-
Notifications
You must be signed in to change notification settings - Fork 153
/
intersection.tex
3195 lines (2922 loc) · 120 KB
/
intersection.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Intersection Theory}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we construct the intersection product on the Chow groups
modulo rational equivalence on a nonsingular projective variety over an
algebraically closed field. Our tools are Serre's Tor formula
(see \cite[Chapter V]{Serre_algebre_locale}), reduction to the diagonal,
and the moving lemma.
\medskip\noindent
We first recall cycles and how to construct proper pushforward and
flat pullback of cycles. Next, we introduce rational equivalence of cycles
which gives us the Chow groups $\CH_*(X)$. Proper pushforward and flat pullback
factor through rational equivalence to give operations on Chow groups.
This takes up Sections
\ref{section-cycles},
\ref{section-cycle-of-closed},
\ref{section-cycle-of-coherent-sheaf},
\ref{section-pushforward},
\ref{section-flat-pullback},
\ref{section-rational-equivalence},
\ref{section-alternative},
\ref{section-pushforward-and-rational-equivalence}, and
\ref{section-flat-pullback-and-rational-equivalence}.
For proofs we mostly refer to the chapter on Chow homology
where these results have been proven in the setting of
schemes locally of finite type over a universally catenary Noetherian base, see
Chow Homology, Section \ref{chow-section-setup} ff.
\medskip\noindent
Since we work on a nonsingular projective $X$ any irreducible component
of the intersection $V \cap W$ of two irreducible closed subvarieties
has dimension at least $\dim(V) + \dim(W) - \dim(X)$. We say $V$ and $W$
intersect properly if equality holds for every irreducible component $Z$.
In this case we define the intersection multiplicity
$e_Z = e(X, V \cdot W, Z)$ by the formula
$$
e_Z = \sum\nolimits_i
(-1)^i
\text{length}_{\mathcal{O}_{X, Z}}
\text{Tor}_i^{\mathcal{O}_{X, Z}}(\mathcal{O}_{W, Z}, \mathcal{O}_{V, Z})
$$
We need to do a little bit of commutative algebra to show that these
intersection multiplicities agree with intuition in simple cases,
namely, that sometimes
$$
e_Z = \text{length}_{\mathcal{O}_{X, Z}} \mathcal{O}_{V \cap W, Z},
$$
in other words, only $\text{Tor}_0$ contributes. This happens when
$V$ and $W$ are Cohen-Macaulay in the generic point of $Z$ or when
$W$ is cut out by a regular sequence in $\mathcal{O}_{X, Z}$ which
also defines a regular sequence on $\mathcal{O}_{V, Z}$. However,
Example \ref{example-naive-multiplicity-wrong} shows that higher
tors are necessary in general. Moreover, there is a relationship
with the Samuel multiplicity. These matters are discussed in
Sections
\ref{section-intersect-properly},
\ref{section-tor-formula},
\ref{section-multiplicities},
\ref{section-computing-intersection-multiplicities}, and
\ref{section-intersection-product}.
\medskip\noindent
Reduction to the diagonal is the statement that we can intersect
$V$ and $W$ by intersecting $V \times W$ with the diagonal in $X \times X$.
This innocuous statement, which is clear on the level of scheme
theoretic intersections, reduces an intersection of a general pair
of closed subschemes, to the case where one of the two is locally cut
out by a regular sequence. We use this, following Serre, to obtain positivity
of intersection multiplicities. Moreover, reduction to the diagonal
leads to additivity of intersection multiplicities, associativity, and a
projection formula. This can be found in Sections
\ref{section-exterior-product},
\ref{section-reduction-diagonal},
\ref{section-associative},
\ref{section-flat-pullback-and-intersection-products}, and
\ref{section-projection-formula-flat}.
\medskip\noindent
Finally, we come to the moving lemmas and applications. There are two
parts to the moving lemma. The first is that given closed subvarieties
$$
Z \subset X \subset \mathbf{P}^N
$$
with $X$ nonsingular, we can find a subvariety $C \subset \mathbf{P}^N$
intersecting $X$ properly such that
$$
C \cdot X = [Z] + \sum m_j [Z_j]
$$
and such that the other components $Z_j$ are ``more general'' than $Z$.
