGp07dypt5s8nlvSMo0uXFevzlTaW9nlGKX9zvxZStFYiQIAAAQIECBAg0BYFUoA0BT2bSv9KYLSpshwnQIAAAQIECBAgQIAAAQIECBBouwL5mqNtt/pqToAAAQIECBAgUOkCKUCa/tI0u09OejWunvRSTjK0V/8Y2Ktvvj7pZj3XrXQm7SdAgAABAgQIECBAgAABAgQIEMgEakyp63NAgAABAgQIECBQDgKlIOnl5dAYbSBAgAABAgQIECBAgAABAgQIEGgWgUIKjppat1lsFUqAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwHIkUEh1SQuhSgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEChngTwqWiwWy7mN2kaAAAECBAgQILAUAsWqCN8LlwJKFgIECBAgQIAAAQIECBAgQIAAgWYRSM+m0jOq5kx5cNS6o81JrGwCBAgQIECAQNsQqKmuiXnz5reNyqolAQIECBAgQIAAAQIECBAgQIBA2QmkZ1PpGVVzpoLRAc3Jq2wCBAgQIECAQNsR6NC+XcyYObvtVFhNCRAgQIAAAQIECBAgQIAAAQIEykogPZtKz6iaMwmONqeusgkQIECAAAECbUhghRU6xLz5tVmAdFYbqrWqEiBAgAABAgQIECBAgAABAgQIlINAeiaVnk2lZ1TNmWpMqducvMomQIAAAQIECLQtgS4rdorpH8+MuXPnR+dOHaNdu5rwfbFt3UO1JUCAAAECBAgQIECAAAECBAi0FYE0w22aSjeNGE2B0fRsqrmT4GhzCyufAAECBAgQINCGBKqrC9F15RVj1qw5MWXajJhfOz+qim2oAapKgAABAgQIECBAgAABAgQIECDQZgSKVZGvMZqm0u268gotUu+aurq6FrmQixAgQIAAAQIECLQdgTR9SXNPYdJ2NNSUAAECBAgQIECAAAECBAgQIECgXAQKWSqXtmgHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEliiQR0bTfL4SAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEylmgUFtbG1VV2YS+EgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBMpYoFBdXV3GzdM0AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQILBCw4KhPAgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECFSEgOFoRt1kjCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQHPUZIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgIgQKxWKxIhqqkQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIVLaA4Ghl33+tJ0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFAxAoUsVUxjNZQAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcoVKFRVVYWpdSv3A6DlBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBCpFoFBbWxspQCoRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgnAXykaPl3EBtI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQBIomFLXB4EAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUoQsOZoJdxlbSRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYMHIUWuO+iQQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFDuAoXq6upyb6P2ESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYMHI0bq6OhQECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAoa4FCsVgM0+qW9T3WOAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEMoFClgRHfRQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECh7gYIpdcv+HmsgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKZQD6tLgkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAiUu0DBeqPlfou1jwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJJAHR02t68NAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC5CxRSAwuF/KXc26p9BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhUsEAeFS0WixVMoOkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECFSCQB4cte5oJdxqbSRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQ2QIFo0Yr+wOg9QQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQqRUBwtFLutHYSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqHCBgil1K/wToPkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEKkRAcLRCbrRmEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKh0gUJdXV2lG2g/AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIVIFDIUgU0UxMJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKh0gTwyWiwWK91B+wkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQKHOBQm1tbVRVVZV5MzWPAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFKFyhUV1dXuoH2EyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQAQIWHK2Am6yJBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhECI76FBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUBECgqMVcZs1kgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBQrFYpECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGyFxAcLftbrIEECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCSBQpZIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoOwFClVVVWFq3bK/zxpIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoOIFCrW1tZECpBIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTKWSAfOVrODdQ2AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIJIGCKXV9EAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqAQBa45Wwl3WRgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEFowcteaoTwIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuUuUKiuri73NmofAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEFowcraurQ0GAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGyFvh/AvWHtoXgO0gAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "45d69561-52ef-430b-9401-e188c9d126d0", + "metadata": {}, + "source": [ + "![image.png](attachment:5b91a161-f657-45a8-b48d-ad595e00e7e6.png)" + ] + }, + { + "cell_type": "markdown", + "id": "83d8259b-1449-40c2-87f7-d34c81d11903", + "metadata": {}, + "source": [ + "After the run success, lets check whether the feature tables are populated.\n", + "\n", + "(TODO, the output schema has a werid \"FS_DBT_\" prefix that comes from nowhere)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "da97a2f6-af82-4258-9ba5-9e1b3c13d70b", + "metadata": {}, + "outputs": [], + "source": [ + "# replace 'transactions' with 'customers' or 'terminals' to show respective table.\n", + "session.sql(f\"SELECT * FROM {FS_DEMO_DB}.FS_DBT_{TEST_DATASET_SCHEMA}.transactions\").show()" + ] + }, + { + "cell_type": "markdown", + "id": "5c85ca3a-baf5-4fb1-a74a-d45a90182bb1", + "metadata": {}, + "source": [ + "## Register feature tables as Feature Views\n", + "\n", + "Now lets create Feature Views with Feature Store. Since DBT is responsible for executing the pipeline, the feature tables will be registered as external pipeline. Underlying, it creates views, instead of dynamic tables, from the feature tables." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1d04b1b8-dd0d-47a5-a980-3c3f34b276f8", + "metadata": {}, + "outputs": [], + "source": [ + "from snowflake.ml.feature_store import (\n", + " FeatureStore,\n", + " FeatureView,\n", + " Entity,\n", + " CreationMode\n", + ")\n", + "\n", + "fs = FeatureStore(\n", + " session=session, \n", + " database=FS_DEMO_DB, \n", + " name=FS_DEMO_SCHEMA, \n", + " default_warehouse='PUBLIC',\n", + " creation_mode=CreationMode.CREATE_IF_NOT_EXIST,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "be6784b7-b96e-4c0a-9b8e-44a48b3d5951", + "metadata": {}, + "source": [ + "Register entities for features." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "806ad73d-b0fc-48ea-b63d-0f9669828486", + "metadata": {}, + "outputs": [], + "source": [ + "customer = Entity(name=\"CUSTOMER\", join_keys=[\"CUSTOMER_ID\"])\n", + "terminal = Entity(name=\"TERMINAL\", join_keys=[\"TERMINAL_ID\"])\n", + "transaction = Entity(name=\"TRANSACTION\", join_keys=[\"TRANSACTION_ID\"])\n", + "fs.register_entity(customer)\n", + "fs.register_entity(terminal)\n", + "fs.register_entity(transaction)\n", + "fs.list_entities().show()" + ] + }, + { + "cell_type": "markdown", + "id": "96f49f77-25cf-4c0c-a1d0-a04808a222a2", + "metadata": {}, + "source": [ + "Define feature views. `feature_df` is a dataframe object that selects from a subset of columns of feature tables. `refresh_freq` is None indicates it is static and won't be refreshed. Underlying it will create views on the feature tables." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "399984e1-a89c-486f-9370-fef9a8921c99", + "metadata": {}, + "outputs": [], + "source": [ + "# terminal features\n", + "terminals_df = session.sql(f\"\"\"\n", + " SELECT \n", + " TERMINAL_ID,\n", + " EVENT_TIMESTAMP,\n", + " TERM_RISK_1,\n", + " TERM_RISK_7,\n", + " TERM_RISK_30\n", + " FROM {FS_DEMO_DB}.FS_DBT_{TEST_DATASET_SCHEMA}.terminals\n", + " \"\"\")\n", + "terminals_fv = FeatureView(\n", + " name=\"terminal_features\", \n", + " entities=[terminal],\n", + " feature_df=terminals_df,\n", + " timestamp_col=\"EVENT_TIMESTAMP\",\n", + " refresh_freq=None,\n", + " desc=\"A bunch of terminal related features\")\n", + "\n", + "# customer features\n", + "customers_df = session.sql(f\"\"\"\n", + " SELECT \n", + " CUSTOMER_ID,\n", + " EVENT_TIMESTAMP,\n", + " CUST_AVG_AMOUNT_1,\n", + " CUST_AVG_AMOUNT_7,\n", + " CUST_AVG_AMOUNT_30\n", + " FROM {FS_DEMO_DB}.FS_DBT_{TEST_DATASET_SCHEMA}.customers\n", + " \"\"\")\n", + "customers_fv = FeatureView(\n", + " name=\"customers_features\", \n", + " entities=[customer],\n", + " feature_df=customers_df,\n", + " timestamp_col=\"EVENT_TIMESTAMP\",\n", + " refresh_freq=None,\n", + " desc=\"A bunch of customer related features\")\n", + "\n", + "# transaction features\n", + "transactions_df = session.sql(f\"\"\"\n", + " SELECT \n", + " TRANSACTION_ID, \n", + " EVENT_TIMESTAMP, \n", + " TX_AMOUNT,\n", + " TX_FRAUD\n", + " FROM {FS_DEMO_DB}.FS_DBT_{TEST_DATASET_SCHEMA}.transactions\n", + " \"\"\")\n", + "transactions_fv = FeatureView(\n", + " name=\"transactions_features\", \n", + " entities=[transaction],\n", + " feature_df=transactions_df,\n", + " timestamp_col=\"EVENT_TIMESTAMP\",\n", + " refresh_freq=None,\n", + " desc=\"A bunch of transaction related features\")" + ] + }, + { + "cell_type": "markdown", + "id": "49df8d25-bba1-4fcf-9b80-df292d4d6cbf", + "metadata": {}, + "source": [ + "Register these feature views in feature store so you can retrieve them back later even after notebook session is destroyed. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a7c18556-290b-418a-9dd8-b98b0e9acf8d", + "metadata": {}, + "outputs": [], + "source": [ + "terminals_fv = fs.register_feature_view(\n", + " feature_view=terminals_fv,\n", + " version=\"1\",\n", + " block=True)\n", + "\n", + "customers_fv = fs.register_feature_view(\n", + " feature_view=customers_fv,\n", + " version=\"1\",\n", + " block=True)\n", + "\n", + "transactions_fv = fs.register_feature_view(\n", + " feature_view=transactions_fv,\n", + " version=\"1\",\n", + " block=True)" + ] + }, + { + "cell_type": "markdown", + "id": "59befe8d-86a4-41f8-aeff-73d3756a2f48", + "metadata": {}, + "source": [ + "Lets check whether feature views are reigstered successfully in feature store. You will see 3 registerd feature views and their status is \"static\"." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bdab88b1-2b92-41ac-88d1-c91d25f3155e", + "metadata": {}, + "outputs": [], + "source": [ + "fs.list_feature_views().select([\n", + " \"NAME\", \n", + " \"VERSION\", \n", + " \"ENTITIES\", \n", + " \"REFRESH_FREQ\", \n", + " \"STATUS\", \n", + " \"PHYSICAL_NAME\"]).show()" + ] + }, + { + "cell_type": "markdown", + "id": "0f96f221-274d-4a0e-8e46-72748e1f7a92", + "metadata": {}, + "source": [ + "## Generate training dataset with point-in-time correctness\n", + "We can now generate training dataset with feature views. Firstly, we create a mock spine dataframe which has 3 columns: instance_id, customer_id and event_timestamp. Note the event_timestamp of 3 rows are same: \"2019-09-01 00:00:00.000\". Later, we will update the source table (`CUSTOMER_TRANSACTIONS_FRAUD`) and feature tables with newer events. We will still use this `spine_df` with same timestamp to generate dataset but it is expected to output a different training data. The new training data will join spine_df with latest feature values from newer events. