@@ -1745,6 +1745,24 @@ legend("topleft", legend = c(expression(bold("WMC Group")), "low WMC", "high WMC
1745
1745
col = c(NA, 'red', 'red'), lty = c(NA, 1, 2), lwd = c(NA, 2, 2),
1746
1746
bty = "o", inset = c(0.025, 0.025))
1747
1747
1748
+ # for SANS
1749
+ par(mfrow = c(1,2))
1750
+ par(mar = c(5, 6, 4, 4))
1751
+ # ~ low WMC
1752
+ plot(x = xval_plot, y = predict_output_m3_best_L[1:10], cex.axis = 1.3, las = 1,
1753
+ type = 'l', lwd = 5, col = 'blue',ylim = c(1.3, 1.8),
1754
+ xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Reaction Time (seconds)")), cex.lab = 1.5,)
1755
+ lines(x = xval_plot, y = predict_output_m3_best_L[11:20],
1756
+ lwd = 5, col = 'red', lty = 1)
1757
+ # ~ high WMC
1758
+ plot(x = xval_plot, y = predict_output_m3_best_H[1:10], cex.axis = 1.3, las = 1,
1759
+ type = 'l', lwd = 5, col = 'blue',ylim = c(1.3, 1.8),
1760
+ xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Reaction Time (seconds)")), cex.lab = 1.5,)
1761
+ lines(x = xval_plot, y = predict_output_m3_best_H[11:20],
1762
+ lwd = 5, col = 'red', lty = 1)
1763
+
1764
+
1765
+
1748
1766
1749
1767
1750
1768
@@ -5937,6 +5955,96 @@ wind2_m11_sepdifficulties_3ways_rfx = lmer(wind2_effort_isi_mean ~ 1 +
5937
5955
(1 | subjectnumber), data = clean_data_dm, REML = F)
5938
5956
summary(wind2_m11_sepdifficulties_3ways_rfx)
5939
5957
5958
+ # xval_plot = seq(from = 0, to = 1, length.out = 10)
5959
+ # predict_data_m3_best_H = clean_data_dm[0,];
5960
+ # predict_data_m3_best_H[1:20,] = NA;
5961
+ # predict_data_m3_best_H$all_diff_cont[1:10] = xval_plot
5962
+ # predict_data_m3_best_H$all_diff_cont[11:20] = xval_plot
5963
+ # predict_data_m3_best_H$prev_all_diff_cont[1:10] = 0;
5964
+ # predict_data_m3_best_H$prev_all_diff_cont[11:20] = 1;
5965
+ # predict_data_m3_best_H$capacity_HighP1_lowN1_best = 1;
5966
+ #
5967
+ # predict_data_m3_best_L = predict_data_m3_best_H;
5968
+ # predict_data_m3_best_L$capacity_HighP1_lowN1_best = -1;
5969
+ #
5970
+ # predict_output_m3_best_H = predict(m3_best, newdata = predict_data_m3_best_H, type = 'response', re.form = NA)^2
5971
+ # predict_output_m3_best_L = predict(m3_best, newdata = predict_data_m3_best_L, type = 'response', re.form = NA)^2
5972
+
5973
+ par(mfrow = c(1,2))
5974
+ par(mar = c(5, 6, 4, 4))
5975
+ xval_plot = seq(from = 0, to = 1, by = .1)
5976
+ # cd = c(0,1) # this is redundant with above
5977
+ pd = c(0,1)
5978
+ choice = c(0,1)
5979
+ wmc = c(-1, 1)
5980
+ coef_vals = fixef(wind2_m11_sepdifficulties_3ways_rfx)
5981
+
5982
+ # layout(matrix(c(1, 2, 3), nrow = 1, ncol = 3), widths = c(2.5, 2.5, 2))
5983
+
5984
+ # low WMC pupil
5985
+ # CD x Choice
5986
+ # ~ previous easy, risky choice
5987
+ plot(x = xval_plot, y = coef_vals["(Intercept)"] +
5988
+ xval_plot * coef_vals["all_diff_cont"] +
5989
+ pd[1] * coef_vals["prev_all_diff_cont"] +
5990
+ choice[2] * coef_vals["choice"] +
5991
+ xval_plot * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
5992
+ pd[1] * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
5993
+ xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
5994
+ pd[1] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
5995
+ xval_plot * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
5996
+ pd[1] * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
5997
+ type = 'l', lwd = 5, col = 'blue', lty = 1, cex.axis = 1.3, las = 1,
5998
+ xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Pupil Dilation (mm)")), ylim = c(4,4.25), cex.lab = 1.5)
5999
+ # ~ previous difficult, risky choice
6000