The second part is that one can move $C \subset \mathbf{P}^N$ over
a rational curve to a subvariety in general position with respect to
any given list of subvarieties. Combined these results imply that it suffices
to define the intersection product of cycles on $X$ which intersect
properly which was done above. Of course this only leads to an intersection
product on $\CH_*(X)$ if one can show, as we do in the text, that these products
pass through rational equivalence. This and some applications are discussed
in Sections
\ref{section-projection},
\ref{section-moving-lemma},
\ref{section-intersections-and-rational-equivalence},
\ref{section-chow-rings},
\ref{section-general-pullback}, and
\ref{section-pullback-cycles}.
\section{Conventions}
\label{section-conventions}
\noindent
We fix an algebraically closed ground field $\mathbf{C}$ of any
characteristic. All schemes and varieties are over $\mathbf{C}$ and all
morphisms are over $\mathbf{C}$. A variety $X$ is
{\it nonsingular} if $X$ is a regular scheme (see
Properties, Definition \ref{properties-definition-regular}).
In our case this means that the morphism $X \to \Spec(\mathbf{C})$
is smooth (see
Varieties, Lemma \ref{varieties-lemma-geometrically-regular-smooth}).
\section{Cycles}
\label{section-cycles}
\noindent
Let $X$ be a variety. A {\it closed subvariety} of $X$ is an integral
closed subscheme $Z \subset X$. A {\it $k$-cycle} on $X$ is a finite
formal sum $\sum n_i [Z_i]$ where each $Z_i$ is a closed subvariety
of dimension $k$. Whenever we use the notation $\alpha = \sum n_i[Z_i]$
for a $k$-cycle we always assume the subvarieties $Z_i$ are pairwise
distinct and $n_i \not = 0$ for all $i$. In this case the
{\it support} of $\alpha$ is the closed subset
$$
\text{Supp}(\alpha) = \bigcup Z_i \subset X
$$
of dimension $k$. The group of $k$-cycles is denoted $Z_k(X)$.
See Chow Homology, Section \ref{chow-section-cycles}.
\section{Cycle associated to closed subscheme}
\label{section-cycle-of-closed}
\noindent
Suppose that $X$ is a variety and that $Z \subset X$ be a closed subscheme
with $\dim(Z) \leq k$. Let $Z_i$ be the irreducible components of $Z$ of
dimension $k$ and let $n_i$ be the {\it multiplicity of $Z_i$ in $Z$}
defined as
$$
n_i = \text{length}_{\mathcal{O}_{X, Z_i}} \mathcal{O}_{Z, Z_i}
$$
where $\mathcal{O}_{X, Z_i}$, resp.\ $\mathcal{O}_{Z, Z_i}$ is the
local ring of $X$, resp.\ $Z$ at the generic point of $Z_i$.
We define the $k$-cycle associated to $Z$ to be the $k$-cycle
$$
[Z]_k = \sum n_i [Z_i].
$$
See Chow Homology, Section \ref{chow-section-cycle-of-closed-subscheme}.
\section{Cycle associated to a coherent sheaf}
\label{section-cycle-of-coherent-sheaf}
\noindent
Suppose that $X$ is a variety and that
$\mathcal{F}$ is a coherent $\mathcal{O}_X$-module with
$\dim(\text{Supp}(\mathcal{F})) \leq k$.
Let $Z_i$ be the irreducible components of $\text{Supp}(\mathcal{F})$
of dimension $k$ and let $n_i$ be the
{\it multiplicity of $Z_i$ in $\mathcal{F}$} defined as
$$
n_i = \text{length}_{\mathcal{O}_{X, Z_i}} \mathcal{F}_{\xi_i}
$$
where $\mathcal{O}_{X, Z_i}$ is the
local ring of $X$ at the generic point $\xi_i$ of $Z_i$
and $\mathcal{F}_{\xi_i}$ is the stalk of $\mathcal{F}$ at this point.
We define the $k$-cycle associated to $\mathcal{F}$ to be the $k$-cycle
$$
[\mathcal{F}]_k = \sum n_i [Z_i].
$$
See Chow Homology, Section \ref{chow-section-cycle-of-coherent-sheaf}.
Note that, if $Z \subset X$ is a closed subscheme with $\dim(Z) \leq k$, then
$[Z]_k = [\mathcal{O}_Z]_k$ by definition.
