-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgeneration_strategy_python.py
279 lines (236 loc) · 11.2 KB
/
generation_strategy_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""Generators for Python source code representing fuzzed circuits.
This API could support multiple platforms. We start with Qiskit.
"""
import uuid
from abc import ABC
from abc import abstractmethod
from typing import List, Dict, Any, Tuple
import numpy as np
import math
import random
class Fuzzer(ABC):
def __init__(self):
pass
@abstractmethod
def generate_circuit_via_atomic_ops(
self,
gate_set: List[Dict[str, Any]],
n_qubits: int,
n_ops: int,
force_circuit_identifier: str,
force_classical_reg_identifier: str,
force_quantum_reg_identifier: str,
only_circuit: bool) -> Tuple[str, Dict[str, str]]:
pass
def generate_file(
self,
gate_set: List[Dict[str, Any]],
n_qubits: int,
n_ops: int,
optimizations: List[str],
backend: str,
shots: int,
level_auto_optimization: int,
target_gates: List[str]):
py_file = ""
py_file += self.circuit_prologue()
circuit, metadata_circuit = self.generate_circuit_via_atomic_ops(
gate_set=gate_set, n_qubits=n_qubits, n_ops=n_ops,
force_circuit_identifier="qc",
force_classical_reg_identifier="cr",
force_quantum_reg_identifier="qr"
)
py_file += circuit
py_file += self.register_measure(
id_target_circuit=metadata_circuit["circuit_id"],
id_quantum_reg=metadata_circuit["id_quantum_reg"],
id_classical_reg=metadata_circuit["id_classical_reg"],)
# py_file += self.circuit_optimization_passes(
# id_target_circuit=metadata_circuit["circuit_id"],
# optimizations=optimizations)
py_file += self.circuit_optimization_levels(
id_target_circuit=metadata_circuit["circuit_id"],
level=level_auto_optimization,
target_gate_set=target_gates)
py_file += self.circuit_execution(
id_target_circuit=metadata_circuit["circuit_id"],
backend=backend,
shots=shots)
return py_file, metadata_circuit
@abstractmethod
def circuit_prologue(self):
pass
# @abstractmethod
# def circuit_optimization_passes(self, id_target_circuit: str, optimizations: List[str]):
# pass
@abstractmethod
def circuit_optimization_levels(self, id_target_circuit: str, level: int, target_gate_set: List[str] = None):
pass
@abstractmethod
def register_measure(self, id_target_circuit: str, id_quantum_reg: str, id_classical_reg: str):
pass
@abstractmethod
def circuit_execution(self, id_target_circuit: str, backend: str, shots: int):
pass
class QiskitFuzzer(Fuzzer):
def circuit_prologue(self):
prologue = "\n# SECTION\n# NAME: PROLOGUE\n\n"
prologue += "import qiskit\n"
prologue += "from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister\n"
prologue += "from qiskit.circuit.library.standard_gates import *\n"
prologue += "from qiskit.circuit import Parameter\n"
return prologue
# def circuit_optimization_passes(self, id_target_circuit: str, optimizations: List[str]):
# optimization = "\n# SECTION\n# NAME: OPTIMIZATION_PASSES\n\n"
# optimization += "from qiskit.transpiler import PassManager\n"
# optimization += "from qiskit.transpiler.passes import *\n"
# optimization += "passmanager = PassManager()\n"
# for opt in optimizations:
# optimization += f"passmanager.append({opt}())\n"
# optimization += f"{id_target_circuit} = passmanager.run({id_target_circuit})\n"
# return optimization
def circuit_optimization_levels(self, id_target_circuit: str, level: int, target_gate_set: List[str] = None):
optimization = "\n# SECTION\n# NAME: OPTIMIZATION_LEVEL\n\n"
optimization += "from qiskit import transpile\n"
optimization += f"{id_target_circuit} = transpile({id_target_circuit}, basis_gates={target_gate_set}, optimization_level={level}, coupling_map=None)\n"
return optimization
def register_measure(self, id_target_circuit: str, id_quantum_reg: str, id_classical_reg: str):
measurement = f"\n# SECTION\n# NAME: MEASUREMENT\n\n"
measurement += f"{id_target_circuit}.measure({id_quantum_reg}, {id_classical_reg})\n"
return measurement
def circuit_execution(self, id_target_circuit: str, backend: str, shots: int):
execution = "\n# SECTION\n# NAME: EXECUTION\n\n"
execution += "from qiskit import Aer, transpile, execute\n"
id_backend = "backend_" + str(uuid.uuid4().hex)
execution += f"{id_backend} = Aer.get_backend('{backend}')\n"
execution += f"counts = execute({id_target_circuit}, backend={id_backend}, shots={shots}).result().get_counts({id_target_circuit})\n"
execution += f"RESULT = counts"
return execution
def _generate_n_params(self, n_params: int):
numeric_prams = np.random.uniform(
low=0, high=2 * math.pi, size=n_params)
str_params = [str(e) for e in numeric_prams]
return ",".join(str_params)
def _generate_n_qubits(self, register_name: str, n_qubits: int, total_qubits: int):
if total_qubits == 0:
return ""
numeric_qubits = np.random.choice(np.arange(total_qubits), n_qubits, replace=False)
str_qubits = [f"{register_name}[{e}]" for e in numeric_qubits]
return ", ".join(str_qubits)
def generate_circuit_via_atomic_ops(
self,
gate_set: List[Dict[str, Any]],
n_qubits: int,
n_ops: int,
force_circuit_identifier: str = None,
force_classical_reg_identifier: str = None,
force_quantum_reg_identifier: str = None,
only_circuit: bool = False,
disable_section_header: bool = False) -> Tuple[str, Dict[str, str]]:
"""Generate a random circuit in qiskit based on the given gateset.