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6d04c095-0702-4fe5-905d-fb8e576710a5", + "metadata": {}, + "outputs": [], + "source": [ + "spine_df = session.create_dataframe(\n", + " [\n", + " (1, 2443, \"2019-09-01 00:00:00.000\"), \n", + " (2, 1889, \"2019-09-01 00:00:00.000\"),\n", + " (3, 1309, \"2019-09-01 00:00:00.000\")\n", + " ], \n", + " schema=[\"INSTANCE_ID\", \"CUSTOMER_ID\", \"EVENT_TIMESTAMP\"])\n", + "\n", + "old_training_data = fs.generate_dataset(\n", + " spine_df=spine_df,\n", + " features=[customers_fv],\n", + " materialized_table=\"customer_fraud_training_data\",\n", + " spine_timestamp_col=\"EVENT_TIMESTAMP\",\n", + " spine_label_cols = []\n", + ")\n", + "old_training_data.df.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b0a7eab2-493b-44a4-ae5c-08bd25daa93a", + "metadata": {}, + "source": [ + "## Update features from DBT\n", + "Now we are injecting newer events into source, then refresh the pipeline and generate new feature values. We firstly check how many rows the source table currently has." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f62a45b2-b966-4230-959f-206e54202599", + "metadata": {}, + "outputs": [], + "source": [ + "session.sql(f\"SELECT COUNT(*) FROM {fraud_data_path}\").show()" + ] + }, + { + "cell_type": "markdown", + "id": "5256584e-4048-4d1c-930d-7cb312b36e4d", + "metadata": {}, + "source": [ + "We inject new events with timestamp later than '2019-07-01'. Then check how many rows in the source table after the injection." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5494dd0a-dce3-40c2-8810-6aa1a8d7f31b", + "metadata": {}, + "outputs": [], + "source": [ + "session.sql(f\"\"\"\n", + " INSERT INTO {fraud_data_path}\n", + " SELECT *\n", + " FROM {raw_data_path}\n", + " WHERE TX_DATETIME >= '2019-07-01'\n", + "\"\"\").collect()\n", + "session.sql(f\"SELECT COUNT(*) FROM {fraud_data_path}\").show()" + ] + }, + { + "cell_type": "markdown", + "id": "3df454f3-590f-4547-8051-5eb053b18d2b", + "metadata": {}, + "source": [ + "Then, we go back to DBT and the pipelines again." + ] + }, + { + "cell_type": "markdown", + "id": "810025ca-7d9d-4e99-b9af-1643d0647c29", + "metadata": {}, + "source": [ + "## Generate new training dataset\n", + "We don't need to update feature views because the underlying tables are updated by DBT. We only need to generate dataset again with same timestamp and it will join with newer feature values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "69299109-9cd9-433d-b38c-c980af589765", + "metadata": {}, + "outputs": [], + "source": [ + "new_training_data = fs.generate_dataset(\n", + " spine_df=spine_df,\n", + " features=[customers_fv],\n", + " materialized_table=\"customer_fraud_training_data\",\n", + " spine_timestamp_col=\"EVENT_TIMESTAMP\",\n", + " spine_label_cols = [],\n", + " save_mode=\"merge\",\n", + ")\n", + "new_training_data.df.show()" + ] + }, + { + "cell_type": "markdown", + "id": "57aee19d-b0b5-4d9c-bfc7-4714a57aab2d", + "metadata": {}, + "source": [ + "## Cleanup notebook" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c942f02a-10ad-4cae-b15f-69b530193ae7", + "metadata": {}, + "outputs": [], + "source": [ + "session.sql(f\"DROP DATABASE IF EXISTS {FS_DEMO_DB}\").collect()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/snowflake/ml/feature_store/notebooks/customer_demo/DBT_External_Feature_Pipeline_Demo.pdf b/snowflake/ml/feature_store/notebooks/customer_demo/DBT_External_Feature_Pipeline_Demo.pdf new file mode 100644 index 00000000..97666219 Binary files /dev/null and b/snowflake/ml/feature_store/notebooks/customer_demo/DBT_External_Feature_Pipeline_Demo.pdf differ diff --git a/snowflake/ml/feature_store/notebooks/customer_demo/fraud_transactions.csv.gz b/snowflake/ml/feature_store/notebooks/customer_demo/fraud_transactions.csv.gz new file mode 100644 index 00000000..be7e05cb Binary files /dev/null and b/snowflake/ml/feature_store/notebooks/customer_demo/fraud_transactions.csv.gz differ diff --git a/snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py b/snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py index 0713911d..dad0409c 100644 --- a/snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +++ b/snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py @@ -2,6 +2,7 @@ import os import posixpath from string import Template +from typing import List import importlib_resources @@ -36,6 +37,7 @@ def __init__( session: snowpark.Session, artifact_stage_location: str, compute_pool: str, + external_access_integrations: List[str], ) -> None: """Initialization @@ -47,6 +49,7 @@ def __init__( artifact_stage_location: Spec file and future deployment related artifacts will be stored under {stage}/models/{model_id} compute_pool: The compute pool used to run docker image build workload. + external_access_integrations: EAIs for network connection. """ self.context_dir = context_dir self.image_repo = image_repo @@ -54,6 +57,7 @@ def __init__( self.session = session self.artifact_stage_location = artifact_stage_location self.compute_pool = compute_pool + self.external_access_integrations = external_access_integrations self.client = snowservice_client.SnowServiceClient(session) assert artifact_stage_location.startswith( @@ -202,4 +206,8 @@ def _construct_and_upload_job_spec(self, base_image: str, kaniko_shell_script_st def _launch_kaniko_job(self, spec_stage_location: str) -> None: logger.debug("Submitting job for building docker image with kaniko") - self.client.create_job(compute_pool=self.compute_pool, spec_stage_location=spec_stage_location) + self.client.create_job( + compute_pool=self.compute_pool, + spec_stage_location=spec_stage_location, + external_access_integrations=self.external_access_integrations, + ) diff --git a/snowflake/ml/model/_deploy_client/image_builds/server_image_builder_test.py b/snowflake/ml/model/_deploy_client/image_builds/server_image_builder_test.py index 60a4271c..e553903f 100644 --- a/snowflake/ml/model/_deploy_client/image_builds/server_image_builder_test.py +++ b/snowflake/ml/model/_deploy_client/image_builds/server_image_builder_test.py @@ -16,6 +16,7 @@ def setUp(self) -> None: self.compute_pool = "test_pool" self.context_tarball_stage_location = f"{self.artifact_stage_location}/context.tar.gz" self.full_image_name = "org-account.registry.snowflakecomputing.com/db/schema/repo/image:latest" + self.eais = ["eai_1"] @mock.patch( # type: ignore[misc] "snowflake.ml.model._deploy_client.image_builds.server_image_builder.snowpark.Session" @@ -33,6 +34,7 @@ def test_construct_and_upload_docker_entrypoint_script(self, m_session_class: mo session=m_session, artifact_stage_location=self.artifact_stage_location, compute_pool=self.compute_pool, + external_access_integrations=self.eais, ) shell_file_path = os.path.join(context_dir, constants.KANIKO_SHELL_SCRIPT_NAME) diff --git a/snowflake/ml/model/_deploy_client/snowservice/deploy.py b/snowflake/ml/model/_deploy_client/snowservice/deploy.py index 182c417b..fafa3e93 100644 --- a/snowflake/ml/model/_deploy_client/snowservice/deploy.py +++ b/snowflake/ml/model/_deploy_client/snowservice/deploy.py @@ -465,6 +465,7 @@ def _build_and_upload_image(self, context_dir: str, image_repo: str, full_image_ session=self.session, artifact_stage_location=self._model_artifact_stage_location, compute_pool=self.options.compute_pool, + external_access_integrations=self.options.external_access_integrations, ) else: image_builder = client_image_builder.ClientImageBuilder( @@ -587,6 +588,7 @@ def _deploy_workflow(self, image: str) -> str: spec_stage_location=spec_stage_location, min_instances=self.options.min_instances, max_instances=self.options.max_instances, + external_access_integrations=self.options.external_access_integrations, ) logger.info(f"Wait for service {self._service_name} to become ready...") client.block_until_resource_is_ready( diff --git a/snowflake/ml/model/_deploy_client/snowservice/deploy_options.py b/snowflake/ml/model/_deploy_client/snowservice/deploy_options.py index b96ea8c5..3d8ae330 100644 --- a/snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +++ b/snowflake/ml/model/_deploy_client/snowservice/deploy_options.py @@ -1,6 +1,6 @@ import inspect import logging -from typing import Any, Dict, Optional +from typing import Any, Dict, List, Optional from snowflake.ml._internal.exceptions import ( error_codes, @@ -16,6 +16,7 @@ def __init__( self, compute_pool: str, *, + external_access_integrations: List[str], image_repo: Optional[str] = None, min_instances: Optional[int] = 1, max_instances: Optional[int] = 1, @@ -34,7 +35,15 @@ def __init__( Args: compute_pool: SnowService compute pool name. Please refer to official doc for how to create a - compute pool: https://docs.snowflake.com/LIMITEDACCESS/snowpark-containers/reference/compute-pool + compute pool: + https://docs.snowflake.com/en/developer-guide/snowpark-container-services/working-with-compute-pool + external_access_integrations: External Access Integrations name used to build image and deploy the model. + Please refer to the doc for how to create an External Access Integrations: https://docs.snowflake.com/ + developer-guide/snowpark-container-services/additional-considerations-services-jobs + #configuring-network-capabilities . + To make sure your image could be built, access to the following endpoint must be allowed. + docker.com:80, docker.com:443, anaconda.com:80, anaconda.com:443, anaconda.org:80, anaconda.org:443, + pypi.org:80, pypi.org:443 image_repo: SnowService image repo path. e.g. "///". Default to auto inferred based on session information. min_instances: Minimum number of service replicas. Default to 1. @@ -70,6 +79,7 @@ def __init__( self.model_in_image = model_in_image self.debug_mode = debug_mode self.enable_ingress = enable_ingress + self.external_access_integrations = external_access_integrations if self.num_workers is None and self.use_gpu: logger.info("num_workers has been defaulted to 1 when using GPU.") diff --git a/snowflake/ml/model/_deploy_client/snowservice/deploy_test.py b/snowflake/ml/model/_deploy_client/snowservice/deploy_test.py index 20c5132c..f5f5bfb1 100644 --- a/snowflake/ml/model/_deploy_client/snowservice/deploy_test.py +++ b/snowflake/ml/model/_deploy_client/snowservice/deploy_test.py @@ -29,6 +29,7 @@ def setUp(self) -> None: self.options: Dict[str, Any] = { "compute_pool": "mock_compute_pool", "image_repo": "mock_image_repo", + "external_access_integrations": ["eai_1"], } self.m_session.add_mock_sql( @@ -431,6 +432,7 @@ def setUp(self, m_model_meta_class: mock.MagicMock) -> None: "stage": "mock_stage", "compute_pool": "mock_compute_pool", "image_repo": "mock_image_repo", + "external_access_integrations": ["eai_a", "eai_b"], } self.deployment = SnowServiceDeployment( diff --git a/snowflake/ml/model/_deploy_client/utils/snowservice_client.py b/snowflake/ml/model/_deploy_client/utils/snowservice_client.py index 5205ef95..5f4f2275 100644 --- a/snowflake/ml/model/_deploy_client/utils/snowservice_client.py +++ b/snowflake/ml/model/_deploy_client/utils/snowservice_client.py @@ -2,7 +2,7 @@ import logging import textwrap import time -from typing import Optional +from typing import List, Optional from snowflake.ml._internal.exceptions import ( error_codes, @@ -36,6 +36,7 @@ def create_or_replace_service( service_name: str, compute_pool: str, spec_stage_location: str, + external_access_integrations: List[str], *, min_instances: Optional[int] = 1, max_instances: Optional[int] = 1, @@ -48,6 +49,7 @@ def create_or_replace_service( service_name: Name of the service. min_instances: Minimum number of service replicas. max_instances: Maximum number of service replicas. + external_access_integrations: EAIs for network connection. compute_pool: Name of the compute pool. spec_stage_location: Stage path for the service spec. """ @@ -61,13 +63,14 @@ def create_or_replace_service( SPEC = '{path}' MIN_INSTANCES={min_instances} MAX_INSTANCES={max_instances} + EXTERNAL_ACCESS_INTEGRATIONS = ({', '.join(external_access_integrations)}) """ ) logger.info(f"Creating service {service_name}") logger.debug(f"Create service with SQL: \n {sql}") self.session.sql(sql).collect() - def create_job(self, compute_pool: str, spec_stage_location: str) -> None: + def create_job(self, compute_pool: str, spec_stage_location: str, external_access_integrations: List[str]) -> None: """Execute the job creation SQL command. Note that the job creation is synchronous, hence we execute it in a async way so that we can query the log in the meantime. @@ -76,7 +79,7 @@ def create_job(self, compute_pool: str, spec_stage_location: str) -> None: Args: compute_pool: name of the compute pool spec_stage_location: path to the stage location where the spec is located at. - + external_access_integrations: EAIs for network connection. """ stage, path = uri.get_stage_and_path(spec_stage_location) sql = textwrap.dedent( @@ -85,6 +88,7 @@ def create_job(self, compute_pool: str, spec_stage_location: str) -> None: IN COMPUTE POOL {compute_pool} FROM {stage} SPEC = '{path}' + EXTERNAL_ACCESS_INTEGRATIONS = ({', '.join(external_access_integrations)}) """ ) logger.debug(f"Create job with SQL: \n {sql}") diff --git a/snowflake/ml/model/_deploy_client/utils/snowservice_client_test.py b/snowflake/ml/model/_deploy_client/utils/snowservice_client_test.py index e394c5c6..b2477e30 100644 --- a/snowflake/ml/model/_deploy_client/utils/snowservice_client_test.py +++ b/snowflake/ml/model/_deploy_client/utils/snowservice_client_test.py @@ -38,6 +38,7 @@ def test_create_or_replace_service(self) -> None: SPEC = '{m_stage_path}' MIN_INSTANCES={m_min_instances} MAX_INSTANCES={m_max_instances} + EXTERNAL_ACCESS_INTEGRATIONS=(eai_a, eai_b) """, result=mock_data_frame.MockDataFrame(collect_result=[]), ) @@ -48,6 +49,7 @@ def test_create_or_replace_service(self) -> None: max_instances=m_max_instances, compute_pool=m_compute_pool, spec_stage_location=m_spec_storgae_location, + external_access_integrations=["eai_a", "eai_b"], ) def _add_mock_cursor_to_session(self, *, expected_job_id: Optional[str] = None) -> None: @@ -71,6 +73,7 @@ def test_create_job_successfully(self) -> None: self.client.create_job( compute_pool=m_compute_pool, spec_stage_location=m_spec_storgae_location, + external_access_integrations=["eai_a", "eai_b"], ) def test_create_job_failed(self) -> None: @@ -96,6 +99,7 @@ def test_create_job_failed(self) -> None: self.client.create_job( compute_pool=m_compute_pool, spec_stage_location=m_spec_storgae_location, + external_access_integrations=["eai_a", "eai_b"], ) self.assertTrue(cm.output, test_log) diff --git a/snowflake/ml/model/model_signature.py b/snowflake/ml/model/model_signature.py index 4309ecce..1a2fc5fd 100644 --- a/snowflake/ml/model/model_signature.py +++ b/snowflake/ml/model/model_signature.py @@ -1,6 +1,18 @@ import enum +import json import warnings -from typing import Any, Dict, List, Literal, Optional, Sequence, Tuple, Type +from typing import ( + Any, + Dict, + List, + Literal, + Optional, + Sequence, + Tuple, + Type, + Union, + cast, +) import numpy as np import pandas as pd @@ -337,6 +349,31 @@ def get_sql_identifier_from_feature(self, ft_name: str) -> sql_identifier.SqlIde assert_never(self) +def _get_dataframe_values_range( + df: snowflake.snowpark.DataFrame, +) -> Dict[str, Union[Tuple[int, int], Tuple[float, float]]]: + columns = [ + F.array_construct(F.min(field.name), F.max(field.name)).as_(field.name) + for field in df.schema.fields + if isinstance(field.datatype, spt._NumericType) + ] + if not columns: + return {} + res = df.select(columns).collect() + if len(res) != 1: + raise snowml_exceptions.SnowflakeMLException( + error_code=error_codes.INTERNAL_SNOWML_ERROR, + original_exception=ValueError(f"Unable to get the value range of fields {df.columns}"), + ) + return cast( + Dict[str, Union[Tuple[int, int], Tuple[float, float]]], + { + sql_identifier.SqlIdentifier(k, case_sensitive=True).identifier(): (json.loads(v)[0], json.loads(v)[1]) + for k, v in res[0].as_dict().items() + }, + ) + + def _validate_snowpark_data( data: snowflake.snowpark.DataFrame, features: Sequence[core.BaseFeatureSpec] ) -> SnowparkIdentifierRule: @@ -361,6 +398,7 @@ def _validate_snowpark_data( SnowparkIdentifierRule.NORMALIZED: [], } schema = data.schema + values_range = _get_dataframe_values_range(data) for identifier_rule in errors.keys(): for feature in features: try: @@ -401,8 +439,11 @@ def _validate_snowpark_data( + f"Feature is a scalar feature, while {field.name} is not." ), ) + continue try: - _validate_snowpark_type_feature(data, field, ft_type, feature.name) + _validate_snowpark_type_feature( + data, field, ft_type, feature.name, values_range.get(field.name, None) + ) except snowml_exceptions.SnowflakeMLException as e: errors[identifier_rule].append(e.original_exception) break @@ -433,17 +474,12 @@ def _validate_snowpark_data( def _validate_snowpark_type_feature( - df: snowflake.snowpark.DataFrame, field: spt.StructField, ft_type: DataType, ft_name: str + df: snowflake.snowpark.DataFrame, + field: spt.StructField, + ft_type: DataType, + ft_name: str, + value_range: Optional[Union[Tuple[int, int], Tuple[float, float]]], ) -> None: - def get_value_range(field_name: str) -> Tuple[int, int]: - res = df.select(F.min(field_name).as_("MIN"), F.max(field_name).as_("MAX")).collect() - if len(res) != 1: - raise snowml_exceptions.SnowflakeMLException( - error_code=error_codes.INTERNAL_SNOWML_ERROR, - original_exception=ValueError(f"Unable to get the value range of field {field_name}"), - ) - return res[0].MIN, res[0].MAX - field_data_type = field.datatype col_name = identifier.get_unescaped_names(field.name) @@ -465,16 +501,27 @@ def get_value_range(field_name: str) -> Tuple[int, int]: error_code=error_codes.INVALID_DATA, original_exception=ValueError( f"Data Validation Error in feature {ft_name}: " - + f"Feature type {ft_type} is not met by column {col_name}." + f"Feature type {ft_type} is not met by column {col_name} " + f"because of its original type {field_data_type}" + ), + ) + if value_range is None: + raise snowml_exceptions.SnowflakeMLException( + error_code=error_codes.INVALID_DATA, + original_exception=ValueError( + f"Data Validation Error in feature {ft_name}: " + f"Feature type {ft_type} is not met by column {col_name} " + f"because of its original type {field_data_type} is non-Numeric." ), ) - min_v, max_v = get_value_range(field.name) + min_v, max_v = value_range if max_v > np.iinfo(ft_type._numpy_type).max or min_v < np.iinfo(ft_type._numpy_type).min: raise snowml_exceptions.SnowflakeMLException( error_code=error_codes.INVALID_DATA, original_exception=ValueError( f"Data Validation Error in feature {ft_name}: " - + f"Feature type {ft_type} is not met by column {col_name}." + f"Feature type {ft_type} is not met by column {col_name} " + f"because it overflows with min" ), ) elif ft_type in [core.DataType.FLOAT, core.DataType.DOUBLE]: @@ -494,7 +541,16 @@ def get_value_range(field_name: str) -> Tuple[int, int]: + f"Feature type {ft_type} is not met by column {col_name}." ), ) - min_v, max_v = get_value_range(field.name) + if value_range is None: + raise snowml_exceptions.SnowflakeMLException( + error_code=error_codes.INVALID_DATA, + original_exception=ValueError( + f"Data Validation Error in feature {ft_name}: " + f"Feature type {ft_type} is not met by column {col_name} " + f"because of its original type {field_data_type} is non-Numeric." + ), + ) + min_v, max_v = value_range if ( max_v > np.finfo(ft_type._numpy_type).max # type: ignore[arg-type] or min_v < np.finfo(ft_type._numpy_type).min # type: ignore[arg-type] diff --git a/snowflake/ml/model/type_hints.py b/snowflake/ml/model/type_hints.py index 8250e435..74dc75fe 100644 --- a/snowflake/ml/model/type_hints.py +++ b/snowflake/ml/model/type_hints.py @@ -3,6 +3,7 @@ TYPE_CHECKING, Any, Dict, + List, Literal, Optional, Sequence, @@ -173,6 +174,13 @@ class SnowparkContainerServiceDeployOptions(DeployOptions): debug_mode: When set to True, deployment artifacts will be persisted in a local temp directory. enable_ingress: When set to True, will expose HTTP endpoint for access to the predict method of the created service. + external_access_integrations: External Access Integrations name used to build image and deploy the model. + Please refer to the doc for how to create an External Access Integrations: https://docs.snowflake.com/ + developer-guide/snowpark-container-services/additional-considerations-services-jobs + #configuring-network-capabilities . + To make sure your image could be built, access to the following endpoint must be allowed. + docker.com:80, docker.com:443, anaconda.com:80, anaconda.com:443, anaconda.org:80, anaconda.org:443, + pypi.org:80, pypi.org:443 """ compute_pool: str @@ -187,6 +195,7 @@ class SnowparkContainerServiceDeployOptions(DeployOptions): model_in_image: NotRequired[bool] debug_mode: NotRequired[bool] enable_ingress: NotRequired[bool] + external_access_integrations: List[str] class ModelMethodSaveOptions(TypedDict): diff --git a/snowflake/ml/modeling/_internal/BUILD.bazel b/snowflake/ml/modeling/_internal/BUILD.bazel index 1ab6e5c2..4d9832e8 100644 --- a/snowflake/ml/modeling/_internal/BUILD.bazel +++ b/snowflake/ml/modeling/_internal/BUILD.bazel @@ -2,21 +2,6 @@ load("//bazel:py_rules.bzl", "py_library", "py_test") package(default_visibility = ["//visibility:public"]) -py_library( - name = "snowpark_handlers", - srcs = ["snowpark_handlers.py"], - deps = [ - "//snowflake/ml/_internal:env_utils", - "//snowflake/ml/_internal:telemetry", - "//snowflake/ml/_internal/exceptions", - "//snowflake/ml/_internal/exceptions:modeling_error_messages", - "//snowflake/ml/_internal/utils:identifier", - "//snowflake/ml/_internal/utils:query_result_checker", - "//snowflake/ml/_internal/utils:snowpark_dataframe_utils", - "//snowflake/ml/_internal/utils:temp_file_utils", - ], -) - py_library( name = "estimator_protocols", srcs = ["estimator_protocols.py"], @@ -60,8 +45,8 @@ py_test( name = "model_specifications_test", srcs = ["model_specifications_test.py"], deps = [ - ":distributed_hpo_trainer", ":model_specifications", + "//snowflake/ml/modeling/_internal/snowpark_implementations:distributed_hpo_trainer", "//snowflake/ml/utils:connection_params", ], ) @@ -72,75 +57,16 @@ py_library( deps = [], ) -py_library( - name = "pandas_trainer", - srcs = ["pandas_trainer.py"], - deps = [ - ":model_trainer", - ], -) - -py_library( - name = "snowpark_trainer", - srcs = ["snowpark_trainer.py"], - deps = [ - ":model_specifications", - ":model_trainer", - "//snowflake/ml/_internal:env_utils", - "//snowflake/ml/_internal:telemetry", - "//snowflake/ml/_internal/exceptions", - "//snowflake/ml/_internal/exceptions:modeling_error_messages", - "//snowflake/ml/_internal/utils:identifier", - "//snowflake/ml/_internal/utils:pkg_version_utils", - "//snowflake/ml/_internal/utils:query_result_checker", - "//snowflake/ml/_internal/utils:snowpark_dataframe_utils", - "//snowflake/ml/_internal/utils:temp_file_utils", - ], -) - -py_library( - name = "distributed_hpo_trainer", - srcs = ["distributed_hpo_trainer.py"], - deps = [ - ":model_specifications", - ":snowpark_trainer", - "//snowflake/ml/_internal:env_utils", - "//snowflake/ml/_internal:telemetry", - "//snowflake/ml/_internal/exceptions", - "//snowflake/ml/_internal/exceptions:modeling_error_messages", - "//snowflake/ml/_internal/utils:identifier", - "//snowflake/ml/_internal/utils:pkg_version_utils", - "//snowflake/ml/_internal/utils:snowpark_dataframe_utils", - "//snowflake/ml/_internal/utils:temp_file_utils", - ], -) - -py_library( - name = "xgboost_external_memory_trainer", - srcs = ["xgboost_external_memory_trainer.py"], - deps = [ - ":model_specifications", - ":snowpark_trainer", - "//snowflake/ml/_internal:telemetry", - "//snowflake/ml/_internal/exceptions", - "//snowflake/ml/_internal/exceptions:modeling_error_messages", - "//snowflake/ml/_internal/utils:identifier", - "//snowflake/ml/_internal/utils:pkg_version_utils", - "//snowflake/ml/_internal/utils:snowpark_dataframe_utils", - "//snowflake/ml/_internal/utils:temp_file_utils", - ], -) - py_library( name = "model_trainer_builder", srcs = ["model_trainer_builder.py"], deps = [ - ":distributed_hpo_trainer", ":estimator_utils", ":model_trainer", - ":pandas_trainer", - ":snowpark_trainer", - ":xgboost_external_memory_trainer", + "//snowflake/ml/modeling/_internal/local_implementations:pandas_trainer", + "//snowflake/ml/modeling/_internal/snowpark_implementations:distributed_hpo_trainer", + "//snowflake/ml/modeling/_internal/snowpark_implementations:snowpark_trainer", + "//snowflake/ml/modeling/_internal/snowpark_implementations:xgboost_external_memory_trainer", ], ) @@ -148,21 +74,12 @@ py_test( name = "model_trainer_builder_test", srcs = ["model_trainer_builder_test.py"], deps = [ - ":distributed_hpo_trainer", ":model_trainer", ":model_trainer_builder", - ":pandas_trainer", - ":snowpark_trainer", - ":xgboost_external_memory_trainer", + "//snowflake/ml/modeling/_internal/local_implementations:pandas_trainer", + "//snowflake/ml/modeling/_internal/snowpark_implementations:distributed_hpo_trainer", + "//snowflake/ml/modeling/_internal/snowpark_implementations:snowpark_trainer", + "//snowflake/ml/modeling/_internal/snowpark_implementations:xgboost_external_memory_trainer", "//snowflake/ml/utils:connection_params", ], ) - -py_test( - name = "xgboost_external_memory_trainer_test", - srcs = ["xgboost_external_memory_trainer_test.py"], - deps = [ - ":xgboost_external_memory_trainer", - "//snowflake/ml/_internal/utils:temp_file_utils", - ], -) diff --git a/snowflake/ml/modeling/_internal/estimator_protocols.py b/snowflake/ml/modeling/_internal/estimator_protocols.py index c507b2a7..2b71e1ec 100644 --- a/snowflake/ml/modeling/_internal/estimator_protocols.py +++ b/snowflake/ml/modeling/_internal/estimator_protocols.py @@ -6,47 +6,7 @@ # TODO: Add more specific entities to type hint estimators instead of using `object`. -class FitPredictHandlers(Protocol): - def batch_inference( - self, - dataset: DataFrame, - session: Session, - estimator: object, - dependencies: List[str], - inference_method: str, - input_cols: List[str], - pass_through_columns: List[str], - expected_output_cols_list: List[str], - expected_output_cols_type: str = "", - ) -> DataFrame: - raise NotImplementedError - - def score_pandas( - self, - dataset: pd.DataFrame, - estimator: object, - input_cols: List[str], - label_cols: List[str], - sample_weight_col: Optional[str], - ) -> float: - raise NotImplementedError - - def score_snowpark( - self, - dataset: DataFrame, - session: Session, - estimator: object, - dependencies: List[str], - score_sproc_imports: List[str], - input_cols: List[str], - label_cols: List[str], - sample_weight_col: Optional[str], - ) -> float: - raise NotImplementedError - - -# TODO: Add more specific entities to type hint estimators instead of using `object`. -class CVHandlers(Protocol): +class TransformerHandlers(Protocol): def batch_inference( self, dataset: DataFrame, diff --git a/snowflake/ml/modeling/_internal/estimator_protocols_test.py b/snowflake/ml/modeling/_internal/estimator_protocols_test.py index ac999acf..592d4962 100644 --- a/snowflake/ml/modeling/_internal/estimator_protocols_test.py +++ b/snowflake/ml/modeling/_internal/estimator_protocols_test.py @@ -2,18 +2,15 @@ from absl.testing import absltest, parameterized -from snowflake.ml.modeling._internal.estimator_protocols import ( - CVHandlers, - FitPredictHandlers, -) +from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers class EstimatorProtocolsTest(parameterized.TestCase): def test_fit_predict_handlers(self) -> None: - self.assertIsInstance(FitPredictHandlers, Protocol) + self.assertIsInstance(TransformerHandlers, Protocol) def test_cv_handlers(self) -> None: - self.assertIsInstance(CVHandlers, Protocol) + self.assertIsInstance(TransformerHandlers, Protocol) if __name__ == "__main__": diff --git a/snowflake/ml/modeling/_internal/local_implementations/BUILD.bazel b/snowflake/ml/modeling/_internal/local_implementations/BUILD.bazel new file mode 100644 index 00000000..4295fa33 --- /dev/null +++ b/snowflake/ml/modeling/_internal/local_implementations/BUILD.bazel @@ -0,0 +1,11 @@ +load("//bazel:py_rules.bzl", "py_library") + +package(default_visibility = ["//visibility:public"]) + +py_library( + name = "pandas_trainer", + srcs = ["pandas_trainer.py"], + deps = [ + "//snowflake/ml/modeling/_internal:model_trainer", + ], +) diff --git a/snowflake/ml/modeling/_internal/pandas_trainer.py b/snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py similarity index 100% rename from snowflake/ml/modeling/_internal/pandas_trainer.py rename to snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py diff --git a/snowflake/ml/modeling/_internal/model_specifications_test.py b/snowflake/ml/modeling/_internal/model_specifications_test.py index 785f922d..8e0a8066 100644 --- a/snowflake/ml/modeling/_internal/model_specifications_test.py +++ b/snowflake/ml/modeling/_internal/model_specifications_test.py @@ -11,10 +11,12 @@ from sklearn.model_selection import GridSearchCV from xgboost import XGBRegressor -from snowflake.ml.modeling._internal.distributed_hpo_trainer import construct_cv_results from snowflake.ml.modeling._internal.model_specifications import ( ModelSpecificationsBuilder, ) +from snowflake.ml.modeling._internal.snowpark_implementations.distributed_hpo_trainer import ( + construct_cv_results, +) from snowflake.snowpark import Row each_cv_result_basic_sample = [ diff --git a/snowflake/ml/modeling/_internal/model_trainer_builder.py b/snowflake/ml/modeling/_internal/model_trainer_builder.py index c4947fab..6918ed2f 100644 --- a/snowflake/ml/modeling/_internal/model_trainer_builder.py +++ b/snowflake/ml/modeling/_internal/model_trainer_builder.py @@ -4,17 +4,21 @@ from sklearn import model_selection from snowflake.ml._internal.exceptions import error_codes, exceptions -from snowflake.ml.modeling._internal.distributed_hpo_trainer import ( - DistributedHPOTrainer, -) from snowflake.ml.modeling._internal.estimator_utils import ( get_module_name, is_single_node, ) +from snowflake.ml.modeling._internal.local_implementations.pandas_trainer import ( + PandasModelTrainer, +) from snowflake.ml.modeling._internal.model_trainer import ModelTrainer -from snowflake.ml.modeling._internal.pandas_trainer import PandasModelTrainer -from snowflake.ml.modeling._internal.snowpark_trainer import SnowparkModelTrainer -from snowflake.ml.modeling._internal.xgboost_external_memory_trainer import ( +from snowflake.ml.modeling._internal.snowpark_implementations.distributed_hpo_trainer import ( + DistributedHPOTrainer, +) +from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_trainer import ( + SnowparkModelTrainer, +) +from snowflake.ml.modeling._internal.snowpark_implementations.xgboost_external_memory_trainer import ( XGBoostExternalMemoryTrainer, ) from snowflake.snowpark import DataFrame, Session @@ -76,9 +80,9 @@ def build( batch_size: int = -1, ) -> ModelTrainer: """ - Builder method that creates an approproiate ModelTrainer instance based on the given params. + Builder method that creates an appropriate ModelTrainer instance based on the given params. """ - assert input_cols is not None # Make MyPy happpy + assert input_cols is not None # Make MyPy happy if isinstance(dataset, pd.DataFrame): return PandasModelTrainer( estimator=estimator, @@ -100,7 +104,7 @@ def build( "subproject": subproject, } - assert dataset._session is not None # Make MyPy happpy + assert dataset._session is not None # Make MyPy happy if isinstance(estimator, model_selection.GridSearchCV) or isinstance( estimator, model_selection.RandomizedSearchCV ): diff --git a/snowflake/ml/modeling/_internal/model_trainer_builder_test.py b/snowflake/ml/modeling/_internal/model_trainer_builder_test.py index 8fbb37e5..0d653ec2 100644 --- a/snowflake/ml/modeling/_internal/model_trainer_builder_test.py +++ b/snowflake/ml/modeling/_internal/model_trainer_builder_test.py @@ -8,12 +8,14 @@ from sklearn.model_selection import GridSearchCV from xgboost import XGBRegressor -from snowflake.ml.modeling._internal.distributed_hpo_trainer import ( +from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder +from snowflake.ml.modeling._internal.snowpark_implementations.distributed_hpo_trainer import ( DistributedHPOTrainer, ) -from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder -from snowflake.ml.modeling._internal.snowpark_trainer import SnowparkModelTrainer -from snowflake.ml.modeling._internal.xgboost_external_memory_trainer import ( +from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_trainer import ( + SnowparkModelTrainer, +) +from snowflake.ml.modeling._internal.snowpark_implementations.xgboost_external_memory_trainer import ( XGBoostExternalMemoryTrainer, ) from snowflake.ml.utils.connection_params import SnowflakeLoginOptions diff --git a/snowflake/ml/modeling/_internal/snowpark_implementations/BUILD.bazel b/snowflake/ml/modeling/_internal/snowpark_implementations/BUILD.bazel new file mode 100644 index 00000000..2d378c08 --- /dev/null +++ b/snowflake/ml/modeling/_internal/snowpark_implementations/BUILD.bazel @@ -0,0 +1,78 @@ +load("//bazel:py_rules.bzl", "py_library", "py_test") + +package(default_visibility = ["//visibility:public"]) + +py_library( + name = "snowpark_handlers", + srcs = ["snowpark_handlers.py"], + deps = [ + "//snowflake/ml/_internal:env_utils", + "//snowflake/ml/_internal:telemetry", + "//snowflake/ml/_internal/exceptions", + "//snowflake/ml/_internal/exceptions:modeling_error_messages", + "//snowflake/ml/_internal/utils:identifier", + "//snowflake/ml/_internal/utils:query_result_checker", + "//snowflake/ml/_internal/utils:snowpark_dataframe_utils", + "//snowflake/ml/_internal/utils:temp_file_utils", + ], +) + +py_library( + name = "snowpark_trainer", + srcs = ["snowpark_trainer.py"], + deps = [ + "//snowflake/ml/_internal:env_utils", + "//snowflake/ml/_internal:telemetry", + "//snowflake/ml/_internal/exceptions", + "//snowflake/ml/_internal/exceptions:modeling_error_messages", + "//snowflake/ml/_internal/utils:identifier", + "//snowflake/ml/_internal/utils:pkg_version_utils", + "//snowflake/ml/_internal/utils:query_result_checker", + "//snowflake/ml/_internal/utils:snowpark_dataframe_utils", + "//snowflake/ml/_internal/utils:temp_file_utils", + "//snowflake/ml/modeling/_internal:model_specifications", + "//snowflake/ml/modeling/_internal:model_trainer", + ], +) + +py_library( + name = "distributed_hpo_trainer", + srcs = ["distributed_hpo_trainer.py"], + deps = [ + ":snowpark_trainer", + "//snowflake/ml/_internal:env_utils", + "//snowflake/ml/_internal:telemetry", + "//snowflake/ml/_internal/exceptions", + "//snowflake/ml/_internal/exceptions:modeling_error_messages", + "//snowflake/ml/_internal/utils:identifier", + "//snowflake/ml/_internal/utils:pkg_version_utils", + "//snowflake/ml/_internal/utils:snowpark_dataframe_utils", + "//snowflake/ml/_internal/utils:temp_file_utils", + "//snowflake/ml/modeling/_internal:model_specifications", + ], +) + +py_library( + name = "xgboost_external_memory_trainer", + srcs = ["xgboost_external_memory_trainer.py"], + deps = [ + ":snowpark_trainer", + "//snowflake/ml/_internal:telemetry", + "//snowflake/ml/_internal/exceptions", + "//snowflake/ml/_internal/exceptions:modeling_error_messages", + "//snowflake/ml/_internal/utils:identifier", + "//snowflake/ml/_internal/utils:pkg_version_utils", + "//snowflake/ml/_internal/utils:snowpark_dataframe_utils", + "//snowflake/ml/_internal/utils:temp_file_utils", + "//snowflake/ml/modeling/_internal:model_specifications", + ], +) + +py_test( + name = "xgboost_external_memory_trainer_test", + srcs = ["xgboost_external_memory_trainer_test.py"], + deps = [ + ":xgboost_external_memory_trainer", + "//snowflake/ml/_internal/utils:temp_file_utils", + ], +) diff --git a/snowflake/ml/modeling/_internal/distributed_hpo_trainer.py b/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py similarity index 99% rename from snowflake/ml/modeling/_internal/distributed_hpo_trainer.py rename to snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py index 0366c4e2..aff9ec13 100644 --- a/snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +++ b/snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py @@ -24,7 +24,9 @@ from snowflake.ml.modeling._internal.model_specifications import ( ModelSpecificationsBuilder, ) -from snowflake.ml.modeling._internal.snowpark_trainer import SnowparkModelTrainer +from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_trainer import ( + SnowparkModelTrainer, +) from snowflake.snowpark import DataFrame, Session, functions as F from snowflake.snowpark._internal.utils import ( TempObjectType, diff --git a/snowflake/ml/modeling/_internal/snowpark_handlers.py b/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py similarity index 100% rename from snowflake/ml/modeling/_internal/snowpark_handlers.py rename to snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py diff --git a/snowflake/ml/modeling/_internal/snowpark_trainer.py b/snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py similarity index 100% rename from snowflake/ml/modeling/_internal/snowpark_trainer.py rename to snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py diff --git a/snowflake/ml/modeling/_internal/xgboost_external_memory_trainer.py b/snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py similarity index 99% rename from snowflake/ml/modeling/_internal/xgboost_external_memory_trainer.py rename to snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py index 5f7e5942..61525aaf 100644 --- a/snowflake/ml/modeling/_internal/xgboost_external_memory_trainer.py +++ b/snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py @@ -23,7 +23,9 @@ ModelSpecifications, ModelSpecificationsBuilder, ) -from snowflake.ml.modeling._internal.snowpark_trainer import SnowparkModelTrainer +from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_trainer import ( + SnowparkModelTrainer, +) from snowflake.snowpark import ( DataFrame, Session, diff --git a/snowflake/ml/modeling/_internal/xgboost_external_memory_trainer_test.py b/snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer_test.py similarity index 96% rename from snowflake/ml/modeling/_internal/xgboost_external_memory_trainer_test.py rename to snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer_test.py index 8a663c91..f16cc0b0 100644 --- a/snowflake/ml/modeling/_internal/xgboost_external_memory_trainer_test.py +++ b/snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer_test.py @@ -9,7 +9,7 @@ cleanup_temp_files, get_temp_file_path, ) -from snowflake.ml.modeling._internal.xgboost_external_memory_trainer import ( +from snowflake.ml.modeling._internal.snowpark_implementations.xgboost_external_memory_trainer import ( get_data_iterator, ) diff --git a/snowflake/ml/modeling/framework/BUILD.bazel b/snowflake/ml/modeling/framework/BUILD.bazel index e366e22c..272c0531 100644 --- a/snowflake/ml/modeling/framework/BUILD.bazel +++ b/snowflake/ml/modeling/framework/BUILD.bazel @@ -17,6 +17,6 @@ py_library( "//snowflake/ml/_internal/utils:identifier", "//snowflake/ml/_internal/utils:parallelize", "//snowflake/ml/modeling/_internal:estimator_protocols", - "//snowflake/ml/modeling/_internal:snowpark_handlers", + "//snowflake/ml/modeling/_internal/snowpark_implementations:snowpark_handlers", ], ) diff --git a/snowflake/ml/modeling/model_selection/BUILD.bazel b/snowflake/ml/modeling/model_selection/BUILD.bazel index 23e28418..7d937456 100644 --- a/snowflake/ml/modeling/model_selection/BUILD.bazel +++ b/snowflake/ml/modeling/model_selection/BUILD.bazel @@ -29,7 +29,7 @@ py_library( "//snowflake/ml/_internal:telemetry", "//snowflake/ml/_internal/exceptions", "//snowflake/ml/modeling/_internal:model_trainer_builder", - "//snowflake/ml/modeling/_internal:snowpark_handlers", + "//snowflake/ml/modeling/_internal/snowpark_implementations:snowpark_handlers", ], ) @@ -41,6 +41,6 @@ py_library( "//snowflake/ml/_internal:telemetry", "//snowflake/ml/_internal/exceptions", "//snowflake/ml/modeling/_internal:model_trainer_builder", - "//snowflake/ml/modeling/_internal:snowpark_handlers", + "//snowflake/ml/modeling/_internal/snowpark_implementations:snowpark_handlers", ], ) diff --git a/snowflake/ml/modeling/model_selection/grid_search_cv.py b/snowflake/ml/modeling/model_selection/grid_search_cv.py index dd1392db..87cc794c 100644 --- a/snowflake/ml/modeling/model_selection/grid_search_cv.py +++ b/snowflake/ml/modeling/model_selection/grid_search_cv.py @@ -3,7 +3,6 @@ # Do not modify the auto-generated code(except automatic reformatting by precommit hooks). # from typing import Any, Dict, Iterable, List, Optional, Set, Union -from uuid import uuid4 import cloudpickle as cp import numpy as np @@ -22,7 +21,7 @@ ModelSignature, _infer_signature, ) -from snowflake.ml.modeling._internal.estimator_protocols import CVHandlers +from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers from snowflake.ml.modeling._internal.estimator_utils import ( gather_dependencies, original_estimator_has_callable, @@ -30,7 +29,7 @@ validate_sklearn_args, ) from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder -from snowflake.ml.modeling._internal.snowpark_handlers import ( +from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import ( SnowparkHandlers as HandlersImpl, ) from snowflake.ml.modeling.framework.base import BaseTransformer @@ -266,20 +265,11 @@ def __init__( # type: ignore[no-untyped-def] self.set_drop_input_cols(drop_input_cols) self.set_sample_weight_col(sample_weight_col) self.set_passthrough_cols(passthrough_cols) - self._handlers: CVHandlers = HandlersImpl( + self._handlers: TransformerHandlers = HandlersImpl( class_name=self.__class__.__name__, subproject=_SUBPROJECT, ) - def _get_rand_id(self) -> str: - """ - Generate random id to be used in sproc and stage names. - - Returns: - Random id string usable in sproc, table, and stage names. - """ - return str(uuid4()).replace("-", "_").upper() - def _get_active_columns(self) -> List[str]: """ "Get the list of columns that are relevant to the transformer.""" selected_cols = ( diff --git a/snowflake/ml/modeling/model_selection/randomized_search_cv.py b/snowflake/ml/modeling/model_selection/randomized_search_cv.py index edf912ad..23c3dd54 100644 --- a/snowflake/ml/modeling/model_selection/randomized_search_cv.py +++ b/snowflake/ml/modeling/model_selection/randomized_search_cv.py @@ -1,5 +1,4 @@ from typing import Any, Dict, Iterable, List, Optional, Set, Union -from uuid import uuid4 import cloudpickle as cp import numpy as np @@ -19,7 +18,7 @@ ModelSignature, _infer_signature, ) -from snowflake.ml.modeling._internal.estimator_protocols import CVHandlers +from snowflake.ml.modeling._internal.estimator_protocols import TransformerHandlers from snowflake.ml.modeling._internal.estimator_utils import ( gather_dependencies, original_estimator_has_callable, @@ -27,7 +26,7 @@ validate_sklearn_args, ) from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder -from snowflake.ml.modeling._internal.snowpark_handlers import ( +from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import ( SnowparkHandlers as HandlersImpl, ) from snowflake.ml.modeling.framework.base import BaseTransformer @@ -278,20 +277,11 @@ def __init__( # type: ignore[no-untyped-def] self.set_drop_input_cols(drop_input_cols) self.set_sample_weight_col(sample_weight_col) self.set_passthrough_cols(passthrough_cols) - self._handlers: CVHandlers = HandlersImpl( + self._handlers: TransformerHandlers = HandlersImpl( class_name=self.