forked from karpathy/llama2.c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
513 lines (431 loc) · 20 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import math
import inspect
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from tqdm import trange
@dataclass
class ModelArgs:
# default hyperparameters for the Llama 7B model
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
n_kv_heads: Optional[int] = None
vocab_size: int = 32000
hidden_dim: Optional[int] = None
multiple_of: int = 256 # MLP hidden layer size will be multiple of
norm_eps: float = 1e-5
max_seq_len: int = 2048
dropout: float = 0.0
softmax1: bool = False
softmaxn_param: float = 1
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
# Ref: https://github.com/softmax1/EsperBERTo/blob/7d2d5ed8695b95ade6bcbe21b7ce981b3c9394d7/src/functional.py#L7C6-L35
def softmax_n_shifted_zeros(input: Tensor, n: float) -> Tensor:
"""
$\text(softmax)_n(x_i) = exp(x_i) / (n + \sum_j exp(x_j))$
Note: softmax_n, with fixed input, is _not_ shift-symmetric when n != 0, and we must account for this.
Normally when computing a softmax, the maxes are subtracted from the inputs for numeric stability.
"""
# compute the maxes along the last dimension
input_maxes = input.max(dim=-1, keepdim=True).values
# shift the input to prevent overflow (and underflow in the denominator)
shifted_inputs = torch.subtract(input, input_maxes)
# compute the numerator and softmax_0 denominator using the shifted input
numerator = torch.exp(shifted_inputs)
original_denominator = numerator.sum(dim=-1, keepdim=True)
# we need to shift the zeros in the same way we shifted the inputs
shifted_zeros = torch.multiply(input_maxes, -1)
# and then add this contribution to the denominator
denominator = torch.add(
original_denominator, torch.multiply(torch.exp(shifted_zeros), n)
)
return torch.divide(numerator, denominator)
def softmax_1(input: Tensor) -> Tensor:
"""
$\text(softmax)_n(x_i) = exp(x_i) / (1 + \sum_j exp(x_j))$
After a small amount of testing, the "shifted zeros" approach appears to be faster.
I am definitely open to suggestions on which approach is better though.
"""
return softmax_n_shifted_zeros(input, 1)
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return freqs_cos, freqs_sin
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(shape)
def apply_rotary_emb(
xq: torch.Tensor, xk: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
assert args.n_heads % self.n_kv_heads == 0
model_parallel_size = 1
self.n_local_heads = args.n_heads // model_parallel_size
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
# use flash attention or a manual implementation?
self.flash = False
# WARN: Force to manual attention. Appeals for flashattention will be ignored.
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask)
self.softmax1 = args.softmax1
self.softmaxn = args.softmaxn_param
# intermediate tensors for compute_metrics in eval state
self.scores = None
def forward(
self,
x: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
):
bsz, seqlen, _ = x.shape
# QKV
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# embed(x) + pos(x) -> 1st block
# 1st block := softmax(rotary(q)rotary(k)/dk) * v
# RoPE relative positional embeddings
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# grouped multiquery attention: expand out keys and values
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
# make heads into a batch dimension
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# flash implementation
if self.flash:
output = torch.nn.functional.scaled_dot_product_attention(
xq,
xk,
xv,
attn_mask=None,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True,
)
else:
# manual implementation
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
assert hasattr(self, "mask")
scores = (
scores + self.mask[:, :, :seqlen, :seqlen]
) # (bs, n_local_heads, seqlen, cache_len + seqlen)
if not self.softmax1:
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
else:
scores = softmax_n_shifted_zeros(scores.float(), self.softmaxn).type_as(
xq
)
if not self.training:
# on eval, hook onto attention scores to analyse later. assume batch size=1
self.scores = scores.squeeze(0).detach()
scores = self.attn_dropout(scores)
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
# restore time as batch dimension and concat heads
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
# final projection into the residual stream
output = self.wo(output)
output = self.resid_dropout(output)
return output
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
super().__init__()
if hidden_dim is None:
hidden_dim = 4 * dim
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=args.hidden_dim,
multiple_of=args.multiple_of,
dropout=args.dropout,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(self, x, freqs_cos, freqs_sin):
h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
last_loss: Optional[torch.Tensor]
def __init__(self, params: ModelArgs):
super().__init__()
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
# share the unembedding parameters with the embedding parameters
self.tok_embeddings.weight = (
self.output.weight
) # https://paperswithcode.com/method/weight-tying
# some useful precompute for the RoPE relative positional embeddings
freqs_cos, freqs_sin = precompute_freqs_cis(
self.params.dim // self.params.n_heads, self.params.max_seq_len
)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith("w3.weight") or pn.endswith("wo.weight"):
torch.nn.init.normal_(
p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers)
)
# Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
self.last_loss = None
# Hook vars
self.logits = []
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(
self, tokens: torch.Tensor, targets: Optional[torch.Tensor] = None
) -> torch.Tensor:
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
h = self.dropout(h)
freqs_cos = self.freqs_cos[:seqlen]
freqs_sin = self.freqs_sin[:seqlen]
for layer in self.layers:
h = layer(h, freqs_cos, freqs_sin)
h = self.norm(h)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.output(h)
self.last_loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
else:
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(
h[:, [-1], :]
) # note: using list [-1] to preserve the time dim
self.last_loss = None
return logits
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{"params": decay_params, "weight_decay": weight_decay},
{"params": nodecay_params, "weight_decay": 0.0},
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(
f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters"
)
print(
f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters"
)
# Create AdamW optimizer and use the fused version if it is available
fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(
optim_groups, lr=learning_rate, betas=betas, **extra_args
)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
"""estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS"""