+ lines(x = xval_plot, y = coef_vals["(Intercept)"] +
6001
+ xval_plot * coef_vals["all_diff_cont"] +
6002
+ pd[2] * coef_vals["prev_all_diff_cont"] +
6003
+ choice[2] * coef_vals["choice"] +
6004
+ xval_plot * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
6005
+ pd[2] * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
6006
+ xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
6007
+ pd[2] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
6008
+ xval_plot * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
6009
+ pd[2] * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
6010
+ type = 'l', lwd = 5, col = 'red', lty = 1)
6011
+
6012
+ # high WMC pupil
6013
+ # CD x Choice
6014
+ # ~ previous easy, risky choice
6015
+ plot(x = xval_plot, y = coef_vals["(Intercept)"] +
6016
+ xval_plot * coef_vals["all_diff_cont"] +
6017
+ pd[1] * coef_vals["prev_all_diff_cont"] +
6018
+ choice[2] * coef_vals["choice"] +
6019
+ xval_plot * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
6020
+ pd[1] * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
6021
+ xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
6022
+ pd[1] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
6023
+ xval_plot * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
6024
+ pd[1] * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
6025
+ type = 'l', lwd = 5, col = 'blue', lty = 1, cex.axis = 1.3, las = 1,
6026
+ xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Pupil Dilation (mm)")), ylim = c(4,4.25), cex.lab = 1.5)
6027
+ # ~ previous difficult, risky choice
6028
+ lines(x = xval_plot, y = coef_vals["(Intercept)"] +
6029
+ xval_plot * coef_vals["all_diff_cont"] +
6030
+ pd[2] * coef_vals["prev_all_diff_cont"] +
6031
+ choice[2] * coef_vals["choice"] +
6032
+ xval_plot * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
6033
+ pd[2] * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
6034
+ xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
6035
+ pd[2] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
6036
+ xval_plot * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
6037
+ pd[2] * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
6038
+ type = 'l', lwd = 5, col = 'red', lty = 1)
6039
+
6040
+ # plot(1, type = "n", xlab = "", ylab = "", xlim = c(0, 1), ylim = c(0, 1), axes = FALSE)
6041
+ # legend("left", legend = c(expression(bold("Previous Easy")), "Safe Choice", "Risky Choice", NA,
6042
+ # expression(bold("Previous Difficult")), "Safe Choice", "Risky Choice"), # Labels
6043
+ # col = c(NA, "darkblue", "darkblue", NA, NA, "orange", "orange"), # Blue for Easy, Red for Difficult
6044
+ # lty = c(NA, 1, 2, NA, NA, 1, 2), lwd = 2)
6045
+
6046
+
6047
+
5940
6048
wind2_m11_2ways_rfx = lmer(wind2_effort_isi_mean ~ 1 +
5941
6049
trialnumberRS * capacity_HighP1_lowN1_best +
5942
6050
trialnumberRS * choice +
@@ -7428,6 +7536,79 @@ summary(wind4_m11_2ways_rfx)
7428
7536
# capacity_HighP1_lowN1_best:prev_all_diff_cont 2.288e-03 6.583e-03 1.349e+04 0.348 0.72815
7429
7537
# choice:prev_all_diff_cont -8.493e-04 1.232e-02 1.349e+04 -0.069 0.94503
7430
7538
7539
+ par(mfrow = c(1,2))
7540
+ par(mar = c(5, 6, 4, 4))
7541
+ xval_plot = seq(from = 0, to = 1, by = .1)
7542
+ # cd = c(0,1) # this is redundant with above
7543
+ pd = c(0,1)
7544
+ choice = c(0,1)
7545
+ wmc = c(-1, 1)
7546
+ coef_vals = fixef(wind4_m11_sepdifficulties_3ways_rfx)
7547
+
7548
+ # layout(matrix(c(1, 2, 3), nrow = 1, ncol = 3), widths = c(2.5, 2.5, 2))
7549
+
7550
+ # low WMC pupil
