forked from meganmb/RepProj
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData_Analysis_Markdown.Rmd
546 lines (429 loc) · 26.5 KB
/
Data_Analysis_Markdown.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
---
output: html_document
---
---
title: "RepProj_Megan_Kalyani"
author: "Megan and Kalyani"
date: "March 15, 2015"
output: html_document
---
```{r message = FALSE}
######################################################################################################################
##### Assignment: Replication Project #####
##### Due Date: 3/15/2015 #####
##### Authors: Megan Blanchard and Kalyani Jayasankar #####
##### Input: clean2010data.dta, colorr_recode_subset.dta, and Images in Images folder of project #####
##### Output: This code does analysis on the clean data file. We create 5 figures : #####
##### Figure 2: Relation between Skin Color and Educational Attainment #####
##### Figure 3: Bar Graph of Average Ed by Skin Color for each country #####
##### Figure 4: Effects of Skin Color and Other Factors on Educational Attainment #####
##### Figure 5: Effects of Skin Color and Other Factors on Educational Attainment by Country (Ext) #####
##### Figure 6: The Association Between Skin Color and Other Factors and Income (Ext) #####
######################################################################################################################
```
**Replicated Paper:**
Pigmentocracy in the Americas: How is Educational Attainment Related to Skin Color?
By Edward Telles and Liza Steele
**Abstract:**
This paper addresses the question of whether educational attainment, a key indicator of socioeconomic status, is related to skin color in Latin America and the Caribbean. Based on data from the 2010 AmericasBarometer, our analysis shows that persons with lighter skin color tend to have higher levels of schooling than those with dark skin color throughout the region, with few exceptions. Moreover, these differences are statistically significant in most cases and, as we show in a test of several multiracial countries, the negative relation between skin color and educational attainment occurs independently of class origin and other variables known to affect socioeconomic status. Thus, we find that skin color, a central measure of race, is an important source of social stratification throughout the Americas today (2012:i).
**What we did:**
In this document we first reproduce the three figures in the paper (i.e. Figures 2-4) and then attempt to extend the authors findings. For our data cleaning process please see Clean_Data.R.
**Figure 1 in the paper is an image to aid with the understanding of a variable(colorr):**
![](Images/Figure1_original(do_not_rep).png)
(There is nothing to replicate)
**Here is the set up for Figure 2 by Telles and Steele:**
In Figure 2, we show the relation between skin color and schooling for 23 countries in the 2010 AmericasBarometer.4 Our dependent variable is educational attainment, which is based on the grade level completed by the respondent.
Figure 2 graphically represents the relation between educational attainment and skin color in four regions, where the lightest persons are near 1 and the darkest near 11. We present data points only where there are at least 30 persons from the survey. Categories with fewer than 30 respondents are combined with contiguous groups (for example, 1’s are combined with 2’s in many countries, in which case the combined category is reported as a 2) (2012:2)
**Here is the figure from the paper:**
![](Images/Figure2_original.png)
**Here is our replication:**
![](Images/Figure2_rep.png)
**Here is our code:**
```{r message = FALSE}
