-
Notifications
You must be signed in to change notification settings - Fork 153
/
discriminant.tex
3425 lines (3089 loc) · 130 KB
/
discriminant.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Discriminants and Differents}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we study the different and discriminant
of locally quasi-finite morphisms of schemes.
A good reference for some of this material is \cite{Kunz}.
\medskip\noindent
Given a quasi-finite morphism $f : Y \to X$ of Noetherian schemes
there is a relative dualizing module $\omega_{Y/X}$.
In Section \ref{section-quasi-finite-dualizing}
we construct this module from scratch, using
Zariski's main theorem and \'etale localization methods.
The key property is that given a diagram
$$
\xymatrix{
Y' \ar[d]_{f'} \ar[r]_{g'} & Y \ar[d]^f \\
X' \ar[r]^g & X
}
$$
with $g : X' \to X$ flat, $Y' \subset X' \times_X Y$ open, and
$f' : Y' \to X'$ finite, then there is a canonical isomorphism
$$
f'_*(g')^*\omega_{Y/X} =
\SheafHom_{\mathcal{O}_{X'}}(f'_*\mathcal{O}_{Y'}, \mathcal{O}_{X'})
$$
as sheaves of $f'_*\mathcal{O}_{Y'}$-modules. In
Section \ref{section-quasi-finite-traces} we prove that
if $f$ is flat, then there is a canonical global section
$\tau_{Y/X} \in H^0(Y, \omega_{Y/X})$ which for every commutative
diagram as above maps $(g')^*\tau_{Y/X}$ to the trace map
of Section \ref{section-discriminant}
for the finite locally free morphism $f'$.
In Section \ref{section-different}
we define the different for a flat quasi-finite
morphism of Noetherian schemes as the annihilator of the
cokernel of $\tau_{Y/X} : \mathcal{O}_X \to \omega_{Y/X}$.
\medskip\noindent
The main goal of this chapter is to prove that for
quasi-finite syntomic\footnote{AKA flat and lci.} $f$ the
different agrees with the K\"ahler different.
The K\"ahler different is the zeroth fitting ideal of $\Omega_{Y/X}$, see
Section \ref{section-kahler-different}.
This agreement is not obvious; we use a slick argument
due to Tate, see Section \ref{section-formula-different}.
On the way we also discuss the Noether different
and the Dedekind different.
\medskip\noindent
Only in the end of this chapter, see
Sections \ref{section-comparison} and \ref{section-gorenstein-lci},
do we make the link with the more advanced material
on duality for schemes.
\section{Dualizing modules for quasi-finite ring maps}
\label{section-quasi-finite-dualizing}
\noindent
Let $A \to B$ be a quasi-finite homomorphism of Noetherian rings. By
Zariski's main theorem
(Algebra, Lemma \ref{algebra-lemma-quasi-finite-open-integral-closure})
there exists a factorization $A \to B' \to B$ with
$A \to B'$ finite and $B' \to B$ inducing an open immersion of spectra.
We set
\begin{equation}
\label{equation-dualizing}
\omega_{B/A} = \Hom_A(B', A) \otimes_{B'} B
\end{equation}
in this situation. The reader can think of this as a kind of relative
dualizing module, see Lemmas \ref{lemma-compare-dualizing} and
\ref{lemma-compare-dualizing-algebraic}.
In this section we will show by elementary commutative algebra methods
that $\omega_{B/A}$ is independent of the choice of the factorization
and that formation of $\omega_{B/A}$ commutes with flat base change.
To help prove the independence of factorizations we compare two
given factorizations.
\begin{lemma}
\label{lemma-dominate-factorizations}
Let $A \to B$ be a quasi-finite ring map. Given two factorizations
$A \to B' \to B$ and $A \to B'' \to B$ with
$A \to B'$ and $A \to B''$ finite and $\Spec(B) \to \Spec(B')$
and $\Spec(B) \to \Spec(B'')$ open immersions, there exists
an $A$-subalgebra $B''' \subset B$ finite over $A$ such that
$\Spec(B) \to \Spec(B''')$ an open immersion and $B' \to B$ and
$B'' \to B$ factor through $B'''$.
\end{lemma}
\begin{proof}
Let $B''' \subset B$ be the $A$-subalgebra generated by the images
of $B' \to B$ and $B'' \to B$. As $B'$ and $B''$ are each generated
by finitely many elements integral over $A$, we see that $B'''$ is
generated by finitely many elements integral over $A$ and we conclude
that $B'''$ is finite over $A$
(Algebra, Lemma \ref{algebra-lemma-characterize-finite-in-terms-of-integral}).
Consider the maps
$$
B = B' \otimes_{B'} B \to B''' \otimes_{B'} B \to B \otimes_{B'} B = B
$$
The final equality holds because $\Spec(B) \to \Spec(B')$ is an
open immersion (and hence a monomorphism). The second arrow is injective
as $B' \to B$ is flat. Hence both arrows are isomorphisms.
This means that
$$
\xymatrix{
\Spec(B''') \ar[d] & \Spec(B) \ar[d] \ar[l] \\
\Spec(B') & \Spec(B) \ar[l]
}
$$
is cartesian. Since the base change of an open immersion is an
open immersion we conclude.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-well-defined}
The module (\ref{equation-dualizing}) is well defined, i.e.,
independent of the choice of the factorization.
\end{lemma}
\begin{proof}
Let $B', B'', B'''$ be as in Lemma \ref{lemma-dominate-factorizations}.
We obtain a canonical map
$$
\omega''' = \Hom_A(B''', A) \otimes_{B'''} B \longrightarrow
\Hom_A(B', A) \otimes_{B'} B = \omega'
$$
and a similar one involving $B''$. If we show these maps are isomorphisms
then the lemma is proved. Let $g \in B'$ be an element such that
$B'_g \to B_g$ is an isomorphism and hence $B'_g \to (B''')_g \to B_g$
are isomorphisms. It suffices to show that $(\omega''')_g \to \omega'_g$
is an isomorphism. The kernel and cokernel of the ring map $B' \to B'''$
are finite $A$-modules and $g$-power torsion.