\section{Proper pushforward}
\label{section-pushforward}
\noindent
Suppose that $f : X \to Y$ is a proper morphism of varieties.
Let $Z \subset X$ be a $k$-dimensional
closed subvariety. We define $f_*[Z]$ to be $0$ if $\dim(f(Z)) < k$
and $d \cdot [f(Z)]$ if $\dim(f(Z)) = k$ where
$$
d = [\mathbf{C}(Z) : \mathbf{C}(f(Z))] = \deg(Z/f(Z))
$$
is the degree of the dominant morphism $Z \to f(Z)$, see
Morphisms, Definition \ref{morphisms-definition-degree}.
Let $\alpha = \sum n_i [Z_i]$ be a $k$-cycle on $X$. The
{\it pushforward} of $\alpha$ is the sum $f_* \alpha = \sum n_i f_*[Z_i]$
where each $f_*[Z_i]$ is defined as above. This defines a homomorphism
$$
f_* : Z_k(X) \longrightarrow Z_k(Y)
$$
See Chow Homology, Section \ref{chow-section-proper-pushforward}.
\begin{lemma}
\label{lemma-push-coherent}
\begin{reference}
See \cite[Chapter V]{Serre_algebre_locale}.
\end{reference}
Suppose that $f : X \to Y$ is a proper morphism of varieties.
Let $\mathcal{F}$ be a coherent sheaf with
$\dim(\text{Supp}(\mathcal{F})) \leq k$, then
$f_*[\mathcal{F}]_k = [f_*\mathcal{F}]_k$. In particular, if
$Z \subset X$ is a closed subscheme of dimension $\leq k$, then
$f_*[Z]_k = [f_*\mathcal{O}_Z]_k$.
\end{lemma}
\begin{proof}
See Chow Homology, Lemma \ref{chow-lemma-cycle-push-sheaf}.
\end{proof}
\begin{lemma}
\label{lemma-compose-pushforward}
Let $f : X \to Y$ and $g : Y \to Z$ be proper morphisms of
varieties. Then $g_* \circ f_* = (g \circ f)_*$ as maps $Z_k(X) \to Z_k(Z)$.
\end{lemma}
\begin{proof}
Special case of Chow Homology, Lemma \ref{chow-lemma-compose-pushforward}.
\end{proof}
\section{Flat pullback}
\label{section-flat-pullback}
\noindent
Suppose that $f : X \to Y$ is a flat morphism of varieties.
By Morphisms, Lemma
\ref{morphisms-lemma-dimension-fibre-at-a-point-additive}
every fibre of $f$ has dimension $r = \dim(X) - \dim(Y)$\footnote{Conversely,
if $f : X \to Y$ is a dominant morphism of varieties,
$X$ is Cohen-Macaulay, $Y$ is nonsingular, and all fibres have
the same dimension $r$, then $f$ is flat. This follows from
Algebra, Lemma \ref{algebra-lemma-CM-over-regular-flat} and
Varieties, Lemma \ref{varieties-lemma-dimension-fibres-locally-algebraic}
showing $\dim(X) = \dim(Y) + r$.}.
Let $Z \subset X$ be a $k$-dimensional closed subvariety. We define
$f^*[Z]$ to be the $(k + r)$-cycle associated to the scheme theoretic
inverse image: $f^*[Z] = [f^{-1}(Z)]_{k + r}$. Let
$\alpha = \sum n_i [Z_i]$ be a $k$-cycle on $Y$. The {\it pullback} of
$\alpha$ is the sum $f^* \alpha = \sum n_i f^*[Z_i]$ where each $f^*[Z_i]$
is defined as above. This defines a homomorphism
$$
f^* : Z_k(Y) \longrightarrow Z_{k + r}(X)
$$
See Chow Homology, Section \ref{chow-section-flat-pullback}.
\begin{lemma}
\label{lemma-pullback}
Let $f : X \to Y$ be a flat morphism of varieties. Set $r = \dim(X) - \dim(Y)$.
Then $f^*[\mathcal{F}]_k = [f^*\mathcal{F}]_{k + r}$
if $\mathcal{F}$ is a coherent sheaf on $Y$ and the dimension of the
support of $\mathcal{F}$ is at most $k$.
\end{lemma}
\begin{proof}
See Chow Homology, Lemma \ref{chow-lemma-pullback-coherent}.
