-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathcost_and_placement.cpp
360 lines (332 loc) · 11.8 KB
/
cost_and_placement.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#include <algorithm>
#include <vector>
#include <iostream>
#include <set>
#include <cmath>
#include <unordered_set>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <igl/active_set.h>
#include <igl/edge_collapse_is_valid.h>
#include <igl/circulation.h>
#include <igl/min_quad_with_fixed.h>
#include <igl/writeDMAT.h>
#include <igl/barycentric_coordinates.h>
#include <igl/point_simplex_squared_distance.h>
#include <chrono>
#include "cost_and_placement.h"
#include "eiquadprog.h"
#include "neighbor_faces_and_boundary.h"
namespace {
const double eps = 1e-8;
enum SOLVER_TYPE {
IGL_SOLVER = 0,
EIQUADPROG
} solver = EIQUADPROG;
}
const double DINF = std::numeric_limits<double>::infinity();
// #define DEBUG_MODE
// get plane from three points, and express it as ax + by + cz + d = 0.
// return coefficients a,b,c,d as result
Eigen::Vector4d face_from_three_points (
const Eigen::Vector3d& v1, const Eigen::Vector3d& v2, const Eigen::Vector3d& v3)
{
Eigen::Vector3d n = (v2-v1).cross(v3-v1);
n = n/n.norm();
double d = -n.dot(v1);
Eigen::Vector4d res;
res << n(0), n(1), n(2), d;
assert( res != Eigen::Vector4d::Zero() && "Three points are colinear." );
return res;
}
void cost_and_placement_qslim5d_halfedge (
const Bundle & e,
const Eigen::MatrixXd & V,
const Eigen::MatrixXi & F,
const Eigen::MatrixXd & TC,
const Eigen::MatrixXi & FT,
const EdgeMap & seam_edges,
const MapV5d & Vmetrics,
const int seam_aware_degree,
double & cost,
placement_info_5d & new_placement
)
{
// Assign this to 0 rather than, say, -1 so that deleted elements will get
// draw as degenerate elements at vertex 0 (which should always exist and
// never get collapsed to anything else since it is the smallest index)
using namespace Eigen;
using namespace std;
// If one of the endpoints is the special vertex at infinity, don't touch it.
assert( e.size() == 2 ); // each edge has two half-edge
const bool has_infinity_vertex = V.row( V.rows()-1 ).minCoeff() == DINF;
if( has_infinity_vertex
&& (/* F(e[0].fi, e[0].ki) == V.rows()-1
|| F(e[1].fi, e[1].ki) == V.rows()-1
||*/ e[0].p[0].vi == V.rows()-1
|| e[0].p[1].vi == V.rows()-1) ) {
cost = DINF;
return;
}
#ifdef DEBUG_MODE
cout << "No infinite vertex." << endl;
#endif
solver = EIQUADPROG;
MatrixXd new_metric;
// two vertex indices on one side of e
const int vi[2] = {e[0].p[0].vi, e[0].p[1].vi};
// If vi[0] and vi[1] are in seam_edges, but (vi[0], vi[1]) is not, return infinite cost.
if( seam_edges.count( vi[0] ) && seam_edges.count( vi[1] ) && !contains_edge( seam_edges, vi[0], vi[1] ) ) {
cost = DINF;
return;
}
/// case 1:
// (vi[0], vi[1]) in seam_edges, compute each half edge
if( contains_edge( seam_edges, vi[0], vi[1] ) ) {
VertexBundle e_p0[2]; // two Vertex5d for both sides at one end
VertexBundle e_p1[2]; // two Vertex5d for both sides at the other end
MatrixXd m[2]; // two metrics
for(int side=0; side<2; side++) {
e_p0[side] = e[side].p[0];
e_p1[side] = e[side].p[1];
m[side] = Vmetrics.at(e_p0[side].vi).at(e_p0[side].tci)
+ Vmetrics.at(e_p1[side].vi).at(e_p1[side].tci);
}
// TODO: Check that the seam edges are collinear with
// their neighbors along the seam. If they are not, return DINF.
