@@ -21,10 +21,14 @@ def get_pod_uri(pod, port, pod_count=0, _testing=False):
2121 """
2222
2323 if _testing :
24- return "http://{pod}:{port}" . format ( pod = pod , port = port ) # mlflow docker container endpoint
24+ return f "http://{ pod } :{ port } " # mlflow docker container endpoint
2525
2626 try :
27- return env_vars ['MLFLOW_URL' ]
27+ url = env_vars ['MLFLOW_URL' ]
28+ if ':' in url :
29+ url = url .split (':' )[0 ]
30+ url += f':{ port } ' # 5001 or 5003 for tracking or deployment
31+ return url
2832 except KeyError as e :
2933 raise KeyError (
3034 "Uh Oh! MLFLOW_URL variable was not found... are you running in the Cloud service?" )
@@ -116,7 +120,7 @@ class MLManager(MlflowClient):
116120 A class for managing your MLFlow Runs/Experiments
117121 """
118122
119- ARTIFACT_INSERT_SQL = 'INSERT INTO ARTIFACTS (run_uuid, path , "binary") VALUES (?, ?, ?)'
123+ ARTIFACT_INSERT_SQL = 'INSERT INTO ARTIFACTS (run_uuid, name , "size", " binary") VALUES (?, ?, ?, ?)'
120124 ARTIFACT_RETRIEVAL_SQL = 'SELECT "binary" FROM ARTIFACTS WHERE name=\' {name}\' ' \
121125 'AND run_uuid=\' {runid}\' '
122126
@@ -148,7 +152,7 @@ def __init__(self, splice_context, tracking_uri=None, _testing=False):
148152 self .splice_context = None
149153 else :
150154 self .splice_context = splice_context
151- java_import (splice_context .jvm , "java.io.{BinaryOutputStream, ObjectOutputStream}" )
155+ java_import (splice_context .jvm , "java.io.{BinaryOutputStream, ObjectOutputStream, ByteArrayInputStream }" )
152156
153157 self .active_run = None
154158 self .active_experiment = None
@@ -482,8 +486,8 @@ def _insert_artifact(self, name, byte_array):
482486 prepared_statement .setString (1 , self .current_run_id ) # set run UUID
483487 prepared_statement .setString (2 , name )
484488 prepared_statement .setInt (3 , file_size )
485- binary_input_stream = self .splice_context .jvm .ByteArrayInputStream (byte_array )
486- prepared_statement .setBinaryStream (3 , binary_input_stream ) # set BLOB
489+ binary_input_stream = self .splice_context .jvm .java . io . ByteArrayInputStream (byte_array )
490+ prepared_statement .setBinaryStream (4 , binary_input_stream ) # set BLOB
487491
488492 prepared_statement .execute ()
489493 prepared_statement .close ()
@@ -858,6 +862,7 @@ def deploy_azure(self, endpoint_name, resource_group, workspace, run_id=None, re
858862 raise Exception ("Invalid Allocated RAM" )
859863
860864 request_payload = {
865+ 'handler_name' : 'DEPLOY_AWS' ,
861866 'endpoint_name' : endpoint_name ,
862867 'resource_group' : resource_group ,
863868 'workspace' : workspace ,
0 commit comments