suppressMessages(library(survey))
suppressMessages(library(foreign))
suppressMessages(library(ggplot2))
suppressMessages(library(gridExtra))
suppressMessages(library(xtable))
suppressMessages(library(dplyr))
suppressMessages(library(grid))
#load data
clean.2010 <- read.dta("clean2010data.dta")
colorr_recode_subset <- read.dta("colorr_recode_subset.dta")
```
```{r message = FALSE}
####################################################################################################################
#####Creating Figure 2: Relation between Skin Color and Educational Attainment in Latin America and the Caribbean ##
#####facet by the four specified regions #####
####################################################################################################################
#figure 2 prep, calculate mean ed for figure 2
mean_ed_graph <- colorr_recode_subset %>%
select(colorr_recode, country, region, ed, weight1500) %>%
filter(!is.na(ed)) %>%
group_by(colorr_recode, country, region) %>%
summarize(mean_ed = weighted.mean(ed, weight1500))
#order regions for figure
mean_ed_graph$region <- factor(mean_ed_graph$region,
levels = c("Central America and Mexico",
"Andean",
"Southern Cone and Brazil",
"Caribbean"))
#order countries
mean_ed_graph$country <- factor(mean_ed_graph$country,
levels = c("Panama", "Costa Rica", "Honduras", "Mexico",
"Guatemala", "El Salvador", "Nicaragua",
"Bolivia", "Peru", "Venezuela", "Colombia",
"Ecuador", "Argentina", "Chile", "Paraguay",
"Uruguay", "Brazil", "Suriname", "Jamaica",
"Trinidad & Tobago", "Guyana", "Dominican Republic",
"Belize"))
#figure 2
p <- ggplot(data = mean_ed_graph, aes(x = colorr_recode, y = mean_ed, color = country))
fig2 <- p + layer (geom="line", size = 1) +
facet_wrap(~region, scales = "free") +
scale_color_manual("Countries, by Region\n",
labels = c("CENTRAL AMERICA & MEXICO\n\nPanama",
"Costa Rica", "Honduras", "Mexico",
"Guatemala", "El Salvador", "Nicaragua",
"ANDEAN\nBolivia", "Peru", "Venezuela",
"Colombia", "Ecuador", "SOUTHERN CONE & BRAZIL\nArgentina",
"Chile", "Paraguay", "Uruguay", "Brazil",
"CARIBBEAN\nSuriname", "Jamaica", "Trinidad & Tobago",
"Guyana", "Dominican Republic", "Belize"),
values = c("dark red", "orange", "gold", "dark blue",
"sky blue", "dark green", "light green",
"dark red", "sky blue", "dark green",
"orange", "gold","dark red", "sky blue",
"dark green", "orange", "gold", "orange",
"dark blue", "gold", "dark green", "dark red",
"sky blue")) +
xlab("Skin Shade") +
ylab("Mean Years of Education") +
scale_y_continuous(limits = c(5,13), breaks = (5:13)) +
scale_x_continuous(limits = c(1,11), breaks = (1:11),
labels = c("1-lightest", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11-darkest")) +
ggtitle("Relation between Skin Color and Educational Attainment
\n\n in Latin America and the Caribbean") +
theme(plot.title = element_text(lineheight =.6, face = "bold", size = 16),
strip.text.x = element_text(face = "bold", hjust = 1),
strip.background = element_rect(colour = "white", fill = "white"),
panel.background = element_rect(fill = 'white', colour = 'white'),
axis.text.x = element_text(colour = "black", face = "bold", angle = 45, hjust = 1),
axis.text.y = element_text(colour = "black", face = "bold"),
axis.title = element_text(face = "bold"),
panel.grid.minor = element_blank(),
panel.grid.major.y = element_line(colour = "dark gray", linetype = 1) ,
axis.line = element_line(colour = "dark gray"),
legend.key = element_rect(fill = "white", color = "white")) +
guides(col = guide_legend(ncol = 2))
```