\end{proof}
\begin{lemma}
\label{lemma-compose-flat-pullback}
Let $f : X \to Y$ and $g : Y \to Z$ be flat morphisms of
varieties. Then $g \circ f$ is flat and $f^* \circ g^* = (g \circ f)^*$
as maps $Z_k(Z) \to Z_{k + \dim(X) - \dim(Z)}(X)$.
\end{lemma}
\begin{proof}
Special case of Chow Homology, Lemma \ref{chow-lemma-compose-flat-pullback}.
\end{proof}
\section{Rational Equivalence}
\label{section-rational-equivalence}
\noindent
We are going to define rational equivalence in a way which at first
glance may seem different from what you are used to, or from what
is in \cite[Chapter I]{F} or
Chow Homology, Section \ref{chow-section-rational-equivalence}.
However, in Section \ref{section-alternative} we will show that
the two notions agree.
\medskip\noindent
Let $X$ be a variety. Let $W \subset X \times \mathbf{P}^1$
be a closed subvariety of dimension $k + 1$. Let $a, b$ be distinct closed
points of $\mathbf{P}^1$. Assume that $X \times a$, $X \times b$ and $W$
intersect properly:
$$
\dim (W \cap X \times a) \leq k,\quad
\dim (W \cap X \times b) \leq k.
$$
This is true as soon as $W \to \mathbf{P}^1$ is dominant or if $W$ is
contained in a fibre of the projection over a closed point different from
$a$ or $b$ (this is an uninteresting case which we will discard). In this
situation the scheme theoretic fibre $W_a$ of the morphism
$W \to \mathbf{P}^1$ is equal to the scheme theoretic intersection
$W \cap X \times a$ in $X \times \mathbf{P}^1$. Identifying $X \times a$
and $X \times b$ with $X$ we may think of the fibres $W_a$ and $W_b$
as closed subschemes of $X$ of dimension $\leq k$\footnote{We will sometimes
think of $W_a$ as a closed subscheme of $X \times \mathbf{P}^1$ and sometimes
as a closed subscheme of $X$. It should always be clear from context which
point of view is taken.}. A basic example of a
rational equivalence is
$$
[W_a]_k \sim_{rat} [W_b]_k
$$
The cycles $[W_a]_k$ and $[W_b]_k$ are easy to compute in practice
(given $W$) because they are obtained by proper intersection with
a Cartier divisor (we will see this in
Section \ref{section-intersection-product}).
Since the automorphism group of $\mathbf{P}^1$ is $2$-transitive we may
move the pair of closed points $a, b$ to any pair we like. A traditional
choice is to choose $a = 0$ and $b = \infty$.
\medskip\noindent
More generally, let $\alpha = \sum n_i [W_i]$ be a $(k + 1)$-cycle on
$X \times \mathbf{P}^1$. Let $a_i, b_i$ be pairs of distinct closed points of
$\mathbf{P}^1$. Assume that $X \times a_i$, $X \times b_i$ and $W_i$ intersect
properly, in other words, each $W_i, a_i, b_i$ satisfies the condition
discussed above. A {\it cycle rationally equivalent to zero} is any cycle
of the form
$$
\sum n_i([W_{i, a_i}]_k - [W_{i, b_i}]_k).
$$
This is indeed a $k$-cycle. The collection of $k$-cycles rationally
equivalent to zero is an additive subgroup of the group of $k$-cycles.
We say two $k$-cycles are {\it rationally equivalent}, notation
$\alpha \sim_{rat} \alpha'$, if $\alpha - \alpha'$ is a cycle rationally
equivalent to zero.
\medskip\noindent
We define
$$
\CH_k(X) = Z_k(X)/ \sim_{rat}
$$
to be the {\it Chow group of $k$-cycles on $X$}. We will see in
Lemma \ref{lemma-rational-equivalence}
that this agrees with the Chow group as defined in
Chow Homology, Definition \ref{chow-definition-rational-equivalence}.