__class__.__name__, subproject=_SUBPROJECT, ) - def _get_rand_id(self) -> str: - """ - Generate random id to be used in sproc and stage names. - - Returns: - Random id string usable in sproc, table, and stage names. - """ - return str(uuid4()).replace("-", "_").upper() - def _get_active_columns(self) -> List[str]: """ "Get the list of columns that are relevant to the transformer.""" selected_cols = ( diff --git a/snowflake/ml/modeling/parameters/BUILD.bazel b/snowflake/ml/modeling/parameters/BUILD.bazel index 45637277..942a613d 100644 --- a/snowflake/ml/modeling/parameters/BUILD.bazel +++ b/snowflake/ml/modeling/parameters/BUILD.bazel @@ -19,9 +19,9 @@ py_test( ], deps = [ ":disable_distributed_hpo", - "//snowflake/ml/modeling/_internal:distributed_hpo_trainer", "//snowflake/ml/modeling/_internal:model_trainer_builder", - "//snowflake/ml/modeling/_internal:snowpark_trainer", + "//snowflake/ml/modeling/_internal/snowpark_implementations:distributed_hpo_trainer", + "//snowflake/ml/modeling/_internal/snowpark_implementations:snowpark_trainer", "//snowflake/ml/modeling/xgboost:xgb_classifier", ], ) diff --git a/snowflake/ml/modeling/parameters/disable_distributed_hpo_test.py b/snowflake/ml/modeling/parameters/disable_distributed_hpo_test.py index 8574a733..174ad3c2 100644 --- a/snowflake/ml/modeling/parameters/disable_distributed_hpo_test.py +++ b/snowflake/ml/modeling/parameters/disable_distributed_hpo_test.py @@ -4,11 +4,13 @@ from sklearn.model_selection import GridSearchCV from snowflake.ml.modeling.xgboost.xgb_classifier import XGBClassifier -from snowflake.ml.modeling._internal.distributed_hpo_trainer import ( +from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder +from snowflake.ml.modeling._internal.snowpark_implementations.distributed_hpo_trainer import ( DistributedHPOTrainer, ) -from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder -from snowflake.ml.modeling._internal.snowpark_trainer import SnowparkModelTrainer +from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_trainer import ( + SnowparkModelTrainer, +) from snowflake.snowpark import DataFrame, Session diff --git a/snowflake/ml/version.bzl b/snowflake/ml/version.bzl index f660cf73..ac48ae7f 100644 --- a/snowflake/ml/version.bzl +++ b/snowflake/ml/version.bzl @@ -1,2 +1,2 @@ # This is parsed by regex in conda reciper meta file. Make sure not to break it. -VERSION = "1.2.1" +VERSION = "1.2.2" diff --git a/tests/conftest.py b/tests/conftest.py index 959a94e7..f7cbc71e 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -17,7 +17,8 @@ def _random_name_for_temp_object(object_type: TempObjectType) -> str: @pytest.fixture(scope="session", autouse=True) def random_name_for_temp_object_mock(): with mock.patch( - "snowflake.ml.modeling._internal.snowpark_handlers.random_name_for_temp_object", _random_name_for_temp_object + "snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers.random_name_for_temp_object", + _random_name_for_temp_object, ) as _fixture: cp.register_pickle_by_value(inspect.getmodule(_random_name_for_temp_object)) yield _fixture diff --git a/tests/integ/snowflake/ml/_internal/BUILD.bazel b/tests/integ/snowflake/ml/_internal/BUILD.bazel index 94d7fdb9..38ccfd5a 100644 --- a/tests/integ/snowflake/ml/_internal/BUILD.bazel +++ b/tests/integ/snowflake/ml/_internal/BUILD.bazel @@ -26,7 +26,7 @@ py_test( srcs = ["snowpark_handlers_test.py"], deps = [ "//snowflake/ml/_internal:env_utils", - "//snowflake/ml/modeling/_internal:snowpark_handlers", + "//snowflake/ml/modeling/_internal/snowpark_implementations:snowpark_handlers", "//snowflake/ml/utils:connection_params", "//tests/integ/snowflake/ml/test_utils:common_test_base", ], diff --git a/tests/integ/snowflake/ml/_internal/snowpark_handlers_test.py b/tests/integ/snowflake/ml/_internal/snowpark_handlers_test.py index bb492901..377f94d8 100644 --- a/tests/integ/snowflake/ml/_internal/snowpark_handlers_test.py +++ b/tests/integ/snowflake/ml/_internal/snowpark_handlers_test.py @@ -7,7 +7,9 @@ from sklearn.datasets import load_diabetes from sklearn.linear_model import LinearRegression as SkLinearRegression -from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers +from snowflake.ml.modeling._internal.snowpark_implementations.snowpark_handlers import ( + SnowparkHandlers, +) from tests.integ.snowflake.ml.test_utils import common_test_base diff --git a/snowflake/ml/feature_store/tests/BUILD.bazel b/tests/integ/snowflake/ml/feature_store/BUILD.bazel similarity index 98% rename from snowflake/ml/feature_store/tests/BUILD.bazel rename to tests/integ/snowflake/ml/feature_store/BUILD.bazel index c1c43f45..7e62c6b0 100644 --- a/snowflake/ml/feature_store/tests/BUILD.bazel +++ b/tests/integ/snowflake/ml/feature_store/BUILD.bazel @@ -7,6 +7,7 @@ package(default_visibility = [ py_library( name = "common_utils", + testonly = True, srcs = [ "common_utils.py", ], diff --git a/snowflake/ml/feature_store/tests/common_utils.py b/tests/integ/snowflake/ml/feature_store/common_utils.py similarity index 62% rename from snowflake/ml/feature_store/tests/common_utils.py rename to tests/integ/snowflake/ml/feature_store/common_utils.py index 47ef317e..fae6dde9 100644 --- a/snowflake/ml/feature_store/tests/common_utils.py +++ b/tests/integ/snowflake/ml/feature_store/common_utils.py @@ -1,3 +1,4 @@ +from datetime import datetime, timedelta from typing import Any, Callable, Dict, List from unittest.mock import Mock from uuid import uuid4 @@ -5,9 +6,13 @@ import pandas as pd from pandas.testing import assert_frame_equal +from snowflake.ml._internal.utils.sql_identifier import ( + SqlIdentifier, + to_sql_identifiers, +) from snowflake.ml.feature_store.feature_view import FeatureView from snowflake.ml.utils.connection_params import SnowflakeLoginOptions -from snowflake.snowpark import Session +from snowflake.snowpark import Row, Session # Database used for feature store integration test FS_INTEG_TEST_DB = "SNOWML_FEATURE_STORE_TEST_DB" @@ -25,6 +30,9 @@ # Wine quality dataset FS_INTEG_TEST_WINE_QUALITY_DATA = "wine_quality_data" +# If object live time is greater than specified hours it will be deleted. +DB_OBJECT_EXPIRE_HOURS = 24 + def create_random_schema(session: Session, prefix: str, database: str = FS_INTEG_TEST_DB) -> str: schema = prefix + "_" + uuid4().hex.upper() @@ -64,3 +72,24 @@ def dispatch(*args: Any) -> Any: def get_test_warehouse_name(session: Session) -> str: session_warehouse = session.get_current_warehouse() return session_warehouse if session_warehouse else "REGTEST_ML_4XL_MULTI" + + +def cleanup_temporary_objects(session: Session) -> None: + current_time = datetime.now().astimezone() + + def is_object_expired(row: Row) -> bool: + time_diff: timedelta = current_time - row["created_on"] + return time_diff >= timedelta(hours=DB_OBJECT_EXPIRE_HOURS) + + result = session.sql(f"SHOW SCHEMAS IN DATABASE {FS_INTEG_TEST_DB}").collect() + permanent_schemas = to_sql_identifiers(["INFORMATION_SCHEMA", "PUBLIC", FS_INTEG_TEST_DATASET_SCHEMA]) + for row in result: + if SqlIdentifier(row["name"]) not in permanent_schemas and is_object_expired(row): + session.sql(f"DROP SCHEMA IF EXISTS {FS_INTEG_TEST_DB}.{row['name']}").collect() + + full_schema_path = f"{FS_INTEG_TEST_DB}.{FS_INTEG_TEST_DATASET_SCHEMA}" + result = session.sql(f"SHOW TABLES IN {full_schema_path}").collect() + permanent_tables = to_sql_identifiers([FS_INTEG_TEST_YELLOW_TRIP_DATA, FS_INTEG_TEST_WINE_QUALITY_DATA]) + for row in result: + if SqlIdentifier(row["name"]) not in permanent_tables and is_object_expired(row): + session.sql(f"DROP TABLE IF EXISTS {full_schema_path}.{row['name']}").collect() diff --git a/snowflake/ml/feature_store/tests/feature_store_case_sensitivity_test.py b/tests/integ/snowflake/ml/feature_store/feature_store_case_sensitivity_test.py similarity index 99% rename from snowflake/ml/feature_store/tests/feature_store_case_sensitivity_test.py rename to tests/integ/snowflake/ml/feature_store/feature_store_case_sensitivity_test.py index 4788c65d..02d89bf8 100644 --- a/snowflake/ml/feature_store/tests/feature_store_case_sensitivity_test.py +++ b/tests/integ/snowflake/ml/feature_store/feature_store_case_sensitivity_test.py @@ -5,6 +5,7 @@ from common_utils import ( FS_INTEG_TEST_DATASET_SCHEMA, FS_INTEG_TEST_DB, + cleanup_temporary_objects, create_random_schema, get_test_warehouse_name, ) @@ -46,6 +47,7 @@ class FeatureStoreCaseSensitivityTest(parameterized.TestCase): @classmethod def setUpClass(cls) -> None: cls._session = Session.builder.configs(SnowflakeLoginOptions()).create() + cleanup_temporary_objects(cls._session) cls._active_fs = [] cls._mock_table = cls._create_mock_table("mock_data") cls._test_warehouse_name = get_test_warehouse_name(cls._session) diff --git a/snowflake/ml/feature_store/tests/feature_store_large_scale_test.py b/tests/integ/snowflake/ml/feature_store/feature_store_large_scale_test.py similarity index 99% rename from snowflake/ml/feature_store/tests/feature_store_large_scale_test.py rename to tests/integ/snowflake/ml/feature_store/feature_store_large_scale_test.py index 4c667d7a..47f7c7b2 100644 --- a/snowflake/ml/feature_store/tests/feature_store_large_scale_test.py +++ b/tests/integ/snowflake/ml/feature_store/feature_store_large_scale_test.py @@ -8,6 +8,7 @@ FS_INTEG_TEST_DB, FS_INTEG_TEST_WINE_QUALITY_DATA, FS_INTEG_TEST_YELLOW_TRIP_DATA, + cleanup_temporary_objects, create_random_schema, get_test_warehouse_name, ) @@ -32,6 +33,7 @@ class FeatureStoreLargeScaleTest(absltest.TestCase): @classmethod def setUpClass(self) -> None: self._session = Session.builder.configs(SnowflakeLoginOptions()).create() + cleanup_temporary_objects(self._session) self._active_feature_store = [] self._test_warehouse_name = get_test_warehouse_name(self._session) diff --git a/snowflake/ml/feature_store/tests/feature_store_object_test.py b/tests/integ/snowflake/ml/feature_store/feature_store_object_test.py similarity index 100% rename from snowflake/ml/feature_store/tests/feature_store_object_test.py rename to tests/integ/snowflake/ml/feature_store/feature_store_object_test.py diff --git a/snowflake/ml/feature_store/tests/feature_store_test.py b/tests/integ/snowflake/ml/feature_store/feature_store_test.py similarity index 89% rename from snowflake/ml/feature_store/tests/feature_store_test.py rename to tests/integ/snowflake/ml/feature_store/feature_store_test.py index 6be2f7e7..0e616f01 100644 --- a/snowflake/ml/feature_store/tests/feature_store_test.py +++ b/tests/integ/snowflake/ml/feature_store/feature_store_test.py @@ -1,4 +1,5 @@ -from typing import List, Optional, Union, cast +import datetime +from typing import List, Optional, Tuple, Union, cast from uuid import uuid4 from absl.testing import absltest @@ -6,6 +7,7 @@ FS_INTEG_TEST_DATASET_SCHEMA, FS_INTEG_TEST_DB, FS_INTEG_TEST_DUMMY_DB, + cleanup_temporary_objects, compare_dataframe, compare_feature_views, create_mock_session, @@ -38,6 +40,7 @@ class FeatureStoreTest(absltest.TestCase): @classmethod def setUpClass(self) -> None: self._session = Session.builder.configs(SnowflakeLoginOptions()).create() + cleanup_temporary_objects(self._session) self._active_feature_store = [] try: @@ -357,15 +360,20 @@ def test_register_feature_view_as_view(self) -> None: # generate data on multiple feature views spine_df = self._session.create_dataframe([(1, 101)], schema=["id", "ts"]) - ds = fs.generate_dataset(spine_df=spine_df, features=[fv, new_fv], spine_timestamp_col="ts") + ds = fs.generate_dataset( + spine_df=spine_df, features=[fv, new_fv], spine_timestamp_col="ts", include_feature_view_timestamp_col=True + ) + compare_dataframe( actual_df=ds.df.to_pandas(), target_data={ "ID": [1], "TS": [101], + "FV_V1_TS": [100], "NAME": ["jonh"], "TITLE": ["boss"], "AGE": [20], + "NEW_FV_V1_TS": [100], "DEPT": ["sales"], }, sort_cols=["ID"], @@ -679,14 +687,18 @@ def test_retrieve_time_series_feature_values(self) -> None: spine_df=spine_df, features=cast(List[Union[FeatureView, FeatureViewSlice]], [fv1, fv2, fv3]), spine_timestamp_col="ts", + include_feature_view_timestamp_col=True, ) + compare_dataframe( actual_df=df.to_pandas(), target_data={ "ID": [1, 1, 2], "TS": [90, 101, 202], + "FV1_V1_TS": [None, 100, 200], "NAME": [None, "jonh", "porter"], "TITLE": [None, "boss", "manager"], + "FV2_V1_TS": [None, 100, 200], "AGE": [None, 20, 30], "DEPT": ["sales", "sales", "engineer"], }, @@ -1168,6 +1180,7 @@ def test_generate_dataset(self) -> None: materialized_table="foobar", spine_timestamp_col="ts", ) + compare_dataframe( actual_df=ds1.df.to_pandas(), target_data={ @@ -1189,6 +1202,7 @@ def test_generate_dataset(self) -> None: spine_timestamp_col="ts", save_mode="merge", ) + compare_dataframe( actual_df=ds2.df.to_pandas(), target_data={ @@ -1210,6 +1224,7 @@ def test_generate_dataset(self) -> None: spine_timestamp_col="ts", save_mode="merge", ) + compare_dataframe( actual_df=ds3.df.to_pandas(), target_data={ @@ -1388,6 +1403,7 @@ def check_fs_objects(expected_count: int) -> None: def test_dynamic_table_full_refresh_warning(self) -> None: temp_stage_name = "test_dynamic_table_full_refresh_warning_stage" + self._session.sql(f"USE DATABASE {FS_INTEG_TEST_DB}").collect() self._session.sql(f"CREATE OR REPLACE STAGE {temp_stage_name}").collect() udf_name = f"{FS_INTEG_TEST_DB}.{FS_INTEG_TEST_DATASET_SCHEMA}.minus_one" @@ -1490,6 +1506,168 @@ def test_update_feature_view(self) -> None: self.assertEqual(result[0]["target_lag"], "1 minute") self.assertEqual(SqlIdentifier(result[0]["warehouse"]), SqlIdentifier(alternative_wh)) + def test_override_feature_view(self) -> None: + fs = self._create_feature_store() + + e = Entity("foo", ["id"]) + fs.register_entity(e) + + def create_fvs(fs: FeatureStore, sql: str, override: bool) -> Tuple[FeatureView, FeatureView, FeatureView]: + fv1 = FeatureView( + name="fv1", + entities=[e], + feature_df=self._session.sql(sql), + refresh_freq="1m", + ) + fv1 = fs.register_feature_view(feature_view=fv1, version="v1", override=override) + + fv2 = FeatureView( + name="fv2", + entities=[e], + feature_df=self._session.sql(sql), + refresh_freq="* * * * * America/Los_Angeles", + ) + fv2 = fs.register_feature_view(feature_view=fv2, version="v2", override=override) + + fv3 = FeatureView( + name="fv3", + entities=[e], + feature_df=self._session.sql(sql), + ) + fv3 = fs.register_feature_view(feature_view=fv3, version="v3", override=override) + + return fv1, fv2, fv3 + + sql = f"SELECT id, name FROM {self._mock_table}" + fv1, fv2, fv3 = create_fvs(fs, sql, False) + compare_dataframe( + actual_df=fs.read_feature_view(fv1).to_pandas(), + target_data={ + "ID": [1, 2], + "NAME": ["jonh", "porter"], + }, + sort_cols=["ID"], + ) + compare_feature_views(fs.list_feature_views(as_dataframe=False), [fv1, fv2, fv3]) + + # Override existing feature views + sql = f"SELECT id, name, title FROM {self._mock_table}" + fv1, fv2, fv3 = create_fvs(fs, sql, True) + + compare_dataframe( + actual_df=fs.read_feature_view(fv1).to_pandas(), + target_data={ + "ID": [1, 2], + "NAME": ["jonh", "porter"], + "TITLE": ["boss", "manager"], + }, + sort_cols=["ID"], + ) + compare_feature_views(fs.list_feature_views(as_dataframe=False), [fv1, fv2, fv3]) + + # Override non-existing feature view + non_existing_fv = FeatureView( + name="non_existing_fv", + entities=[e], + feature_df=self._session.sql(sql), + refresh_freq="1m", + ) + fs.register_feature_view(feature_view=non_existing_fv, version="v1", override=True) + + def test_generate_dataset_point_in_time_join(self) -> None: + fs = self._create_feature_store() + + # Below test requires ASOF join is activated. + # When _is_asof_join_enabled is false, the alternative union-window-join is used. + # It's a known issue that union-window-join will fail below test. + self.assertTrue(fs._is_asof_join_enabled()) + + entity = Entity("CUSTOMER", ["CUSTOMER_ID"]) + fs.register_entity(entity) + + self._session.sql( + f""" + CREATE OR REPLACE TABLE {fs._config.full_schema_path}.CUSTOMER_FEATURES ( + CUSTOMER_ID NUMBER, + FEATURE_TS TIMESTAMP_NTZ, + CUST_AVG_AMOUNT_7 NUMBER, + CUST_AVG_AMOUNT_30 NUMBER) + """ + ).collect() + + # Each customer_id has 2 rows with different timestamps. + # This feature value have 2 features: CUST_AVG_AMOUNT_7 and CUST_AVG_AMOUNT_30. + # Each customer_id has null or non-null values for these two features. + # generate_dataset() should always return second row as result, regardless of + # whether the feature value is null or non-null. + self._session.sql( + f""" + INSERT INTO {fs._config.full_schema_path}.CUSTOMER_FEATURES + (CUSTOMER_ID, FEATURE_TS, CUST_AVG_AMOUNT_7, CUST_AVG_AMOUNT_30) + VALUES + (1, '2019-04-01', 1, 1), + (1, '2019-04-02', 10, 10), + (2, '2019-04-01', 2, 2), + (2, '2019-04-02', 20, null), + (3, '2019-04-01', 3, 3), + (3, '2019-04-02', null, 30), + (4, '2019-04-01', null, 4), + (4, '2019-04-02', 40, 40), + (5, '2019-04-01', 5, 5), + (5, '2019-04-02', null, null) + """ + ).collect() + + customers_fv = FeatureView( + name="CUSTOMER_FV", + entities=[entity], + feature_df=self._session.sql(f"SELECT * FROM {fs._config.full_schema_path}.CUSTOMER_FEATURES"), + timestamp_col="FEATURE_TS", + refresh_freq=None, + ) + + customers_fv = fs.register_feature_view(feature_view=customers_fv, version="1", block=True) + + spine_df = self._session.create_dataframe( + [ + (1, "2019-04-03"), + (2, "2019-04-03"), + (3, "2019-04-03"), + (4, "2019-04-03"), + (5, "2019-04-03"), + ], + schema=["CUSTOMER_ID", "EVENT_TS"], + ) + + dataset = fs.generate_dataset( + spine_df=spine_df, + features=[customers_fv], + materialized_table="customer_frad_training_data", + spine_timestamp_col="EVENT_TS", + spine_label_cols=[], + include_feature_view_timestamp_col=True, + ) + + # CUST_AVG_AMOUNT_7 and CUST_AVG_AMOUNT_30 are expected to be same as the values + # in second row of each customer_id (with timestamp 2019-04-02). + compare_dataframe( + actual_df=dataset.df.to_pandas(), + target_data={ + "CUSTOMER_ID": [1, 2, 3, 4, 5], + "EVENT_TS": ["2019-04-03", "2019-04-03", "2019-04-03", "2019-04-03", "2019-04-03"], + "CUSTOMER_FV_1_FEATURE_TS": [ + datetime.date(2019, 4, 2), + datetime.date(2019, 4, 2), + datetime.date(2019, 4, 2), + datetime.date(2019, 4, 2), + datetime.date(2019, 4, 2), + ], + "CUST_AVG_AMOUNT_7": [10, 20, None, 40, None], + "CUST_AVG_AMOUNT_30": [10, None, 30, 40, None], + }, + sort_cols=["CUSTOMER_ID"], + ) + if __name__ == "__main__": absltest.main() diff --git a/tests/integ/snowflake/ml/model/spcs_llm_model_integ_test.py b/tests/integ/snowflake/ml/model/spcs_llm_model_integ_test.py index 8b62f4f9..d3fbb1ce 100644 --- a/tests/integ/snowflake/ml/model/spcs_llm_model_integ_test.py +++ b/tests/integ/snowflake/ml/model/spcs_llm_model_integ_test.py @@ -1,6 +1,5 @@ import os import tempfile -import unittest import pandas as pd import pytest @@ -19,7 +18,6 @@ ) -@unittest.skip("release-1.2.1") @pytest.mark.conda_incompatible class TestSPCSLLMModelInteg(spcs_integ_test_base.SpcsIntegTestBase): def setUp(self) -> None: @@ -49,7 +47,7 @@ def test_text_generation_pipeline( stage_path = f"@{self._test_stage}/{self._run_id}" deployment_stage_path = f"@{self._test_stage}/{self._run_id}" - model_api.save_model( + model_api.save_model( # type: ignore[call-overload] name="model", session=self._session, stage_path=stage_path, @@ -68,6 +66,7 @@ def test_text_generation_pipeline( "compute_pool": self._TEST_GPU_COMPUTE_POOL, "num_gpus": 1, "model_in_image": True, + "external_access_integrations": self._SPCS_EAIS, } deploy_info = model_api.deploy( @@ -78,7 +77,7 @@ def test_text_generation_pipeline( model_id=svc_func_name, platform=deploy_platforms.TargetPlatform.SNOWPARK_CONTAINER_SERVICES, options={ - **deployment_options, + **deployment_options, # type: ignore[arg-type] }, # type: ignore[call-overload] ) assert deploy_info is not None diff --git a/tests/integ/snowflake/ml/model/warehouse_model_integ_test_utils.py b/tests/integ/snowflake/ml/model/warehouse_model_integ_test_utils.py index 4701b497..14ecd17b 100644 --- a/tests/integ/snowflake/ml/model/warehouse_model_integ_test_utils.py +++ b/tests/integ/snowflake/ml/model/warehouse_model_integ_test_utils.py @@ -66,7 +66,7 @@ def base_test_case( platform=deploy_platforms.TargetPlatform.WAREHOUSE, target_method=target_method_arg, options={ - **permanent_deploy_args, + **permanent_deploy_args, # type: ignore[arg-type] **additional_deploy_options, }, # type: ignore[call-overload] ) diff --git a/tests/integ/snowflake/ml/modeling/model_selection/BUILD.bazel b/tests/integ/snowflake/ml/modeling/model_selection/BUILD.bazel index e80541e7..83890da1 100644 --- a/tests/integ/snowflake/ml/modeling/model_selection/BUILD.bazel +++ b/tests/integ/snowflake/ml/modeling/model_selection/BUILD.bazel @@ -57,3 +57,17 @@ py_test( "//snowflake/ml/utils:connection_params", ], ) + +py_test( + name = "check_sklearn_inference_test", + timeout = "long", + srcs = ["check_sklearn_inference_test.py"], + shard_count = 2, + deps = [ + "//snowflake/ml/_internal/exceptions", + "//snowflake/ml/modeling/linear_model:linear_regression", + "//snowflake/ml/modeling/model_selection:grid_search_cv", + "//snowflake/ml/modeling/model_selection:randomized_search_cv", + "//snowflake/ml/utils:connection_params", + ], +) diff --git a/tests/integ/snowflake/ml/modeling/model_selection/check_sklearn_inference_test.py b/tests/integ/snowflake/ml/modeling/model_selection/check_sklearn_inference_test.py new file mode 100644 index 