Hence they are annihilated by a power of $g$.
This easily implies the result.
\end{proof}
\begin{lemma}
\label{lemma-localize-dualizing}
Let $A \to B$ be a quasi-finite map of Noetherian rings.
\begin{enumerate}
\item If $A \to B$ factors as $A \to A_f \to B$ for some $f \in A$,
then $\omega_{B/A} = \omega_{B/A_f}$.
\item If $g \in B$, then $(\omega_{B/A})_g = \omega_{B_g/A}$.
\item If $f \in A$, then $\omega_{B_f/A_f} = (\omega_{B/A})_f$.
\end{enumerate}
\end{lemma}
\begin{proof}
Say $A \to B' \to B$ is a factorization with $A \to B'$ finite and
$\Spec(B) \to \Spec(B')$ an open immersion. In case (1) we may use
the factorization $A_f \to B'_f \to B$ to compute $\omega_{B/A_f}$
and use Algebra, Lemma \ref{algebra-lemma-hom-from-finitely-presented}.
In case (2) use the factorization $A \to B' \to B_g$ to see the result.
Part (3) follows from a combination of (1) and (2).
\end{proof}
\noindent
Let $A \to B$ be a quasi-finite ring map of Noetherian rings, let
$A \to A_1$ be an arbitrary ring map of Noetherian rings, and set
$B_1 = B \otimes_A A_1$. We obtain a cocartesian diagram
$$
\xymatrix{
B \ar[r] & B_1 \\
A \ar[u] \ar[r] & A_1 \ar[u]
}
$$
Observe that $A_1 \to B_1$ is quasi-finite as well (Algebra, Lemma
\ref{algebra-lemma-quasi-finite-base-change}).
In this situation we will define a canonical
$B$-linear base change map
\begin{equation}
\label{equation-bc-dualizing}
\omega_{B/A} \longrightarrow \omega_{B_1/A_1}
\end{equation}
Namely, we choose a factorization $A \to B' \to B$ as in the construction
of $\omega_{B/A}$. Then $B'_1 = B' \otimes_A A_1$ is finite over $A_1$
and we can use the factorization $A_1 \to B'_1 \to B_1$ in the construction
of $\omega_{B_1/A_1}$. Thus we have to construct a map
$$
\Hom_A(B', A) \otimes_{B'} B
\longrightarrow
\Hom_{A_1}(B' \otimes_A A_1, A_1) \otimes_{B'_1} B_1
$$
Thus it suffices to construct a $B'$-linear map
$\Hom_A(B', A) \to \Hom_{A_1}(B' \otimes_A A_1, A_1)$
which we will denote $\varphi \mapsto \varphi_1$.
Namely, given an $A$-linear map $\varphi : B' \to A$ we
let $\varphi_1$ be the map such that
$\varphi_1(b' \otimes a_1) = \varphi(b')a_1$.
This is clearly $A_1$-linear and the construction is complete.
\begin{lemma}
\label{lemma-bc-map-dualizing}
The base change map (\ref{equation-bc-dualizing})
is independent of the choice of the
factorization $A \to B' \to B$. Given ring maps $A \to A_1 \to A_2$
the composition of the base change maps for $A \to A_1$ and $A_1 \to A_2$
is the base change map for $A \to A_2$.
\end{lemma}
\begin{proof}
Omitted. Hint: argue in exactly the same way as in
Lemma \ref{lemma-dualizing-well-defined}
using Lemma \ref{lemma-dominate-factorizations}.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-flat-base-change}
If $A \to A_1$ is flat, then
the base change map (\ref{equation-bc-dualizing}) induces an isomorphism
$\omega_{B/A} \otimes_B B_1 \to \omega_{B_1/A_1}$.
\end{lemma}
\begin{proof}
Assume that $A \to A_1$ is flat. By construction of $\omega_{B/A}$ we may
assume that $A \to B$ is finite. Then $\omega_{B/A} = \Hom_A(B, A)$ and
$\omega_{B_1/A_1} = \Hom_{A_1}(B_1, A_1)$. Since $B_1 = B \otimes_A A_1$
the result follows from More on Algebra, Lemma
\ref{more-algebra-lemma-pseudo-coherence-and-base-change-ext}.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-composition}
Let $A \to B \to C$ be quasi-finite homomorphisms of Noetherian rings.
There is a canonical map
$\omega_{B/A} \otimes_B \omega_{C/B} \to \omega_{C/A}$.
\end{lemma}
\begin{proof}
Choose $A \to B' \to B$ with $A \to B'$ finite such that
$\Spec(B) \to \Spec(B')$ is an open immersion. Then
$B' \to C$ is quasi-finite too. Choose $B' \to C' \to C$
with $B' \to C'$ finite and $\Spec(C) \to \Spec(C')$ an
open immersion. Then the source of the arrow is
$$
\Hom_A(B', A) \otimes_{B'} B \otimes_B
\Hom_B(B \otimes_{B'} C', B) \otimes_{B \otimes_{B'} C'} C
$$
which is equal to
$$
\Hom_A(B', A) \otimes_{B'}
\Hom_{B'}(C', B) \otimes_{C'} C
$$
This indeed comes with a canonical map to
$\Hom_A(C', A) \otimes_{C'} C = \omega_{C/A}$
coming from composition
$\Hom_A(B', A) \times \Hom_{B'}(C', B) \to \Hom_A(C', A)$.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-product}
Let $A \to B$ and $A \to C$ be quasi-finite maps of Noetherian rings.
Then $\omega_{B \times C/A} = \omega_{B/A} \times \omega_{C/A}$
as modules over $B \times C$.
\end{lemma}
\begin{proof}
Choose factorizations $A \to B' \to B$ and $A \to C' \to C$ such that
$A \to B'$ and $A \to C'$ are finite and such that $\Spec(B) \to \Spec(B')$
and $\Spec(C) \to \Spec(C')$ are open immersions. Then
$A \to B' \times C' \to B \times C$ is a similar factorization.