The circuit is generated by randomly choosing a gate from the gateset.
qr_0 = QuantumRegister(2, name="qr_0")
qc_0 = ClassicalRegister(2, name="qc_0")
c_0 = QuantumCircuit(qr_0, qc_0, name="c_0")
c_0.append(HGate(), qargs=[qr_0[0]], cargs=[])
c_0.append(CRZGate(1.25), qargs=[qr_0[0], qr_0[1]], cargs=[])
c_0.append(UGate(1.25, 2.22, 1.33), qargs=[qr_0[1]], cargs=[])
"""
# DISABLED BECAUSE IT IS FIXED AT OBJECT INITIALIZATION TIME
# np.random.seed(self.random_seed)
if disable_section_header:
source_code = ""
else:
source_code = "\n# SECTION\n# NAME: CIRCUIT\n\n"
id_quantum_reg = "qr_" + uuid.uuid4().hex
id_classical_reg = "cr_" + uuid.uuid4().hex
id_circuit = "c_" + uuid.uuid4().hex
if force_circuit_identifier is not None:
id_circuit = force_circuit_identifier
if force_quantum_reg_identifier is not None:
id_quantum_reg = force_quantum_reg_identifier
if force_classical_reg_identifier is not None:
id_classical_reg = force_classical_reg_identifier
if not only_circuit:
source_code += f"{id_quantum_reg} = QuantumRegister({n_qubits}, name='{id_quantum_reg}')\n"
source_code += f"{id_classical_reg} = ClassicalRegister({n_qubits}, name='{id_classical_reg}')\n"
source_code += f"{id_circuit} = QuantumCircuit({id_quantum_reg}, {id_classical_reg}, name='{id_circuit}')\n"
# on very small circuits some gates cannot be used because we do not
# have enough qubits
compatible_gate_set = [
g for g in gate_set if n_qubits >= g["n_bits"]]
gates_in_circuit = set()
if n_qubits > 0:
# we add operations only if we have at least one qubit
for i_op in range(n_ops):
op = np.random.choice(compatible_gate_set, 1)[0]
i_instr = f'{id_circuit}.append({op["name"]}('
gates_in_circuit.add(op["name"])
if op["n_params"] > 0:
list_params: str = self._generate_n_params(n_params=op["n_params"])
i_instr += f'{list_params}'
list_involved_qubits: str = self._generate_n_qubits(
register_name=id_quantum_reg,
n_qubits=op["n_bits"],
total_qubits=n_qubits)
i_instr += f'), qargs=[{list_involved_qubits}], cargs=[])\n'
source_code += i_instr
metadata = {
"circuit_id": id_circuit,
"id_quantum_reg": id_quantum_reg,
"id_classical_reg": id_classical_reg,
"gate_set": compatible_gate_set,
"gates_in_circuit": list(gates_in_circuit)
}
return source_code, metadata
class QiskitSeparableFuzzer(QiskitFuzzer):
def generate_circuit_via_atomic_ops(
self,
gate_set: List[Dict[str, Any]],
n_qubits: int,
n_ops: int,
force_circuit_identifier: str = None,
force_classical_reg_identifier: str = None,
force_quantum_reg_identifier: str = None,
only_circuit: bool = False) -> Tuple[str, Dict[str, str]]:
"""Generate a circuit composed of 2 untangled qubits partitions."""
if n_qubits < 2:
raise ValueError("n_qubits must be >= 2 to have separable circuits")
size_partition_1 = random.randint(1, n_qubits - 1)
size_partition_2 = n_qubits - size_partition_1
partition_1, metadata_1 = QiskitFuzzer.generate_circuit_via_atomic_ops(
self,
gate_set=gate_set,
n_qubits=size_partition_1,
n_ops=n_ops,
force_circuit_identifier="qc_1",
force_classical_reg_identifier="cr_1",
force_quantum_reg_identifier="qr_1",
disable_section_header=True)
partition_2, metadata_2 = QiskitFuzzer.generate_circuit_via_atomic_ops(
self,
gate_set=gate_set,
n_qubits=size_partition_2,
n_ops=n_ops,
force_circuit_identifier="qc_2",
force_classical_reg_identifier="cr_2",
force_quantum_reg_identifier="qr_2",
disable_section_header=True)
main_cir, metadata_main = QiskitFuzzer.generate_circuit_via_atomic_ops(
self,
gate_set=gate_set,
n_qubits=n_qubits,
n_ops=0,
force_circuit_identifier="qc_main",
force_classical_reg_identifier="cr_main",
force_quantum_reg_identifier="qr_main")
source_code = f"{main_cir}\n{partition_1}\n{partition_2}\n"
source_code += f"qc_main.append(qc_1, qargs=qr_main[:{size_partition_1}], cargs=cr_main[:{size_partition_1}])\n"
source_code += f"qc_main.append(qc_2, qargs=qr_main[{size_partition_1}:], cargs=cr_main[{size_partition_1}:])\n"
metadata = {
**metadata_main,
**{"partition_1_" + k: v for k, v in metadata_1.items()},
**{"partition_2_" + k: v for k, v in metadata_2.items()},
}
metadata["gates_in_circuit"] = list(set(metadata_1).union(set(metadata_2)))
return source_code, metadata