Skip to content

Commit f3975d0

Browse files
committed
Poster Graphs
1 parent 6584e4d commit f3975d0

File tree

1 file changed

+181
-0
lines changed

1 file changed

+181
-0
lines changed

R/cge_analysis_script.R

+181
Original file line numberDiff line numberDiff line change
@@ -1745,6 +1745,24 @@ legend("topleft", legend = c(expression(bold("WMC Group")), "low WMC", "high WMC
17451745
col = c(NA, 'red', 'red'), lty = c(NA, 1, 2), lwd = c(NA, 2, 2),
17461746
bty = "o", inset = c(0.025, 0.025))
17471747

1748+
# for SANS
1749+
par(mfrow = c(1,2))
1750+
par(mar = c(5, 6, 4, 4))
1751+
# ~ low WMC
1752+
plot(x = xval_plot, y = predict_output_m3_best_L[1:10], cex.axis = 1.3, las = 1,
1753+
type = 'l', lwd = 5, col = 'blue',ylim = c(1.3, 1.8),
1754+
xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Reaction Time (seconds)")), cex.lab = 1.5,)
1755+
lines(x = xval_plot, y = predict_output_m3_best_L[11:20],
1756+
lwd = 5, col = 'red', lty = 1)
1757+
# ~ high WMC
1758+
plot(x = xval_plot, y = predict_output_m3_best_H[1:10], cex.axis = 1.3, las = 1,
1759+
type = 'l', lwd = 5, col = 'blue',ylim = c(1.3, 1.8),
1760+
xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Reaction Time (seconds)")), cex.lab = 1.5,)
1761+
lines(x = xval_plot, y = predict_output_m3_best_H[11:20],
1762+
lwd = 5, col = 'red', lty = 1)
1763+
1764+
1765+
17481766

17491767

17501768

@@ -5937,6 +5955,96 @@ wind2_m11_sepdifficulties_3ways_rfx = lmer(wind2_effort_isi_mean ~ 1 +
59375955
(1 | subjectnumber), data = clean_data_dm, REML = F)
59385956
summary(wind2_m11_sepdifficulties_3ways_rfx)
59395957

5958+
# xval_plot = seq(from = 0, to = 1, length.out = 10)
5959+
# predict_data_m3_best_H = clean_data_dm[0,];
5960+
# predict_data_m3_best_H[1:20,] = NA;
5961+
# predict_data_m3_best_H$all_diff_cont[1:10] = xval_plot
5962+
# predict_data_m3_best_H$all_diff_cont[11:20] = xval_plot
5963+
# predict_data_m3_best_H$prev_all_diff_cont[1:10] = 0;
5964+
# predict_data_m3_best_H$prev_all_diff_cont[11:20] = 1;
5965+
# predict_data_m3_best_H$capacity_HighP1_lowN1_best = 1;
5966+
#
5967+
# predict_data_m3_best_L = predict_data_m3_best_H;
5968+
# predict_data_m3_best_L$capacity_HighP1_lowN1_best = -1;
5969+
#
5970+
# predict_output_m3_best_H = predict(m3_best, newdata = predict_data_m3_best_H, type = 'response', re.form = NA)^2
5971+
# predict_output_m3_best_L = predict(m3_best, newdata = predict_data_m3_best_L, type = 'response', re.form = NA)^2
5972+
5973+
par(mfrow = c(1,2))
5974+
par(mar = c(5, 6, 4, 4))
5975+
xval_plot = seq(from = 0, to = 1, by = .1)
5976+
# cd = c(0,1) # this is redundant with above
5977+
pd = c(0,1)
5978+
choice = c(0,1)
5979+
wmc = c(-1, 1)
5980+
coef_vals = fixef(wind2_m11_sepdifficulties_3ways_rfx)
5981+
5982+
# layout(matrix(c(1, 2, 3), nrow = 1, ncol = 3), widths = c(2.5, 2.5, 2))
5983+
5984+
# low WMC pupil
5985+
# CD x Choice
5986+
# ~ previous easy, risky choice
5987+
plot(x = xval_plot, y = coef_vals["(Intercept)"] +
5988+
xval_plot * coef_vals["all_diff_cont"] +
5989+
pd[1] * coef_vals["prev_all_diff_cont"] +
5990+
choice[2] * coef_vals["choice"] +
5991+
xval_plot * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
5992+
pd[1] * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
5993+
xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
5994+
pd[1] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
5995+
xval_plot * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
5996+
pd[1] * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
5997+
type = 'l', lwd = 5, col = 'blue', lty = 1, cex.axis = 1.3, las = 1,
5998+
xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Pupil Dilation (mm)")), ylim = c(4,4.25), cex.lab = 1.5)
5999+
# ~ previous difficult, risky choice
6000+
lines(x = xval_plot, y = coef_vals["(Intercept)"] +
6001+
xval_plot * coef_vals["all_diff_cont"] +
6002+
pd[2] * coef_vals["prev_all_diff_cont"] +
6003+
choice[2] * coef_vals["choice"] +
6004+
xval_plot * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
6005+
pd[2] * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
6006+
xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
6007+
pd[2] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
6008+
xval_plot * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
6009+
pd[2] * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
6010+
type = 'l', lwd = 5, col = 'red', lty = 1)
6011+
6012+
# high WMC pupil
6013+
# CD x Choice
6014+
# ~ previous easy, risky choice
6015+
plot(x = xval_plot, y = coef_vals["(Intercept)"] +
6016+
xval_plot * coef_vals["all_diff_cont"] +
6017+
pd[1] * coef_vals["prev_all_diff_cont"] +
6018+
choice[2] * coef_vals["choice"] +
6019+
xval_plot * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
6020+
pd[1] * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
6021+
xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
6022+
pd[1] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
6023+
xval_plot * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
6024+
pd[1] * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
6025+
type = 'l', lwd = 5, col = 'blue', lty = 1, cex.axis = 1.3, las = 1,
6026+
xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Pupil Dilation (mm)")), ylim = c(4,4.25), cex.lab = 1.5)
6027+
# ~ previous difficult, risky choice
6028+
lines(x = xval_plot, y = coef_vals["(Intercept)"] +
6029+
xval_plot * coef_vals["all_diff_cont"] +
6030+
pd[2] * coef_vals["prev_all_diff_cont"] +
6031+
choice[2] * coef_vals["choice"] +
6032+
xval_plot * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
6033+
pd[2] * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
6034+
xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
6035+
pd[2] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
6036+
xval_plot * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
6037+
pd[2] * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
6038+
type = 'l', lwd = 5, col = 'red', lty = 1)
6039+
6040+
# plot(1, type = "n", xlab = "", ylab = "", xlim = c(0, 1), ylim = c(0, 1), axes = FALSE)
6041+
# legend("left", legend = c(expression(bold("Previous Easy")), "Safe Choice", "Risky Choice", NA,
6042+
# expression(bold("Previous Difficult")), "Safe Choice", "Risky Choice"), # Labels
6043+
# col = c(NA, "darkblue", "darkblue", NA, NA, "orange", "orange"), # Blue for Easy, Red for Difficult
6044+
# lty = c(NA, 1, 2, NA, NA, 1, 2), lwd = 2)
6045+
6046+
6047+
59406048
wind2_m11_2ways_rfx = lmer(wind2_effort_isi_mean ~ 1 +
59416049
trialnumberRS * capacity_HighP1_lowN1_best +
59426050
trialnumberRS * choice +
@@ -7428,6 +7536,79 @@ summary(wind4_m11_2ways_rfx)
74287536
# capacity_HighP1_lowN1_best:prev_all_diff_cont 2.288e-03 6.583e-03 1.349e+04 0.348 0.72815
74297537
# choice:prev_all_diff_cont -8.493e-04 1.232e-02 1.349e+04 -0.069 0.94503
74307538