Using this factorization to compute $\omega_{B \times C/A}$
gives the lemma.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-associated-primes}
Let $A \to B$ be a quasi-finite homomorphism of Noetherian rings.
Then $\text{Ass}_B(\omega_{B/A})$ is the set of primes of $B$
lying over associated primes of $A$.
\end{lemma}
\begin{proof}
Choose a factorization $A \to B' \to B$ with $A \to B'$ finite and
$B' \to B$ inducing an open immersion on spectra. As
$\omega_{B/A} = \omega_{B'/A} \otimes_{B'} B$ it suffices
to prove the statement for $\omega_{B'/A}$. Thus we may assume $A \to B$
is finite.
\medskip\noindent
Assume $\mathfrak p \in \text{Ass}(A)$ and $\mathfrak q$ is a prime
of $B$ lying over $\mathfrak p$. Let $x \in A$ be an element whose
annihilator is $\mathfrak p$. Choose a nonzero $\kappa(\mathfrak p)$
linear map $\lambda : \kappa(\mathfrak q) \to \kappa(\mathfrak p)$.
Since $A/\mathfrak p \subset B/\mathfrak q$ is a finite extension
of rings, there is an $f \in A$, $f \not \in \mathfrak p$
such that $f\lambda$ maps $B/\mathfrak q$ into $A/\mathfrak p$.
Hence we obtain a nonzero $A$-linear map
$$
B \to B/\mathfrak q \to A/\mathfrak p \to A,\quad
b \mapsto f\lambda(b)x
$$
An easy computation shows that this element of $\omega_{B/A}$
has annihilator $\mathfrak q$, whence
$\mathfrak q \in \text{Ass}(\omega_{B/A})$.
\medskip\noindent
Conversely, suppose that $\mathfrak q \subset B$ is a prime ideal
lying over a prime $\mathfrak p \subset A$ which is not an associated
prime of $A$. We have to show that
$\mathfrak q \not \in \text{Ass}_B(\omega_{B/A})$.
After replacing $A$ by $A_\mathfrak p$ and $B$ by
$B_\mathfrak p$ we may assume that $\mathfrak p$ is a maximal ideal
of $A$. This is allowed by Lemma \ref{lemma-dualizing-flat-base-change} and
Algebra, Lemma \ref{algebra-lemma-localize-ass}.
Then there exists an $f \in \mathfrak m$
which is a nonzerodivisor on $A$.
Then $f$ is a nonzerodivisor on $\omega_{B/A}$
and hence $\mathfrak q$ is not an associated prime of this module.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-base-flat-flat}
Let $A \to B$ be a flat quasi-finite homomorphism of Noetherian rings.
Then $\omega_{B/A}$ is a flat $A$-module.
\end{lemma}
\begin{proof}
Let $\mathfrak q \subset B$ be a prime lying over $\mathfrak p \subset A$.
We will show that the localization $\omega_{B/A, \mathfrak q}$ is flat
over $A_\mathfrak p$.
This suffices by Algebra, Lemma \ref{algebra-lemma-flat-localization}.
By
Algebra, Lemma \ref{algebra-lemma-etale-makes-quasi-finite-finite-one-prime}
we can find an \'etale ring map $A \to A'$ and a prime
ideal $\mathfrak p' \subset A'$ lying over $\mathfrak p$
such that $\kappa(\mathfrak p') = \kappa(\mathfrak p)$ and
such that
$$
B' = B \otimes_A A' = C \times D
$$
with $A' \to C$ finite and such that the unique prime $\mathfrak q'$
of $B \otimes_A A'$ lying over $\mathfrak q$ and $\mathfrak p'$
corresponds to a prime of $C$. By
Lemma \ref{lemma-dualizing-flat-base-change}
and Algebra, Lemma \ref{algebra-lemma-base-change-flat-up-down}
it suffices to show $\omega_{B'/A', \mathfrak q'}$
is flat over $A'_{\mathfrak p'}$.
Since $\omega_{B'/A'} = \omega_{C/A'} \times \omega_{D/A'}$
by Lemma \ref{lemma-dualizing-product}
this reduces us to the case where $B$ is finite flat over $A$.
In this case $B$ is finite locally free as an $A$-module
and $\omega_{B/A} = \Hom_A(B, A)$ is the dual finite
locally free $A$-module.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-base-change-of-flat}
If $A \to B$ is flat, then the base change map (\ref{equation-bc-dualizing})
induces an isomorphism $\omega_{B/A} \otimes_B B_1 \to \omega_{B_1/A_1}$.
\end{lemma}
\begin{proof}
If $A \to B$ is finite flat, then $B$ is finite locally free as an $A$-module.
In this case $\omega_{B/A} = \Hom_A(B, A)$ is the dual finite
locally free $A$-module and formation of this module commutes
with arbitrary base change which proves the lemma in this case.
In the next paragraph we reduce the general (quasi-finite flat)
case to the finite flat case just discussed.
\medskip\noindent
Let $\mathfrak q_1 \subset B_1$ be a prime. We will show that the
localization of the map at the prime $\mathfrak q_1$ is an isomorphism, which
suffices by Algebra, Lemma \ref{algebra-lemma-characterize-zero-local}.
Let $\mathfrak q \subset B$ and $\mathfrak p \subset A$ be the prime
ideals lying under $\mathfrak q_1$. By
Algebra, Lemma \ref{algebra-lemma-etale-makes-quasi-finite-finite-one-prime}
we can find an \'etale ring map $A \to A'$ and a prime
ideal $\mathfrak p' \subset A'$ lying over $\mathfrak p$
such that $\kappa(\mathfrak p') = \kappa(\mathfrak p)$ and
such that
$$
B' = B \otimes_A A' = C \times D
$$
with $A' \to C$ finite and such that the unique prime $\mathfrak q'$
of $B \otimes_A A'$ lying over $\mathfrak q$ and $\mathfrak p'$
corresponds to a prime of $C$. Set $A'_1 = A' \otimes_A A_1$ and
consider the base change maps
(\ref{equation-bc-dualizing}) for the ring maps
$A \to A' \to A'_1$ and $A \to A_1 \to A'_1$ as in the diagram
$$
\xymatrix{
\omega_{B'/A'} \otimes_{B'} B'_1 \ar[r] & \omega_{B'_1/A'_1} \\
\omega_{B/A} \otimes_B B'_1 \ar[r] \ar[u] &
\omega_{B_1/A_1} \otimes_{B_1} B'_1 \ar[u]
}
$$
where $B' = B \otimes_A A'$, $B_1 = B \otimes_A A_1$, and
$B_1' = B \otimes_A (A' \otimes_A A_1)$. By
Lemma \ref{lemma-bc-map-dualizing} the diagram commutes. By
Lemma \ref{lemma-dualizing-flat-base-change}
the vertical arrows are isomorphisms.