# first estimate the number of flops we do per iteration.
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
N = sum(p.numel() for p in self.parameters())
cfg = self.params
L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim // cfg.n_heads, cfg.max_seq_len
flops_per_token = 6 * N + 12 * L * H * Q * T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0 / dt) # per second
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
@torch.inference_mode()
def generate(
self,
idx,
max_new_tokens,
temperature=1.0,
top_k=None,
return_logits=False,
pbar=False,
):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
Also note this is a super inefficient version of sampling with no key/value cache.
"""
logits_list = []
iterator = trange if pbar else range
for _ in iterator(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = (
idx
if idx.size(1) <= self.params.max_seq_len
else idx[:, -self.params.max_seq_len :]
)
# forward the model to get the logits for the index in the sequence
logits = self(idx_cond)
logits = logits[:, -1, :] # crop to just the final time step
logits_list.append(logits.unsqueeze(1))
if temperature == 0.0:
# "sample" the single most likely index
_, idx_next = torch.topk(logits, k=1, dim=-1)
else:
# pluck the logits at the final step and scale by desired temperature
logits = logits / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float("Inf")
# apply softmax to convert logits to (normalized) probabilities
probs_next = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs_next, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
self.logits = torch.cat(logits_list, dim=1)
if return_logits:
return idx, self.logits
return idx
# the following metric computations require that the model be run in eval mode, then the respective layer outputs
# will be saved in order to compute the metric of the latest input passed through the model
def attention_matrix(self, sum=True) -> None:
"""
compute the Transformer heads' attention matrices, or sum.
return shape: [bsz, n_block, n_head, seqlen, seqlen] if not sum
else [bsz, n_block, n_head, seqlen] if sum
"""
any_flash = any([b.attention.flash for b in self.layers])
assert not any_flash, "unable to compute softmax metrics with flashattention"
attn_matrices = torch.stack(
[b.attention.scores for b in self.layers], dim=1
) # shape [bsz, n_block, n_head, seqlen, seqlen]
if sum: # sum along last seqlen dim. gives sum in range (0,1)
return attn_matrices.sum(dim=-1)
else:
return attn_matrices
def compute_perplexity(self) -> torch.Tensor:
"""
compute the perplexity of the model's output logits
"""
assert (
self.last_loss is not None
), "must run model in eval mode with targets to compute perplexity"
return torch.exp(self.last_loss)
if __name__ == "__main__":
# Symtraces are a ridiculous pain in the ass and almost impossible.
# https://pytorch.org/tutorials/prototype/fx_graph_mode_quant_guide.html
from torch.fx import symbolic_trace
model = Transformer(
ModelArgs(
dim=1,
n_layers=1,
n_heads=1,
n_kv_heads=1,
vocab_size=1,
hidden_dim=1,
multiple_of=1,
norm_eps=1,
max_seq_len=1,
dropout=0.0,
softmax1=True,
softmaxn_param=1,
)
)
raise NotImplementedError("Symtraces don't work on llama2.c yet.")
# Symbolic tracing frontend - captures the semantics of the module
symbolic_traced: torch.fx.GraphModule = symbolic_trace(model)
# High-level intermediate representation (IR) - Graph representation
print(symbolic_traced.graph)
# Code generation - valid Python code
print(symbolic_traced.code)