**Here is the set up for Figure 3 by Telles and Steele:**
Figure 3 shows the mean levels of schooling for the residents with the lightest skin (1-3) compared to those with darkest skin (6+) in all 23 countries, ordered by the size of the average difference between the two. Figure 3 also presents confidence intervals around these means, given that there is a margin of error for these population samples, as there is in all survey samples of large populations (2012:4)
**Here is the figure from the paper:**
![](Images/Figure3_original.png)
**Here is our replication:**
![](Images/Figure3_rep.jpeg)
**Here is our code:**
```{r message=FALSE}
###############################################################################################################
#####Figure 3: Bar Graph of Average Ed by Skin Color for each country #####
#####shows the mean levels of schooling for the residents with the lightest skin (1-3) #####
#####compared to those with darkest skin (6+) in all 23 countries, #####
#####ordered by the size of the average difference between the two. #####
###############################################################################################################
#prep for Figure 3, create a new dataframe country_ed with weighted means and CIs
country_ed <- colorr_recode_subset %>%
filter(!is.na(colorr_recode), !is.na(ed), tone != "medium") %>%
group_by(country, tone) %>%
select(country, tone, ed, weight1500, upm, estratopri)
country_ed$newid <- paste(country_ed$upm, country_ed$estratopri)
mydesign <- svydesign(ids= ~ newid, strata= ~ estratopri, data = country_ed, weights = ~ weight1500)
mean_edu <- svyby(~ ed, ~ country + tone, mydesign, svymean, na.rm=T)
conf <- confint(mean_edu)
country_edu <- cbind(mean_edu, conf)
country_edu <- country_edu %>%
rename(ci.lower = `2.5 %`, ci.upper = `97.5 %`)
#fig 3 prep, order countries
country_edu$country <- factor(country_edu$country,
levels = c("Bolivia", "Uruguay", "Peru",
"Guatemala", "Suriname", "Mexico",
"Panama", "Dominican Republic",
"Jamaica", "El Salvador", "Trinidad & Tobago",
"Guyana", "Chile", "Costa Rica",
"Venezuela", "Brazil", "Ecuador",
"Nicaragua", "Colombia", "Honduras",
"Argentina", "Belize", "Paraguay"))
#Figure 3
fig3 <- ggplot(country_edu, aes(x = factor(tone), y = ed, fill = tone)) +
ylim(0, 15) +
ylab("Years of Schooling") + xlab("") +
geom_bar(stat = "identity") +
geom_errorbar(aes(ymin = ci.lower, ymax = ci.upper)) +
facet_wrap(~ country, ncol = 2) + coord_flip() +
geom_text(aes(label = round(ed, 1)), size = 3, hjust = -1.95) +
scale_fill_brewer(palette = "Greens") +
theme(legend.position = "none") +
scale_x_discrete(labels = c("Dark Skin", "Light Skin")) +
ggtitle("Average Educational Attainment for Persons with \n \n Darkest and Lightest Skin Colors in the Americas, 2010") +
theme(plot.title = element_text(lineheight = .6, face = "bold", size = 12),
strip.text.x = element_text(face = "bold", hjust = 0),
strip.background = element_rect(colour = "white", fill = "white"),
panel.background = element_rect(fill = "white", colour = "white"),
axis.text = element_text(colour = "black"),
axis.title = element_text(face = "bold"))
fig3.note <- arrangeGrob(fig3,
sub = textGrob("95% Confidence Interval (Design-Effect Based)
\nSource: AmericasBarometer by LAPOP",
x = .1, hjust = 0, vjust = .5,
gp = gpar(fontface = "italic", fontsize = 10)))
````
**Here is the set up for Figure 4 by Telles and Steele:**
Since other factors besides color may affect years of schooling, we run a regression analysis predicting years of education by skin color, as well as class origin, age, sex, urban/rural residence and country of residence. We run the regression model only for the eight countries (Bolivia, Brazil, Colombia, Dominican Republic, Ecuador, Guatemala, Mexico and Peru) in which the class origin data are available[…] The results of the OLS regression analysis are are summarized graphically in Figure 4. In order to compare the relative sizes of the effects, the figure presents standardised coefficients (2012:5)