00000000..53916ad1 --- /dev/null +++ b/tests/integ/snowflake/ml/modeling/model_selection/check_sklearn_inference_test.py @@ -0,0 +1,108 @@ +from typing import List, Tuple + +import inflection +import pandas as pd +from absl.testing import absltest +from sklearn.datasets import load_iris +from sklearn.linear_model import LinearRegression + +from snowflake.ml._internal.exceptions import exceptions +from snowflake.ml.modeling.model_selection import ( # type: ignore[attr-defined] + GridSearchCV, + RandomizedSearchCV, +) + + +def _load_iris_data() -> Tuple[pd.DataFrame, List[str], List[str]]: + input_df_pandas = load_iris(as_frame=True).frame + input_df_pandas.columns = [f'"{inflection.parameterize(c, "_")}"' for c in input_df_pandas.columns] + input_df_pandas['"index"'] = input_df_pandas.reset_index().index + + input_cols = [c for c in input_df_pandas.columns if not c.startswith('"target"')] + label_col = [c for c in input_df_pandas.columns if c.startswith('"target"')] + + return input_df_pandas, input_cols, label_col + + +class CheckSklearnInferenceCornerCases(absltest.TestCase): + """sklearn_inference function is the base helper function to execute all the pandas dataframe input + This test is to cover corner cases that implemented within sklearn_inference, including + - output_cols dimension mismatch + - double quoted column names + + Args: + absltest (_type_): default test + """ + + def setUp(self) -> None: + pd_data, input_col, label_col = _load_iris_data() + self._input_df_pandas = pd_data + self._input_cols = input_col + self._label_col = label_col + + def test_sklearn_inference_gridsearch(self) -> None: + reg = GridSearchCV( + estimator=LinearRegression(), param_grid={"fit_intercept": [True, False], "positive": [True, False]} + ) + reg.set_input_cols(self._input_cols) + reg.set_label_cols(self._label_col) + reg.set_drop_input_cols(True) + reg.fit(self._input_df_pandas) + # In predict function, the pandas dataframe's column name is actually wrong (["1"]) + # it would raise error + with self.assertRaises(exceptions.SnowflakeMLException): + reg._sklearn_inference(pd.DataFrame({"1": []}), "predict", [""]) + + # in the pandas dataframe's column name, some of them are single quoted + # some of them are double quoted + test_pd = self._input_df_pandas + test_pd.columns = [ + '"sepal_length_cm"', + "sepal_width_cm", + '"petal_length_cm"', + "petal_width_cm", + '"target"', + '"index"', + ] + reg._sklearn_inference(test_pd, "predict", [""]) + + # When output cols is an empty array ([]) + # it would raise error + with self.assertRaises(exceptions.SnowflakeMLException): + reg._sklearn_inference(self._input_df_pandas, "predict", []) + + def test_sklearn_inference_randomizedsearch(self) -> None: + reg = RandomizedSearchCV( + estimator=LinearRegression(), + param_distributions={"fit_intercept": [True, False], "positive": [True, False]}, + ) + reg.set_input_cols(self._input_cols) + reg.set_label_cols(self._label_col) + reg.set_drop_input_cols(True) + reg.fit(self._input_df_pandas) + # In predict function, the pandas dataframe's column name is actually wrong (["1"]) + # it would raise error + with self.assertRaises(exceptions.SnowflakeMLException): + reg._sklearn_inference(pd.DataFrame({"1": []}), "predict", [""]) + + # in the pandas dataframe's column name, some of them are single quoted + # some of them are double quoted + test_pd = self._input_df_pandas + test_pd.columns = [ + '"sepal_length_cm"', + "sepal_width_cm", + '"petal_length_cm"', + "petal_width_cm", + '"target"', + '"index"', + ] + reg._sklearn_inference(test_pd, "predict", [""]) + + # When output cols is an empty array ([]) + # it would raise error + with self.assertRaises(exceptions.SnowflakeMLException): + reg._sklearn_inference(self._input_df_pandas, "predict", []) + + +if __name__ == "__main__": + absltest.main() diff --git a/tests/integ/snowflake/ml/modeling/model_selection/grid_search_integ_test.py b/tests/integ/snowflake/ml/modeling/model_selection/grid_search_integ_test.py index aa5f41f1..10c32a70 100644 --- a/tests/integ/snowflake/ml/modeling/model_selection/grid_search_integ_test.py +++ b/tests/integ/snowflake/ml/modeling/model_selection/grid_search_integ_test.py @@ -239,6 +239,9 @@ def test_fit_and_compare_results_distributed( ) np.testing.assert_allclose(actual_score, sklearn_score, rtol=1.0e-1, atol=1.0e-2) + actual_score = reg.score(self._input_df_pandas) + np.testing.assert_allclose(actual_score, sklearn_score, rtol=1.0e-1, atol=1.0e-2) + # n_features_in_ is available because `refit` is set to `True`. self.assertEqual(sk_obj.n_features_in_, sklearn_reg.n_features_in_) @@ -326,6 +329,10 @@ def test_transform(self, mock_is_single_node) -> None: np.testing.assert_allclose(transformed, sk_transformed, rtol=1.0e-1, atol=1.0e-2) + transformed = reg.transform(self._input_df_pandas[self._input_cols]) + transformed = transformed[actual_output_cols].to_numpy() + np.testing.assert_allclose(transformed, sk_transformed, rtol=1.0e-1, atol=1.0e-2) + def test_not_fitted_exception(self) -> None: param_grid = {"max_depth": [2, 6], "learning_rate": [0.1, 0.01]} reg = GridSearchCV(estimator=XGBClassifier(), param_grid=param_grid) diff --git a/tests/integ/snowflake/ml/modeling/model_selection/randomized_search_integ_test.py b/tests/integ/snowflake/ml/modeling/model_selection/randomized_search_integ_test.py index a0457bd7..ac3b9ebe 100644 --- a/tests/integ/snowflake/ml/modeling/model_selection/randomized_search_integ_test.py +++ b/tests/integ/snowflake/ml/modeling/model_selection/randomized_search_integ_test.py @@ -191,6 +191,8 @@ def test_fit_and_compare_results( self._input_df_pandas[self._input_cols], self._input_df_pandas[self._label_col] ) np.testing.assert_allclose(actual_score, sklearn_score, rtol=1.0e-1, atol=1.0e-2) + actual_score = reg.score(self._input_df_pandas) + np.testing.assert_allclose(actual_score, sklearn_score, rtol=1.0e-1, atol=1.0e-2) # n_features_in_ is available because `refit` is set to `True`. self.assertEqual(sk_obj.n_features_in_, sklearn_reg.n_features_in_) @@ -279,6 +281,10 @@ def test_transform(self, mock_is_single_node) -> None: np.testing.assert_allclose(transformed, sk_transformed, rtol=1.0e-1, atol=1.0e-2) + transformed = reg.transform(self._input_df_pandas[self._input_cols]) + transformed = transformed[actual_output_cols].to_numpy() + np.testing.assert_allclose(transformed, sk_transformed, rtol=1.0e-1, atol=1.0e-2) + def test_not_fitted_exception(self) -> None: param_distributions = {"max_depth": [2, 6], "learning_rate": [0.1, 0.01]} reg = RandomizedSearchCV(estimator=XGBClassifier(), param_distributions=param_distributions) diff --git a/tests/integ/snowflake/ml/registry/model_registry_snowservice_integ_test.py b/tests/integ/snowflake/ml/registry/model_registry_snowservice_integ_test.py index a32dc42d..fa710a8a 100644 --- a/tests/integ/snowflake/ml/registry/model_registry_snowservice_integ_test.py +++ b/tests/integ/snowflake/ml/registry/model_registry_snowservice_integ_test.py @@ -37,6 +37,7 @@ # "compute_pool": self._TEST_CPU_COMPUTE_POOL, # "image_repo": self._db_manager.get_snowservice_image_repo(repo=self._TEST_IMAGE_REPO), # "num_workers": 1, +# "external_access_integrations": self._SPCS_EAIS, # }, # }, # ) @@ -56,6 +57,7 @@ # "options": { # "compute_pool": self._TEST_CPU_COMPUTE_POOL, # "image_repo": self._db_manager.get_snowservice_image_repo(repo=self._TEST_IMAGE_REPO), +# "external_access_integrations": self._SPCS_EAIS, # }, # }, # ) @@ -81,6 +83,7 @@ # "compute_pool": self._TEST_CPU_COMPUTE_POOL, # "image_repo": self._db_manager.get_snowservice_image_repo(repo=self._TEST_IMAGE_REPO), # "num_workers": 1, +# "external_access_integrations": self._SPCS_EAIS, # }, # }, # ) @@ -111,6 +114,7 @@ # "image_repo": self._db_manager.get_snowservice_image_repo(repo=self._TEST_IMAGE_REPO), # "num_workers": 1, # "use_gpu": True, +# "external_access_integrations": self._SPCS_EAIS, # }, # }, # ) @@ -132,6 +136,7 @@ # "options": { # "compute_pool": self._TEST_CPU_COMPUTE_POOL, # "image_repo": self._db_manager.get_snowservice_image_repo(repo=self._TEST_IMAGE_REPO), +# "external_access_integrations": self._SPCS_EAIS, # }, # }, # ) diff --git a/tests/integ/snowflake/ml/registry/model_registry_snowservice_merge_gate_integ_test.py b/tests/integ/snowflake/ml/registry/model_registry_snowservice_merge_gate_integ_test.py index bc01667c..21d68f05 100644 --- a/tests/integ/snowflake/ml/registry/model_registry_snowservice_merge_gate_integ_test.py +++ b/tests/integ/snowflake/ml/registry/model_registry_snowservice_merge_gate_integ_test.py @@ -27,6 +27,7 @@ def _run_deployment() -> None: "options": { "compute_pool": self._TEST_CPU_COMPUTE_POOL, "enable_remote_image_build": True, + "external_access_integrations": self._SPCS_EAIS, }, }, ) @@ -57,6 +58,7 @@ def _run_deployment() -> None: "compute_pool": self._TEST_CPU_COMPUTE_POOL, "enable_remote_image_build": True, "model_in_image": True, + "external_access_integrations": self._SPCS_EAIS, }, }, ) diff --git a/tests/integ/snowflake/ml/test_utils/common_test_base.py b/tests/integ/snowflake/ml/test_utils/common_test_base.py index f5994365..1a38fa73 100644 --- a/tests/integ/snowflake/ml/test_utils/common_test_base.py +++ b/tests/integ/snowflake/ml/test_utils/common_test_base.py @@ -259,7 +259,7 @@ def {func_name}({first_arg_name}: snowflake.snowpark.Session, {", ".join(arg_lis {func_body} """ - final_packages = packages[:] + [f"snowflake-ml-python=={_snowml_pkg_ver}"] + final_packages = packages[:] + [f"snowflake-ml-python=={_snowml_pkg_ver}", "snowflake-snowpark-python"] with tempfile.NamedTemporaryFile("w", encoding="utf-8", suffix=".py", delete=False) as temp_file: temp_file.write(func_source) diff --git a/tests/integ/snowflake/ml/test_utils/spcs_integ_test_base.py b/tests/integ/snowflake/ml/test_utils/spcs_integ_test_base.py index 256aa67a..e4b3fc94 100644 --- a/tests/integ/snowflake/ml/test_utils/spcs_integ_test_base.py +++ b/tests/integ/snowflake/ml/test_utils/spcs_integ_test_base.py @@ -16,6 +16,7 @@ class SpcsIntegTestBase(absltest.TestCase): _TEST_CPU_COMPUTE_POOL = "REGTEST_INFERENCE_CPU_POOL" _TEST_GPU_COMPUTE_POOL = "REGTEST_INFERENCE_GPU_POOL" + _SPCS_EAIS = ["SPCS_EGRESS_ACCESS_INTEGRATION"] def setUp(self) -> None: """Creates Snowpark and Snowflake environments for testing.""" diff --git a/tests/integ/snowflake/ml/test_utils/test_env_utils.py b/tests/integ/snowflake/ml/test_utils/test_env_utils.py index 74fd170c..74a066f1 100644 --- a/tests/integ/snowflake/ml/test_utils/test_env_utils.py +++ b/tests/integ/snowflake/ml/test_utils/test_env_utils.py @@ -10,7 +10,7 @@ def get_available_session() -> session.Session: - return ( # type: ignore[no-any-return] + return ( session._get_active_session() if snowpark_utils.is_in_stored_procedure() # type: ignore[no-untyped-call] # else session.Session.builder.configs(connection_params.SnowflakeLoginOptions()).create()