As $B_1 \to B'_1$ is \'etale and hence flat it suffices
to prove the top horizontal arrow is an isomorphism after localizing
at a prime $\mathfrak q'_1$ of $B'_1$ lying over $\mathfrak q$
(there is such a prime and use
Algebra, Lemma \ref{algebra-lemma-local-flat-ff}).
Thus we may assume that $B = C \times D$ with $A \to C$
finite and $\mathfrak q$ corresponding to a prime of $C$.
In this case the dualizing module $\omega_{B/A}$ decomposes
in a similar fashion (Lemma \ref{lemma-dualizing-product})
which reduces the question
to the finite flat case $A \to C$ handled above.
\end{proof}
\begin{remark}
\label{remark-relative-dualizing-for-quasi-finite}
Let $f : Y \to X$ be a locally quasi-finite morphism of locally Noetherian
schemes. It is clear from Lemma \ref{lemma-localize-dualizing}
that there is a unique coherent $\mathcal{O}_Y$-module
$\omega_{Y/X}$ on $Y$ such that for every pair of affine opens
$\Spec(B) = V \subset Y$, $\Spec(A) = U \subset X$ with $f(V) \subset U$
there is a canonical isomorphism
$$
H^0(V, \omega_{Y/X}) = \omega_{B/A}
$$
and where these isomorphisms are compatible with restriction maps.
\end{remark}
\begin{lemma}
\label{lemma-compare-dualizing-algebraic}
Let $A \to B$ be a quasi-finite homomorphism of Noetherian rings.
Let $\omega_{B/A}^\bullet \in D(B)$ be the algebraic relative dualizing
complex discussed in Dualizing Complexes, Section
\ref{dualizing-section-relative-dualizing-complexes-Noetherian}.
Then there is a (nonunique) isomorphism
$\omega_{B/A} = H^0(\omega_{B/A}^\bullet)$.
\end{lemma}
\begin{proof}
Choose a factorization $A \to B' \to B$
where $A \to B'$ is finite and $\Spec(B') \to \Spec(B)$
is an open immersion. Then
$\omega_{B/A}^\bullet = \omega_{B'/A}^\bullet \otimes_B^\mathbf{L} B'$
by Dualizing Complexes, Lemmas
\ref{dualizing-lemma-composition-shriek-algebraic} and
\ref{dualizing-lemma-upper-shriek-localize} and
the definition of $\omega_{B/A}^\bullet$. Hence
it suffices to show there is an isomorphism when $A \to B$ is finite.
In this case we can use
Dualizing Complexes, Lemma \ref{dualizing-lemma-upper-shriek-finite}
to see that $\omega_{B/A}^\bullet = R\Hom(B, A)$ and hence
$H^0(\omega^\bullet_{B/A}) = \Hom_A(B, A)$ as desired.
\end{proof}
\section{Discriminant of a finite locally free morphism}
\label{section-discriminant}
\noindent
Let $X$ be a scheme and let $\mathcal{F}$ be a finite locally
free $\mathcal{O}_X$-module. Then there is a canonical {\it trace} map
$$
\text{Trace} :
\SheafHom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F})
\longrightarrow
\mathcal{O}_X
$$
See Exercises, Exercise \ref{exercises-exercise-trace-det}. This map has
the property that $\text{Trace}(\text{id})$ is the locally constant function
on $\mathcal{O}_X$ corresponding to the rank of $\mathcal{F}$.
\medskip\noindent
Let $\pi : X \to Y$ be a morphism of schemes which is finite locally
free. Then there exists a canonical {\it trace for $\pi$}
which is an $\mathcal{O}_Y$-linear map
$$
\text{Trace}_\pi : \pi_*\mathcal{O}_X \longrightarrow \mathcal{O}_Y
$$
sending a local section $f$ of $\pi_*\mathcal{O}_X$ to the
trace of multiplication by $f$ on $\pi_*\mathcal{O}_X$. Over
affine opens this recovers the construction in
Exercises, Exercise \ref{exercises-exercise-trace-det-rings}.
The composition
$$
\mathcal{O}_Y \xrightarrow{\pi^\sharp} \pi_*\mathcal{O}_X
\xrightarrow{\text{Trace}_\pi} \mathcal{O}_Y
$$
equals multiplication by the degree of $\pi$ (which is a locally constant
function on $Y$). In analogy with
Fields, Section \ref{fields-section-trace-pairing}
we can define the trace pairing
$$
Q_\pi :
\pi_*\mathcal{O}_X \times \pi_*\mathcal{O}_X
\longrightarrow
\mathcal{O}_Y
$$
by the rule $(f, g) \mapsto \text{Trace}_\pi(fg)$. We can think of
$Q_\pi$ as a linear map
$\pi_*\mathcal{O}_X \to
\SheafHom_{\mathcal{O}_Y}(\pi_*\mathcal{O}_X, \mathcal{O}_Y)$
between locally free modules of the same rank, and hence obtain
a determinant
$$
\det(Q_\pi) :
\wedge^{top}(\pi_*\mathcal{O}_X)
\longrightarrow
\wedge^{top}(\pi_*\mathcal{O}_X)^{\otimes -1}
$$
or in other words a global section
$$
\det(Q_\pi) \in \Gamma(Y, \wedge^{top}(\pi_*\mathcal{O}_X)^{\otimes -2})
$$
The {\it discriminant of $\pi$} is by definition the closed
subscheme $D_\pi \subset Y$ cut out by this global section.