**Here is the Figure 4 from the paper:**
![](Images/Figure4_original.png)
**Here is our replication:**
![](Images/Figure4_rep.png)
**Here is our code:**
```{r message=FALSE}
####################################################################################################################
#####Figure 4. Effects of Skin Color and Other Factors on Educational Attainment #####
####################################################################################################################
#prep, select correct countries for analysis in new data frame, make categorical vars numeric
eight_country <- colorr_recode_subset %>%
filter(country %in% c("Brazil", "Mexico", "Guatemala", "Colombia",
"Ecuador", "Bolivia", "Peru", "Dominican Republic")) %>%
filter(!is.na(country), !is.na(ed), !is.na(age), !is.na(sex),
!is.na(parent_occ), !is.na(ur), !is.na(colorr)) %>%
mutate(ed = as.numeric(ed),
parent_occ = as.numeric(parent_occ),
age = as.numeric(age),
Female = ifelse(sex == "Female", 1, ifelse(sex == "Male", 0, NA)),
Urban = ifelse(ur == "Urban", 1, ifelse(ur == "Rural", 0, NA)),
Brazil = ifelse(country == "Brazil", 1, 0),
Mexico = ifelse(country == "Mexico", 1, 0),
Guatemala = ifelse(country == "Guatemala", 1, 0),
Colombia = ifelse(country == "Colombia", 1, 0),
Ecuador = ifelse(country == "Ecuador", 1, 0),
Bolivia = ifelse(country == "Bolivia", 1, 0),
Peru = ifelse(country == "Peru", 1, 0),
Dominican_Republic = ifelse(country == "Dominican Republic", 1, 0))
#model 1
eight_country$newid <- paste(eight_country$upm, eight_country$estratopri)
svy <- svydesign(ids = ~ newid, strata = ~ estratopri, data = eight_country, weights = ~ weight1500)
model1.graph <- svyglm(scale(ed) ~ scale(colorr) +
scale(parent_occ) +
scale(Urban) +
scale(age) +
scale(Female) +
scale(Mexico) +
scale(Guatemala) +
scale(Colombia) +
scale(Ecuador) +
scale(Bolivia) +
scale(Peru) +
scale(Dominican_Republic), svy)
#creating data frame of coefficients and CIs
graph.coef <- summary(model1.graph)$coefficients[2:6, 1]
model1.CI <- confint(model1.graph)
model1.CIlower <- model1.CI[2:6 , 1]
model1.CIupper <- model1.CI[2:6 , 2]
labels = c("Skin Color","Parental Occupation", "Urban", "Age", "Female")
frame <- data.frame(variable = labels,
coefficient = graph.coef,
ci.lower = model1.CIlower,
ci.upper = model1.CIupper)
#reorder variables
frame$variable.order <- factor(frame$variable, levels = c("Female",
"Age",
"Urban",
"Parental Occupation",
"Skin Color"))
#create Figure 4
fig4 <- ggplot(frame, aes(y = coefficient, x = variable.order)) + geom_point() +
geom_pointrange(aes(ymin = ci.lower, ymax = ci.upper)) +
geom_hline(yintercept = 0, color ="dark green", size = 1) +
coord_flip() +
ylab("95 Percent C.I. (Design-Effects Based)") + xlab("") +
theme_classic() +
ggtitle("Effects of Skin Color and Other Factors on\n\n Educational Attainment in Select Latin American \n\nCountries") +
theme(plot.title = element_text(lineheight = .6, face ="bold", size = 12),
axis.text = element_text(colour = "black", face = "bold"),
axis.title = element_text(face = "bold"))
fig4.note <- arrangeGrob(fig4,
sub = textGrob("Source: Americas Barometer by LAPOP",
x = .1, hjust = 0, vjust = 0,
gp = gpar(fontface = "italic", fontsize = 10)))
```
***Here is our expansion:***
We re-run a model separately for each country, so that we can see the disaggregated coefficients.