const auto & is_collinear = [&TC](const int tci_1, const int tci_2, const int tci_3)
{
assert( tci_1 >= 0 && tci_1 <TC.rows() );
assert( tci_2 >= 0 && tci_2 <TC.rows() );
assert( tci_3 >= 0 && tci_3 <TC.rows() );
Eigen::RowVector2d uv1 = TC.row(tci_1);
Eigen::RowVector2d uv2 = TC.row(tci_2);
Eigen::RowVector2d uv3 = TC.row(tci_3);
Eigen::RowVector2d n1 = (uv2-uv1)/(uv2-uv1).norm();
Eigen::RowVector2d n2 = (uv3-uv1)/(uv3-uv1).norm();
return 1-fabs(n1.dot(n2)) < eps;
};
const auto & edge_ratio = [&TC](const int tci_1, const int tci_2, const int tci_3)
{
assert( tci_1 >= 0 && tci_1 <TC.rows() );
assert( tci_2 >= 0 && tci_2 <TC.rows() );
assert( tci_3 >= 0 && tci_3 <TC.rows() );
Eigen::RowVector2d uv1 = TC.row(tci_1);
Eigen::RowVector2d uv2 = TC.row(tci_2);
Eigen::RowVector2d uv3 = TC.row(tci_3);
if( (uv3-uv2).norm() == 0 ) return DINF;
return (uv2-uv1).norm()/(uv3-uv2).norm();
};
bool is_free[2] = {false, false}; // Correspond to vi[2]
// for each end of one side, search its neighbor seam edges to check if anyone is collinear with e
for(int end=0; end<2; end++) {
// An end is free only if it has exactly two neighboring seam edges
if(seam_edges.at(vi[end]).size() != 2) continue;
for(auto vj : seam_edges.at(vi[end])) { // all the neighboring seam vertices.
// test if exist one vertex which has two uvs collinear with both sides of e's uvs
if( vj == vi[1-end] ) continue;
double ratio[2] = {DINF, DINF};
for(auto item : Vmetrics.at(vj)) { // all the tci for one neighboring seam vertex.
int tcj = item.first;
if(is_collinear(tcj, e_p0[0].tci, e_p1[0].tci)) {
ratio[0] = edge_ratio(tcj, e_p0[0].tci, e_p1[0].tci);
}
if(is_collinear(tcj, e_p0[1].tci, e_p1[1].tci)) {
ratio[1] = edge_ratio(tcj, e_p1[1].tci, e_p0[1].tci);
}
}
switch (seam_aware_degree) {
case 0: is_free[end] = true;
break;
case 1: if (ratio[0]!=DINF && ratio[1]!=DINF) is_free[end] = true;
break;
case 2: if (ratio[0]!=DINF && ratio[1]!=DINF && abs(ratio[0]-ratio[1]) <= 1e-3) is_free[end] = true;
break;
}
}
}
// neither end has collinear neighbor seam edge, shouldn't touch it.
if( !is_free[0] && !is_free[1] ) {
cost = DINF;
return;
}
// Otherwise, if any end is not free, collapse e to it.
for(int end=0; end<2; end++) {
if( !is_free[end] ) {
cost = 0;
new_placement.tcs.resize(2);
new_placement.metrics.resize(2);
for(int side=0; side<2; side++) {
RowVectorXd v(6);
v.setOnes();
assert(e[side].p[end].vi == vi[end] || e[side].p[end].vi == vi[1-end]);
v.head(3) = V.row(vi[end]);
v.segment(3,2) = e[side].p[end].vi == vi[end] ? TC.row(e[side].p[end].tci) : TC.row(e[side].p[1-end].tci);
cost += v*m[side]*v.transpose();
new_placement.p = v.head(3);
new_placement.tcs[side] = v.segment(3,2);
new_placement.metrics[side] = m[side];
}
return;
}
}
// Finally, if both ends are free. Collapse the edge to a point on the seam.
// And the uv on both sides should be proportional.