Clearly, $D_\pi$ is a locally principal closed subscheme of $Y$.
\begin{lemma}
\label{lemma-discriminant}
Let $\pi : X \to Y$ be a morphism of schemes which is finite locally
free. Then $\pi$ is \'etale if and only if its discriminant is empty.
\end{lemma}
\begin{proof}
By Morphisms, Lemma \ref{morphisms-lemma-etale-flat-etale-fibres}
it suffices to check that the fibres of $\pi$ are \'etale.
Since the construction of the trace pairing commutes with base
change we reduce to the following question: Let $k$ be a field
and let $A$ be a finite dimensional $k$-algebra. Show that
$A$ is \'etale over $k$ if and only if the trace pairing
$Q_{A/k} : A \times A \to k$, $(a, b) \mapsto \text{Trace}_{A/k}(ab)$
is nondegenerate.
\medskip\noindent
Assume $Q_{A/k}$ is nondegenerate. If $a \in A$ is a nilpotent element, then
$ab$ is nilpotent for all $b \in A$ and we conclude that $Q_{A/k}(a, -)$ is
identically zero. Hence $A$ is reduced. Then we can write
$A = K_1 \times \ldots \times K_n$ as a product where each $K_i$
is a field (see
Algebra, Lemmas \ref{algebra-lemma-finite-dimensional-algebra},
\ref{algebra-lemma-artinian-finite-length}, and
\ref{algebra-lemma-minimal-prime-reduced-ring}).
In this case the quadratic
space $(A, Q_{A/k})$ is the orthogonal direct sum of the spaces
$(K_i, Q_{K_i/k})$. It follows from
Fields, Lemma \ref{fields-lemma-separable-trace-pairing}
that each $K_i$ is separable over $k$. This means that $A$ is \'etale
over $k$ by Algebra, Lemma \ref{algebra-lemma-etale-over-field}.
The converse is proved by reading the argument backwards.
\end{proof}
\section{Traces for flat quasi-finite ring maps}
\label{section-quasi-finite-traces}
\noindent
The trace referred to in the title of this section is of a completely
different nature than the trace discussed in
Duality for Schemes, Section \ref{duality-section-trace}.
Namely, it is the trace
as discussed in Fields, Section \ref{fields-section-trace-pairing}
and generalized in Exercises, Exercises \ref{exercises-exercise-trace-det} and
\ref{exercises-exercise-trace-det-rings}.
\medskip\noindent
Let $A \to B$ be a finite flat map of Noetherian rings. Then $B$ is finite
flat as an $A$-module and hence finite locally free
(Algebra, Lemma \ref{algebra-lemma-finite-projective}).
Given $b \in B$ we can consider the {\it trace} $\text{Trace}_{B/A}(b)$
of the $A$-linear map $B \to B$ given by
multiplication by $b$ on $B$. By the references above this defines
an $A$-linear map $\text{Trace}_{B/A} : B \to A$.
Since $\omega_{B/A} = \Hom_A(B, A)$ as $A \to B$ is finite, we see
that $\text{Trace}_{B/A} \in \omega_{B/A}$.
\medskip\noindent
For a general flat quasi-finite ring map we define the notion
of a trace as follows.
\begin{definition}
\label{definition-trace-element}
Let $A \to B$ be a flat quasi-finite map of Noetherian rings.
The {\it trace element} is the unique\footnote{Uniqueness
and existence will be justified in
Lemmas \ref{lemma-trace-unique} and \ref{lemma-dualizing-tau}.}
element
$\tau_{B/A} \in \omega_{B/A}$
with the following property: for any Noetherian $A$-algebra $A_1$
such that $B_1 = B \otimes_A A_1$ comes with a
product decomposition $B_1 = C \times D$ with $A_1 \to C$ finite
the image of $\tau_{B/A}$ in $\omega_{C/A_1}$
is $\text{Trace}_{C/A_1}$.
Here we use the base change map (\ref{equation-bc-dualizing}) and
Lemma \ref{lemma-dualizing-product} to get
$\omega_{B/A} \to \omega_{B_1/A_1} \to \omega_{C/A_1}$.
\end{definition}
\noindent
We first prove that trace elements are unique and then
we prove that they exist.
\begin{lemma}
\label{lemma-trace-unique}
Let $A \to B$ be a flat quasi-finite map of Noetherian rings.
Then there is at most one trace element in $\omega_{B/A}$.
\end{lemma}
\begin{proof}
Let $\mathfrak q \subset B$ be a prime ideal lying over the prime
$\mathfrak p \subset A$. By
Algebra, Lemma \ref{algebra-lemma-etale-makes-quasi-finite-finite-one-prime}
we can find an \'etale ring map $A \to A_1$ and a prime
ideal $\mathfrak p_1 \subset A_1$ lying over $\mathfrak p$
such that $\kappa(\mathfrak p_1) = \kappa(\mathfrak p)$ and
such that
$$
B_1 = B \otimes_A A_1 = C \times D
$$
with $A_1 \to C$ finite and such that the unique prime $\mathfrak q_1$
of $B \otimes_A A_1$ lying over $\mathfrak q$ and $\mathfrak p_1$
corresponds to a prime of $C$. Observe that
$\omega_{C/A_1} = \omega_{B/A} \otimes_B C$
(combine Lemmas \ref{lemma-dualizing-flat-base-change} and
\ref{lemma-dualizing-product}). Since the collection
of ring maps $B \to C$ obtained in this manner is a jointly
injective family of flat maps and since the image of $\tau_{B/A}$
in $\omega_{C/A_1}$ is prescribed the uniqueness follows.
\end{proof}
\noindent
Here is a sanity check.
\begin{lemma}
\label{lemma-finite-flat-trace}
Let $A \to B$ be a finite flat map of Noetherian rings.
Then $\text{Trace}_{B/A} \in \omega_{B/A}$ is the trace element.