**Here is our new graphic:**
![](Images/rep.png)
**Here is our code:**
```{r message=FALSE}
####################################################################################################################
#####Figure 5. Effects of Skin Color and Other Factors on Educational Attainment by Country (Extension) #####
####################################################################################################################
#prep
country.names <- c("Brazil",
"Mexico",
"Guatemala",
"Colombia",
"Ecuador",
"Bolivia",
"Peru",
"Dominican Republic")
country.graph <- list()
country.graph.coef <- list()
country.CI <- list()
country.CIlower <- list()
country.CIupper <- list()
frame <- list()
country.fig <- list()
country.fig.note <- list()
#loop through for each country
for (name in country.names) {
data <- eight_country %>%
filter(country == name)
country.graph[[name]] <- lm(scale(ed) ~ scale(colorr) +
scale(parent_occ) +
scale(Urban) +
scale(age) +
scale(Female), data = data)
country.graph.coef[[name]] <- summary(country.graph[[name]])$coefficients[2:6, 1]
country.CI[[name]] <- confint(country.graph[[name]])
country.CIlower[[name]] <- country.CI[[name]][2:6 , 1]
country.CIupper[[name]] <- country.CI[[name]][2:6 , 2]
labels = c("Skin Color","Parental Occupation", "Urban", "Age", "Female")
frame[[name]] <- data.frame(variable = labels,
coefficient = country.graph.coef[[name]],
ci.lower = country.CIlower[[name]],
ci.upper = country.CIupper[[name]])
#reorder variables
frame[[name]]$variable.order <- factor(frame[[name]]$variable, levels = c("Female",
"Age",
"Urban",
"Parental Occupation",
"Skin Color"))
country.fig[[name]] <- ggplot(frame[[name]], aes(y = coefficient, x = variable.order)) + geom_point() +
geom_pointrange(aes(ymin = ci.lower, ymax = ci.upper)) +
geom_hline(yintercept = 0, color = "dark green", size = 1) +
ylim(-.5, .5) +
coord_flip() +
ylab("") + xlab("") +
theme_classic() +
theme(plot.title = element_text(lineheight = .6, face = "bold"),
axis.text = element_text(colour = "black", face = "bold"),
axis.title = element_text(face = "bold"))
}
country.fig.note.brazil <- arrangeGrob(country.fig[["Brazil"]],
sub = textGrob("Brazil",
x = 0, hjust = -1, vjust = 0,
gp = gpar(fontface = "bold", fontsize = 12)))
country.fig.note.mexico <- arrangeGrob(country.fig[["Mexico"]],
sub = textGrob("Mexico",
x = 0, hjust = -1, vjust = 0,
gp = gpar(fontface = "bold", fontsize = 12)))
country.fig.note.guatemala <- arrangeGrob(country.fig[["Guatemala"]],
sub = textGrob("Guatemala",
x = 0, hjust = -1, vjust = 0,
gp = gpar(fontface = "bold", fontsize = 12)))
country.fig.note.colombia <- arrangeGrob(country.fig[["Colombia"]],
sub = textGrob("Colombia",
x = 0, hjust = -1, vjust = 0,
gp = gpar(fontface = "bold", fontsize = 12)))
country.fig.note.ecuador <- arrangeGrob(country.fig[["Ecuador"]],
sub = textGrob("Ecuador",
x = 0, hjust = -1, vjust = 0,
gp = gpar(fontface = "bold", fontsize = 12)))
country.fig.note.bolivia <- arrangeGrob(country.fig[["Bolivia"]],
sub = textGrob("Bolivia",
x = 0, hjust = -1, vjust = 0,
gp = gpar(fontface = "bold", fontsize = 12)))
country.fig.note.peru <- arrangeGrob(country.fig[["Peru"]],
sub = textGrob("Peru",
x = 0, hjust = -1, vjust = 0,
gp = gpar(fontface = "bold", fontsize = 12)))
country.fig.note.dominican_republic <- arrangeGrob(country.fig[["Dominican Republic"]],
sub = textGrob("Dominican Republic",
x = 0, hjust = -1, vjust = 0,
gp = gpar(fontface = "bold", fontsize = 12)))
fig5 <- arrangeGrob(country.fig.note.brazil,
country.fig.note.mexico,
country.fig.note.guatemala,
country.fig.note.colombia,
country.fig.note.ecuador,
country.fig.note.bolivia,
country.fig.note.peru,
country.fig.note.dominican_republic,
nrow = 4, ncol = 2,
main = textGrob("Effects of Skin Color and Other Factors on\n Educational Attainment",
gp = gpar(fontface = "bold", fontsize = 20)),
sub = textGrob("95 Percent C.I. (Design-Effects Based)",
gp = gpar(fontface = "bold", fontsize = 18)))
```
In order to explore other possible ways skin color could predict inequality, we decided to look at the income variable.