VectorXd Z;
// The unknowns are x,y,z,u0,v0,u1,v1,1
MatrixXd G(8,8);
G.setZero();
// combine both sides' metric of e
if( solver == EIQUADPROG ) {
// build new metric
G.block(0,0,3,3) = m[0].block(0,0,3,3) + m[1].block(0,0,3,3);
G.block(3,0,2,3) = m[0].block(3,0,2,3);
G.block(0,3,3,2) = m[0].block(0,3,3,2);
G.block(3,3,2,2) = m[0].block(3,3,2,2);
G.block(5,0,2,3) = m[1].block(3,0,2,3);
G.block(0,5,3,2) = m[1].block(0,3,3,2);
G.block(5,5,2,2) = m[1].block(3,3,2,2);
RowVectorXd b(7); // b is the linear term in combined metric
b.segment(0,3) = m[0].block(5,0,1,3) + m[1].block(5,0,1,3);
b.segment(3,2) = m[0].block(5,3,1,2);
b.segment(5,2) = m[1].block(5,3,1,2);
G.block(7,0,1,7) = b;
G.block(0,7,7,1) = b.transpose();
G(7,7) = m[0](5,5) + m[1](5,5);
// regularizer
const double w = 1e-6;
MatrixXd reg(8,8);
reg.setIdentity();
G.block(0,0,8,8) = G.block(0,0,8,8) + w*reg;
VectorXd g0(8);
g0.setOnes();
g0.segment(0,3) = (V.row(e_p0[0].vi)+V.row(e_p1[0].vi))/2;
g0.segment(3,2) = (TC.row(e_p0[0].tci)+TC.row(e_p1[0].tci))/2;
g0.segment(5,2) = (TC.row(e_p0[1].tci)+TC.row(e_p1[1].tci))/2;
g0 = -w*g0;
// Add the constraint that uv0 and uv1 stay on the same uv-space line
// and the new position should have the same parameter along each edge.
// equality constraints:
// x(7) - 1 = 0
// (x(3) - e0_u0) - t(e0_u1 - e0_u0) = 0
// (x(4) - e0_v0) - t(e0_v1 - e0_v0) = 0
// (x(5) - e1_u0) - t(e1_u1 - e1_u0) = 0
// (x(6) - e1_v0) - t(e1_v1 - e1_v0) = 0
RowVector2d vec[2] = {TC.row(e_p1[0].tci) - TC.row(e_p0[0].tci),
TC.row(e_p1[1].tci) - TC.row(e_p0[1].tci)};
assert( vec[0].norm() != 0 && vec[1].norm() != 0 );
MatrixXd CE(8,4);
VectorXd ce0(4);
CE.setZero();
CE(7,0) = 1.0;
ce0(0) = -1;
if( vec[0](0) != 0 ) { // t = (x(3) - e0_u0)/(e0_u1 - e0_u0)
CE(3,1) = -vec[0](1);
CE(4,1) = vec[0](0);
ce0(1) = vec[0](1)*TC.row(e_p0[0].tci)(0) - vec[0](0)*TC.row(e_p0[0].tci)(1);
CE(3,2) = -vec[1](0);
CE(5,2) = vec[0](0);
ce0(2) = vec[1](0)*TC.row(e_p0[0].tci)(0) - vec[0](0)*TC.row(e_p0[1].tci)(0);
CE(3,3) = -vec[1](1);
CE(6,3) = vec[0](0);
ce0(3) = vec[1](1)*TC.row(e_p0[0].tci)(0) - vec[0](0)*TC.row(e_p0[1].tci)(1);
}
else { // t = (x(4) - e0_v0)/(e0_v1 - e0_v0)
assert( vec[0](1) != 0 );
CE(4,1) = -vec[0](0);
CE(3,1) = vec[0](1);
ce0(1) = vec[0](0)*TC.row(e_p0[0].tci)(1) - vec[0](1)*TC.row(e_p0[0].tci)(0);
CE(4,2) = -vec[1](0);
CE(5,2) = vec[0](1);
ce0(2) = vec[1](0)*TC.row(e_p0[0].tci)(1) - vec[0](1)*TC.row(e_p0[1].tci)(0);
CE(4,3) = -vec[1](1);
CE(6,3) = vec[0](1);
ce0(3) = vec[1](1)*TC.row(e_p0[0].tci)(1) - vec[0](1)*TC.row(e_p0[1].tci)(1);
}