\end{lemma}
\begin{proof}
Suppose we have $A \to A_1$ with $A_1$ Noetherian and
a product decomposition $B \otimes_A A_1 = C \times D$ with $A_1 \to C$
finite. Of course in this case $A_1 \to D$ is also finite.
Set $B_1 = B \otimes_A A_1$.
Since the construction of traces commutes with base change
we see that $\text{Trace}_{B/A}$ maps to $\text{Trace}_{B_1/A_1}$.
Thus the proof is finished by noticing that
$\text{Trace}_{B_1/A_1} = (\text{Trace}_{C/A_1}, \text{Trace}_{D/A_1})$
under the isomorphism
$\omega_{B_1/A_1} = \omega_{C/A_1} \times \omega_{D/A_1}$
of Lemma \ref{lemma-dualizing-product}.
\end{proof}
\begin{lemma}
\label{lemma-trace-base-change}
Let $A \to B$ be a flat quasi-finite map of Noetherian rings.
Let $\tau \in \omega_{B/A}$ be a trace element.
\begin{enumerate}
\item If $A \to A_1$ is a map with $A_1$ Noetherian, then with
$B_1 = A_1 \otimes_A B$ the image of $\tau$ in $\omega_{B_1/A_1}$ is a
trace element.
\item If $A = R_f$, then $\tau$ is a trace element in $\omega_{B/R}$.
\item If $g \in B$, then the image of $\tau$ in $\omega_{B_g/A}$
is a trace element.
\item If $B = B_1 \times B_2$, then $\tau$ maps to a trace element
in both $\omega_{B_1/A}$ and $\omega_{B_2/A}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) is a formal consequence of the definition.
\medskip\noindent
Statement (2) makes sense because $\omega_{B/R} = \omega_{B/A}$
by Lemma \ref{lemma-localize-dualizing}. Denote $\tau'$ the element
$\tau$ but viewed as an element of $\omega_{B/R}$. To see that (2) is true
suppose that we have $R \to R_1$ with $R_1$ Noetherian and a product
decomposition $B \otimes_R R_1 = C \times D$ with $R_1 \to C$ finite.
Then with $A_1 = (R_1)_f$ we see that $B \otimes_A A_1 = C \times D$.
Since $R_1 \to C$ is finite, a fortiori $A_1 \to C$ is finite.
Hence we can use the defining property of $\tau$ to get the corresponding
property of $\tau'$.
\medskip\noindent
Statement (3) makes sense because $\omega_{B_g/A} = (\omega_{B/A})_g$
by Lemma \ref{lemma-localize-dualizing}. The proof is similar to the proof
of (2). Suppose we have $A \to A_1$ with $A_1$ Noetherian and
a product decomposition $B_g \otimes_A A_1 = C \times D$ with $A_1 \to C$
finite. Set $B_1 = B \otimes_A A_1$. Then
$\Spec(C) \to \Spec(B_1)$ is an open immersion as $B_g \otimes_A A_1 = (B_1)_g$
and the image is closed because $B_1 \to C$ is finite
(as $A_1 \to C$ is finite).
Thus we see that $B_1 = C \times D_1$ and $D = (D_1)_g$. Then we can use
the defining property of $\tau$ to get the corresponding property
for the image of $\tau$ in $\omega_{B_g/A}$.
\medskip\noindent
Statement (4) makes sense because
$\omega_{B/A} = \omega_{B_1/A} \times \omega_{B_2/A}$ by
Lemma \ref{lemma-dualizing-product}.
Suppose we have $A \to A'$ with $A'$ Noetherian and
a product decomposition $B \otimes_A A' = C \times D$ with $A' \to C$
finite. Then it is clear that we can refine this product
decomposition into $B \otimes_A A' = C_1 \times C_2 \times D_1 \times D_2$
with $A' \to C_i$ finite such that $B_i \otimes_A A' = C_i \times D_i$.
Then we can use the defining property of $\tau$ to get the corresponding
property for the image of $\tau$ in $\omega_{B_i/A}$. This uses the obvious
fact that
$\text{Trace}_{C/A'} = (\text{Trace}_{C_1/A'}, \text{Trace}_{C_2/A'})$
under the decomposition
$\omega_{C/A'} = \omega_{C_1/A'} \times \omega_{C_2/A'}$.
\end{proof}
\begin{lemma}
\label{lemma-glue-trace}
Let $A \to B$ be a flat quasi-finite map of Noetherian rings.
Let $g_1, \ldots, g_m \in B$ be elements generating the unit ideal.
Let $\tau \in \omega_{B/A}$ be an element whose image in
$\omega_{B_{g_i}/A}$ is a trace element for $A \to B_{g_i}$.
Then $\tau$ is a trace element.
\end{lemma}
\begin{proof}
Suppose we have $A \to A_1$ with $A_1$ Noetherian and a product
decomposition $B \otimes_A A_1 = C \times D$ with $A_1 \to C$ finite.
We have to show that the image of $\tau$ in $\omega_{C/A_1}$ is
$\text{Trace}_{C/A_1}$. Observe that $g_1, \ldots, g_m$
generate the unit ideal in $B_1 = B \otimes_A A_1$ and that
$\tau$ maps to a trace element in $\omega_{(B_1)_{g_i}/A_1}$
by Lemma \ref{lemma-trace-base-change}. Hence we may replace
$A$ by $A_1$ and $B$ by $B_1$ to get to the situation as described
in the next paragraph.
\medskip\noindent
Here we assume that $B = C \times D$ with $A \to C$ is finite.
Let $\tau_C$ be the image of $\tau$ in $\omega_{C/A}$.
We have to prove that $\tau_C = \text{Trace}_{C/A}$ in $\omega_{C/A}$.
By the compatibility of trace elements with products
(Lemma \ref{lemma-trace-base-change})
we see that $\tau_C$ maps to a trace element in $\omega_{C_{g_i}/A}$.
Hence, after replacing $B$ by $C$ we may assume that $A \to B$
is finite flat.
\medskip\noindent
Assume $A \to B$ is finite flat. In this case $\text{Trace}_{B/A}$
is a trace element by Lemma \ref{lemma-finite-flat-trace}.