7551
+ # CD x Choice
7552
+ # ~ previous easy, risky choice
7553
+ plot(x = xval_plot, y = coef_vals["(Intercept)"] +
7554
+ xval_plot * coef_vals["all_diff_cont"] +
7555
+ pd[1] * coef_vals["prev_all_diff_cont"] +
7556
+ choice[2] * coef_vals["choice"] +
7557
+ xval_plot * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
7558
+ pd[1] * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
7559
+ xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
7560
+ pd[1] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
7561
+ xval_plot * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
7562
+ pd[1] * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
7563
+ type = 'l', lwd = 5, col = 'blue', lty = 1, cex.axis = 1.3, las = 1,
7564
+ xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Pupil Dilation (mm)")), ylim = c(4,4.25), cex.lab = 1.5)
7565
+ # ~ previous difficult, risky choice
7566
+ lines(x = xval_plot, y = coef_vals["(Intercept)"] +
7567
+ xval_plot * coef_vals["all_diff_cont"] +
7568
+ pd[2] * coef_vals["prev_all_diff_cont"] +
7569
+ choice[2] * coef_vals["choice"] +
7570
+ xval_plot * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
7571
+ pd[2] * wmc[1] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
7572
+ xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
7573
+ pd[2] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
7574
+ xval_plot * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
7575
+ pd[2] * wmc[1] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
7576
+ type = 'l', lwd = 5, col = 'red', lty = 1)
7577
+
7578
+ # high WMC pupil
7579
+ # CD x Choice
7580
+ # ~ previous easy, risky choice
7581
+ plot(x = xval_plot, y = coef_vals["(Intercept)"] +
7582
+ xval_plot * coef_vals["all_diff_cont"] +
7583
+ pd[1] * coef_vals["prev_all_diff_cont"] +
7584
+ choice[2] * coef_vals["choice"] +
7585
+ xval_plot * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
7586
+ pd[1] * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
7587
+ xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
7588
+ pd[1] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
7589
+ xval_plot * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
7590
+ pd[1] * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
7591
+ type = 'l', lwd = 5, col = 'blue', lty = 1, cex.axis = 1.3, las = 1,
7592
+ xlab = expression(bold("Current Difficulty")), ylab = expression(bold("Pupil Dilation (mm)")), ylim = c(4,4.25), cex.lab = 1.5)
7593
+ # ~ previous difficult, risky choice
7594
+ lines(x = xval_plot, y = coef_vals["(Intercept)"] +
7595
+ xval_plot * coef_vals["all_diff_cont"] +
7596
+ pd[2] * coef_vals["prev_all_diff_cont"] +
7597
+ choice[2] * coef_vals["choice"] +
7598
+ xval_plot * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:all_diff_cont"] +
7599
+ pd[2] * wmc[2] * coef_vals["capacity_HighP1_lowN1_best:prev_all_diff_cont"] +
7600
+ xval_plot * choice[2] * coef_vals["choice:all_diff_cont"] +
7601
+ pd[2] * choice[2] * coef_vals["choice:prev_all_diff_cont"] +
7602
+ xval_plot * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:all_diff_cont"] +
7603
+ pd[2] * wmc[2] * choice[2] * coef_vals["capacity_HighP1_lowN1_best:choice:prev_all_diff_cont"],
7604
+ type = 'l', lwd = 5, col = 'red', lty = 1)
7605
+
7606
+
7607
+ anova(wind4_m11_sepdifficulties_3ways_rfx,wind4_m11_2ways_rfx)
7608
+
7609
+
7610
+
7611
+
7431
7612
7432
7613
### LOOP: Regression Loop and Plotting a Predictor across all Pupillometry Windows #####
7433
7614
0 commit comments