**Here is our new graphic:**
![](Images/Figure6_ext.jpeg)
**Here is our code:**
In the data, income is an ordinal variable, rated on a scale of 1-10. This violates one of the assumptions of linear regression that the interval between values be equal. In the case of income, a value of 1 corresponds to an income of $0-25, while a value of 2 corresponds to an income of $25-50 and so on. However, the intervals are not equal. In order to run a linear regression on this variable, one method is to pick the mid-point of the range that the summary value represents.
```{r}
####################################################################################################################
#####Figure 6. Association between Skin Color and Other Factors and Income (Extension) #####
####################################################################################################################
#pick mid-values, for the highest value (above $750), pick $800
#exclude missing values in dataframe income_colorr
income_colorr <- eight_country %>%
mutate(mid_income = ifelse(income == 0, 0,
ifelse(income == 1, 12.5,
ifelse(income == 2, 37.5,
ifelse(income == 3, 75,
ifelse(income == 4, 125,
ifelse(income == 5, 175,
ifelse(income == 6, 250,
ifelse(income == 7, 350,
ifelse(income == 8, 450,
ifelse(income == 9, 625,
ifelse(income == 10, 800, NA)))))))))))) %>%
mutate(mid_income = as.numeric(mid_income)) %>%
filter(!is.na(income))
#specify survey design again
svy_income <- svydesign(ids = ~ newid, strata = ~ estratopri, data = income_colorr, weights = ~ weight1500)
#run regression
model2_graph <- svyglm(scale(mid_income) ~ scale(colorr) +
scale(ed) +
scale(parent_occ) +
scale(Urban) +
scale(age) +
scale(Female) +
scale(Mexico) +
scale(Guatemala) +
scale(Colombia) +
scale(Ecuador) +
scale(Bolivia) +
scale(Peru) +
scale(Dominican_Republic), svy_income)
#add confidence intervals and coefficients
model2_coef <- summary(model2_graph)$coefficients[2:7, 1]
model2_ci <- confint(model2_graph)
model2_cilower <- model2_ci[2:7, 1]
model2_ciupper <- model2_ci[2:7, 2]
model2_labels <- c("Skin Color", "Education", "Parental Occupation", "Urban", "Age", "Female")
#create dataframe
model2_frame <- data.frame(variable = model2_labels,
coefficient = model2_coef,
ci_lower = model2_cilower,
ci_upper = model2_ciupper)
#create Figure 6
fig6 <- ggplot(data = model2_frame, aes(x = variable, y = coefficient)) + geom_point() +
geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) +
geom_hline(yintercept = 0, color = "dark green", size = 1) +
coord_flip() +
ylab("95 Percent C.I. (Design-Effects Based)") + xlab("") +
theme_classic() +
ggtitle("The Association between Skin Color and Other Factors and\n\n Income in Select Latin American \n\nCountries") +
theme(plot.title = element_text(lineheight = .6, face = "bold", size = 12),
axis.text = element_text(colour = "black", face = "bold"),
axis.title = element_text(face = "bold"))
fig6_note <- arrangeGrob(fig6, sub = textGrob("Source: Americas Barometer by LAPOP", x = .1, hjust = 0, vjust = 0, gp = gpar(fontface = "italic", fontsize = 10)))
```
The results above are significant for the study because they bolster Telles and Steele's claim "that the bulk of countries in Latin America and the Caribbean may be safely characterized as pigmentocracies" (2012:6).