Hence $\text{Trace}_{B/A}$ maps to a trace element in
$\omega_{B_{g_i}/A}$ by Lemma \ref{lemma-trace-base-change}.
Since trace elements are unique (Lemma \ref{lemma-trace-unique})
we find that $\text{Trace}_{B/A}$ and $\tau$ map
to the same elements in $\omega_{B_{g_i}/A} = (\omega_{B/A})_{g_i}$.
As $g_1, \ldots, g_m$ generate the unit ideal of $B$ the map
$\omega_{B/A} \to \prod \omega_{B_{g_i}/A}$ is injective
and we conclude that $\tau_C = \text{Trace}_{B/A}$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-dualizing-tau}
Let $A \to B$ be a flat quasi-finite map of Noetherian rings.
There exists a trace element $\tau \in \omega_{B/A}$.
\end{lemma}
\begin{proof}
Choose a factorization $A \to B' \to B$ with $A \to B'$ finite and
$\Spec(B) \to \Spec(B')$ an open immersion. Let $g_1, \ldots, g_n \in B'$
be elements such that $\Spec(B) = \bigcup D(g_i)$ as opens of $\Spec(B')$.
Suppose that we can prove the existence of trace elements $\tau_i$ for the
quasi-finite flat ring maps $A \to B_{g_i}$. Then for all $i, j$ the elements
$\tau_i$ and $\tau_j$ map to trace elements of $\omega_{B_{g_ig_j}/A}$
by Lemma \ref{lemma-trace-base-change}. By uniqueness of
trace elements (Lemma \ref{lemma-trace-unique}) they map to the same element.
Hence the sheaf condition for the quasi-coherent module associated to
$\omega_{B/A}$ (see Algebra, Lemma \ref{algebra-lemma-cover-module})
produces an element $\tau \in \omega_{B/A}$.
Then $\tau$ is a trace element by
Lemma \ref{lemma-glue-trace}.
In this way we reduce to the case treated in the next paragraph.
\medskip\noindent
Assume we have $A \to B'$ finite and $g \in B'$ with $B = B'_g$ flat over $A$.
It is our task to construct a trace element in
$\omega_{B/A} = \Hom_A(B', A) \otimes_{B'} B$.
Choose a resolution $F_1 \to F_0 \to B' \to 0$ of $B'$ by finite free
$A$-modules $F_0$ and $F_1$. Then we have an exact sequence
$$
0 \to \Hom_A(B', A) \to F_0^\vee \to F_1^\vee
$$
where $F_i^\vee = \Hom_A(F_i, A)$ is the dual finite free module.
Similarly we have the exact sequence
$$
0 \to \Hom_A(B', B') \to F_0^\vee \otimes_A B' \to F_1^\vee \otimes_A B'
$$
The idea of the construction of $\tau$ is to use the diagram
$$
B' \xrightarrow{\mu} \Hom_A(B', B')
\leftarrow \Hom_A(B', A) \otimes_A B'
\xrightarrow{ev} A
$$
where the first arrow sends $b' \in B'$ to the $A$-linear operator
given by multiplication by $b'$ and the last arrow is the evaluation map.
The problem is that the middle arrow, which sends $\lambda' \otimes b'$
to the map $b'' \mapsto \lambda'(b'')b'$, is not an isomorphism.
If $B'$ is flat over $A$, the exact sequences above show that it
is an isomorphism and the composition from left to right is the usual trace
$\text{Trace}_{B'/A}$. In the general case, we consider
the diagram
$$
\xymatrix{
& \Hom_A(B', A) \otimes_A B' \ar[r] \ar[d] &
\Hom_A(B', A) \otimes_A B'_g \ar[d] \\
B' \ar[r]_-\mu \ar@{..>}[rru] \ar@{..>}[ru]^\psi &
\Hom_A(B', B') \ar[r] &
\Ker(F_0^\vee \otimes_A B'_g \to F_1^\vee \otimes_A B'_g)
}
$$
By flatness of $A \to B'_g$ we see that the right vertical arrow is an
isomorphism. Hence we obtain the unadorned dotted arrow.
Since $B'_g = \colim \frac{1}{g^n}B'$, since
colimits commute with tensor products,
and since $B'$ is a finitely presented $A$-module
we can find an $n \geq 0$ and a $B'$-linear (for right $B'$-module structure)
map $\psi : B' \to \Hom_A(B', A) \otimes_A B'$
whose composition with the left vertical arrow is $g^n\mu$.
Composing with $ev$ we obtain an element
$ev \circ \psi \in \Hom_A(B', A)$. Then we set
$$
\tau = (ev \circ \psi) \otimes g^{-n} \in
\Hom_A(B', A) \otimes_{B'} B'_g = \omega_{B'_g/A} = \omega_{B/A}
$$
We omit the easy verification that this element does not depend
on the choice of $n$ and $\psi$ above.
\medskip\noindent
Let us prove that $\tau$ as constructed in the previous paragraph
has the desired property in a special case. Namely, say
$B' = C' \times D'$ and $g = (f, h)$ where $A \to C'$ flat, $D'_h$ is flat, and
$f$ is a unit in $C'$.
To show: $\tau$ maps to $\text{Trace}_{C'/A}$ in $\omega_{C'/A}$.
In this case we first choose $n_D$ and
$\psi_D : D' \to \Hom_A(D', A) \otimes_A D'$ as above for the pair
$(D', h)$ and we can let
$\psi_C : C' \to \Hom_A(C', A) \otimes_A C' = \Hom_A(C', C')$
be the map seconding $c' \in C'$ to multiplication by $c'$.
Then we take $n = n_D$ and $\psi = (f^{n_D} \psi_C, \psi_D)$
and the desired compatibility is clear because
$\text{Trace}_{C'/A} = ev \circ \psi_C$ as remarked above.
\medskip\noindent
To prove the desired property in general, suppose given
$A \to A_1$ with $A_1$ Noetherian and a product decomposition
$B'_g \otimes_A A_1 = C \times D$ with $A_1 \to C$ finite.