// inequality constraints:
// t >= 0 && t <= 1
MatrixXd CI(8,2);
VectorXd ci0(2);
CI.setZero();
if( vec[0](0) != 0 ) {
double sign = vec[0](0) > 0 ? 1 : -1;
CI(3,0) = sign;
ci0(0) = -sign*TC.row(e_p0[0].tci)(0);
CI(3,1) = -sign;
ci0(1) = sign*(TC.row(e_p0[0].tci)(0)+vec[0](0));
}
else {
double sign = vec[0](1) > 0 ? 1 : -1;
CI(4,0) = sign;
ci0(0) = -sign*TC.row(e_p0[0].tci)(1);
CI(4,1) = -sign;
ci0(1) = sign*(TC.row(e_p0[0].tci)(1)+vec[0](1));
}
solve_quadprog(G,g0,CE,ce0,CI,ci0,Z);
} else {
assert( false && "Unknown solver type" );
}
// set UV coordinates to be the middle point
assert( isfinite(Z(0)) && isfinite(Z(1)) && isfinite(Z(2))
&& isfinite(Z(3)) && isfinite(Z(4)) && isfinite(Z(5)) && isfinite(Z(6)));
new_placement.p = Z.head(3);
new_placement.tcs = {Z.segment(3,2), Z.segment(5,2)};
new_placement.metrics = {m[0], m[1]};
RowVectorXd v = Z;
// Multiply by one half because we added two energy terms, shall we?
cost = v*G*v.transpose();
return;
}
/// case 2:
// new metric is the summation of the collapsed vertices' metrics
assert( e[0].p[0] == e[1].p[1] && e[0].p[1] == e[1].p[0] );
const int tci[2] = {e[0].p[0].tci, e[0].p[1].tci};
new_metric = Vmetrics.at(vi[0]).at(tci[0]) + Vmetrics.at(vi[1]).at(tci[1]);
assert( new_metric.transpose() == new_metric ); // all the metrics are symmetric
// If one vertex is on a seam, it will stay fixed. Use Q as the cost.
for(int end=0; end<2; end++) {
if(seam_edges.count(vi[end]) && !seam_edges.count(vi[1-end])) {
RowVectorXd v(6);
v.setOnes();
v.head(3) = V.row(vi[end]);
v.segment(3,2) = TC.row(tci[end]);
cost = v*new_metric*v.transpose();
new_placement.p = V.row(vi[end]);
new_placement.tcs = { TC.row(tci[end]) };
new_placement.metrics = { new_metric };
return;
}
}
/// case 3: no attachment to seam
// solve
VectorXd Z;
if( solver == EIQUADPROG ) {
const double w = 1e-6;
MatrixXd G = new_metric;
// regularizer
MatrixXd reg(6,6);
reg.setIdentity();
G = G + w*reg;
MatrixXd CE(6,1);
CE.setZero();
CE(5,0) = 1.0;
VectorXd g0(6), ce0(1);
g0.setOnes();
g0.segment(0,3) = (V.row(vi[0])+V.row(vi[1]))/2;
g0.segment(3,2) = (TC.row(tci[0])+TC.row(tci[1]))/2;
g0 = -w*g0;
ce0 << -1;
MatrixXd CI;
VectorXd ci0;
solve_quadprog(G,g0,CE,ce0,CI,ci0,Z);
} else {
assert( false && "Unknown solver type" );
}
// set UV coordinates to be the middle point
assert( isfinite(Z(0)) && isfinite(Z(1)) && isfinite(Z(2)) && isfinite(Z(3)) && isfinite(Z(4)));
new_placement.p = Z.head(3);
new_placement.tcs = {Z.segment(3,2)};
new_placement.metrics = {new_metric};
RowVectorXd v = Z;
cost = v*new_metric*v.transpose();
}