7539+
par(mfrow = c(1,2))
7540+
par(mar = c(5, 6, 4, 4))
7541+
xval_plot = seq(from = 0, to = 1, by = .1)
7542+
# cd = c(0,1) # this is redundant with above
7543+
pd = c(0,1)
7544+
choice = c(0,1)
7545+
wmc = c(-1, 1)
7546+
coef_vals = fixef(wind4_m11_sepdifficulties_3ways_rfx)
7547+
7548+
# layout(matrix(c(1, 2, 3), nrow = 1, ncol = 3), widths = c(2.5, 2.5, 2))
7549+
7550+
# low WMC pupil
7551+
# CD x Choice
7552+
# ~ previous easy, risky choice
7553+
plot(x = xval_plot, y = coef_vals["(Intercept)"] +
7554+
xval_plot * coef_vals["all_diff_cont"] +
7555+
pd[1] * coef_vals["prev_all_diff_cont"] +
7556+
choice[2] * coef_vals["choice"] +
7557+
xval_plot * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
7558+
pd[1] * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
7559+
xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
7560+
pd[1] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
7561+
xval_plot * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
7562+
pd[1] * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
7563+
type = 'l', lwd = 5, col = 'blue', lty = 1, cex.axis = 1.3, las = 1,
7564+
xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Pupil Dilation (mm)")), ylim = c(4,4.25), cex.lab = 1.5)
7565+
# ~ previous difficult, risky choice
7566+
lines(x = xval_plot, y = coef_vals["(Intercept)"] +
7567+
xval_plot * coef_vals["all_diff_cont"] +
7568+
pd[2] * coef_vals["prev_all_diff_cont"] +
7569+
choice[2] * coef_vals["choice"] +
7570+
xval_plot * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
7571+
pd[2] * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
7572+
xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
7573+
pd[2] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
7574+
xval_plot * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
7575+
pd[2] * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
7576+
type = 'l', lwd = 5, col = 'red', lty = 1)
7577+
7578+
# high WMC pupil
7579+
# CD x Choice
7580+
# ~ previous easy, risky choice
7581+
plot(x = xval_plot, y = coef_vals["(Intercept)"] +
7582+
xval_plot * coef_vals["all_diff_cont"] +
7583+
pd[1] * coef_vals["prev_all_diff_cont"] +
7584+
choice[2] * coef_vals["choice"] +
7585+
xval_plot * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
7586+
pd[1] * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
7587+
xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
7588+
pd[1] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
7589+
xval_plot * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
7590+
pd[1] * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
7591+
type = 'l', lwd = 5, col = 'blue', lty = 1, cex.axis = 1.3, las = 1,
7592+
xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Pupil Dilation (mm)")), ylim = c(4,4.25), cex.lab = 1.5)
7593+
# ~ previous difficult, risky choice
7594+
lines(x = xval_plot, y = coef_vals["(Intercept)"] +
7595+
xval_plot * coef_vals["all_diff_cont"] +
7596+
pd[2] * coef_vals["prev_all_diff_cont"] +
7597+
choice[2] * coef_vals["choice"] +
7598+
xval_plot * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
7599+
pd[2] * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
7600+
xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
7601+
pd[2] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
7602+
xval_plot * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
7603+
pd[2] * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
7604+
type = 'l', lwd = 5, col = 'red', lty = 1)
7605+
7606+
7607+
anova(wind4_m11_sepdifficulties_3ways_rfx,wind4_m11_2ways_rfx)
7608+
7609+
7610+
7611+
74317612

74327613
### LOOP: Regression Loop and Plotting a Predictor across all Pupillometry Windows #####
74337614

0 commit comments

Comments
 (0)