Set $B'_1 = B' \otimes_A A_1$. Then $\Spec(C) \to \Spec(B'_1)$
is an open immersion as $B'_g \otimes_A A_1 = (B'_1)_g$ and
the image is closed as $B'_1 \to C$ is finite (since $A_1 \to C$
is finite). Thus $B'_1 = C \times D'$ and $D'_g = D$.
We conclude that $B'_1 = C \times D'$ and $g$ over $A_1$
are as in the previous paragraph.
Since formation of the displayed diagram above
commutes with base change, the formation of $\tau$ commutes
with the base change $A \to A_1$ (details omitted; use the
resolution $F_1 \otimes_A A_1 \to F_0 \otimes_A A_1 \to B'_1 \to 0$
to see this). Thus the desired compatibility follows from the result
of the previous paragraph.
\end{proof}
\begin{remark}
\label{remark-relative-dualizing-for-flat-quasi-finite}
Let $f : Y \to X$ be a flat locally quasi-finite morphism of locally
Noetherian schemes. Let $\omega_{Y/X}$ be as in
Remark \ref{remark-relative-dualizing-for-quasi-finite}.
It is clear from the uniqueness, existence, and compatibility with
localization of trace elements
(Lemmas \ref{lemma-trace-unique}, \ref{lemma-dualizing-tau}, and
\ref{lemma-trace-base-change})
that there exists a global section
$$
\tau_{Y/X} \in \Gamma(Y, \omega_{Y/X})
$$
such that for every pair of affine opens
$\Spec(B) = V \subset Y$, $\Spec(A) = U \subset X$ with $f(V) \subset U$
that element $\tau_{Y/X}$ maps to $\tau_{B/A}$ under the
canonical isomorphism
$H^0(V, \omega_{Y/X}) = \omega_{B/A}$.
\end{remark}
\begin{lemma}
\label{lemma-tau-nonzero}
Let $k$ be a field and let $A$ be a finite $k$-algebra. Assume $A$
is local with residue field $k'$. The following are equivalent
\begin{enumerate}
\item $\text{Trace}_{A/k}$ is nonzero,
\item $\tau_{A/k} \in \omega_{A/k}$ is nonzero, and
\item $k'/k$ is separable and $\text{length}_A(A)$ is prime
to the characteristic of $k$.
\end{enumerate}
\end{lemma}
\begin{proof}
Conditions (1) and (2) are equivalent by Lemma \ref{lemma-finite-flat-trace}.
Let $\mathfrak m \subset A$. Since $\dim_k(A) < \infty$ it is clear that
$A$ has finite length over $A$. Choose a filtration
$$
A = I_0 \supset \mathfrak m = I_1 \supset I_2 \supset \ldots I_n = 0
$$
by ideals such that $I_i/I_{i + 1} \cong k'$ as $A$-modules. See
Algebra, Lemma \ref{algebra-lemma-simple-pieces} which also shows that
$n = \text{length}_A(A)$. If $a \in \mathfrak m$ then $aI_i \subset I_{i + 1}$
and it is immediate that $\text{Trace}_{A/k}(a) = 0$.
If $a \not \in \mathfrak m$ with image $\lambda \in k'$, then
we conclude
$$
\text{Trace}_{A/k}(a) =
\sum\nolimits_{i = 0, \ldots, n - 1}
\text{Trace}_k(a : I_i/I_{i - 1} \to I_i/I_{i - 1}) =
n \text{Trace}_{k'/k}(\lambda)
$$
The proof of the lemma is finished by applying
Fields, Lemma \ref{fields-lemma-separable-trace-pairing}.
\end{proof}
\section{Finite morphisms}
\label{section-finite-morphisms}
\noindent
In this section we collect some observations about the
constructions in the previous sections for finite morphisms.
Let $f : Y \to X$ be a finite morphism of locally Noetherian schemes.
Let $\omega_{Y/X}$ be as in
Remark \ref{remark-relative-dualizing-for-quasi-finite}.
\medskip\noindent
The first remark is that
$$
f_*\omega_{Y/X} = \SheafHom_{\mathcal{O}_X}(f_*\mathcal{O}_Y, \mathcal{O}_X)
$$
as sheaves of $f_*\mathcal{O}_Y$-modules. Since $f$ is affine, this
formula uniquely characterizes $\omega_{Y/X}$, see
Morphisms, Lemma \ref{morphisms-lemma-affine-equivalence-modules}.
The formula holds because for $\Spec(A) = U \subset X$ affine open, the
inverse image $V = f^{-1}(U)$ is the spectrum of a finite $A$-algebra
$B$ and hence
$$
H^0(U, f_*\omega_{Y/X}) =
H^0(V, \omega_{Y/X}) =
\omega_{B/A} =
\Hom_A(B, A) =
H^0(U, \SheafHom_{\mathcal{O}_X}(f_*\mathcal{O}_Y, \mathcal{O}_X))
$$
by construction. In particular, we obtain a canonical evaluation map
$$
f_*\omega_{Y/X} \longrightarrow \mathcal{O}_X
$$
which is given by evaluation at $1$ if we think of $f_*\omega_{Y/X}$
as the sheaf $\SheafHom_{\mathcal{O}_X}(f_*\mathcal{O}_Y, \mathcal{O}_X)$.
\medskip\noindent
The second remark is that using the evaluation map we obtain
canonical identifications
$$
\Hom_Y(\mathcal{F}, f^*\mathcal{G} \otimes_{\mathcal{O}_Y} \omega_{Y/X})
=
\Hom_X(f_*\mathcal{F}, \mathcal{G})
$$
functorially in the quasi-coherent module $\mathcal{F}$ on $Y$
and the finite locally free module $\mathcal{G}$ on $X$.
If $\mathcal{G} = \mathcal{O}_X$ this follows immediately
from the above and
Algebra, Lemma \ref{algebra-lemma-adjoint-hom-restrict}.
For general $\mathcal{G}$ we can use the same lemma and the
isomorphisms
$$
f_*(f^*\mathcal{G} \otimes_{\mathcal{O}_Y} \omega_{Y/X}) =
\mathcal{G} \otimes_{\mathcal{O}_X}