\section{Rational equivalence and rational functions}
\label{section-alternative}
\noindent
Let $X$ be a variety. Let $W \subset X$ be a subvariety
of dimension $k + 1$. Let $f \in \mathbf{C}(W)^*$ be a nonzero rational
function on $W$. For every subvariety $Z \subset W$ of dimension $k$
one can define the order of vanishing $\text{ord}_{W, Z}(f)$ of $f$ at
$Z$. If $f$ is an element of the local ring $\mathcal{O}_{W, Z}$,
then one has
$$
\text{ord}_{W, Z}(f) =
\text{length}_{\mathcal{O}_{X, Z}} \mathcal{O}_{W, Z}/f\mathcal{O}_{W, Z}
$$
where $\mathcal{O}_{X, Z}$, resp.\ $\mathcal{O}_{W, Z}$ is the
local ring of $X$, resp.\ $W$ at the generic point of $Z$. In general one
extends the definition by multiplicativity. The {\it principal divisor
associated to $f$} is
$$
\text{div}_W(f) = \sum \text{ord}_{W, Z}(f)[Z]
$$
in $Z_k(W)$. Since $W \subset X$ is a closed subvariety we may think
of $\text{div}_W(f)$ as a cycle on $X$.
See Chow Homology, Section \ref{chow-section-principal-divisors}.
\begin{lemma}
\label{lemma-rational-equivalence}
Let $X$ be a variety. Let $W \subset X$ be a subvariety
of dimension $k + 1$. Let $f \in \mathbf{C}(W)^*$ be a nonzero rational
function on $W$. Then $\text{div}_W(f)$ is rationally equivalent to zero on
$X$. Conversely, these principal divisors generate the abelian group of
cycles rationally equivalent to zero on $X$.
\end{lemma}
\begin{proof}
The first assertion follows from
Chow Homology, Lemma \ref{chow-lemma-rational-function}.
More precisely, let $W' \subset X \times \mathbf{P}^1$ be the closure
of the graph of $f$. Then $\text{div}_W(f) = [W'_0]_k - [W'_\infty]$
in $Z_k(W) \subset Z_k(X)$, see part (6) of
Chow Homology, Lemma \ref{chow-lemma-rational-function}.
\medskip\noindent
For the second, let $W' \subset X \times \mathbf{P}^1$ be a closed
subvariety of dimension $k + 1$ which dominates $\mathbf{P}^1$.
We will show that $[W'_0]_k - [W'_\infty]_k$ is a principal divisor
which will finish the proof. Let $W \subset X$ be the image of $W'$
under the projection to $X$. Then $W \subset X$ is a closed subvariety
and $W' \to W$ is proper and dominant with fibres of dimension $0$
or $1$. If $\dim(W) = k$, then $W' = W \times \mathbf{P}^1$ and we
see that $[W'_0]_k - [W'_\infty]_k = [W] - [W] = 0$.
If $\dim(W) = k + 1$, then
$W' \to W$ is generically finite\footnote{If $W' \to W$ is birational,
then the result follows from
Chow Homology, Lemma \ref{chow-lemma-rational-function}.
Our task is to show that even if $W' \to W$
has degree $> 1$ the basic rational equivalence
$[W'_0]_k \sim_{rat} [W'_\infty]_k$ comes from a principal divisor
on a subvariety of $X$.}. Let $f$ denote the projection $W' \to \mathbf{P}^1$
viewed as an element of $\mathbf{C}(W')^*$. Let
$g = \text{Nm}(f) \in \mathbf{C}(W)^*$ be the norm. By
Chow Homology, Lemma \ref{chow-lemma-proper-pushforward-alteration}
we have
$$
\text{div}_W(g) = \text{pr}_{X, *}\text{div}_{W'}(f)
$$
Since $\text{div}_{W'}(f) = [W'_0]_k - [W'_\infty]_k$
by Chow Homology, Lemma \ref{chow-lemma-rational-function}
the proof is complete.
\end{proof}
\section{Proper pushforward and rational equivalence}
\label{section-pushforward-and-rational-equivalence}
\noindent
Suppose that $f : X \to Y$ is a proper morphism of varieties.
Let $\alpha \sim_{rat} 0$ be a $k$-cycle on
$X$ rationally equivalent to $0$. Then the {pushforward}
of $\alpha$ is rationally equivalent to zero:
$f_* \alpha \sim_{rat} 0$. See Chapter I of \cite{F} or
Chow Homology, Lemma \ref{chow-lemma-proper-pushforward-rational-equivalence}.
\medskip\noindent
Therefore we obtain a commutative diagram
$$
\xymatrix{
Z_k(X) \ar[r] \ar[d]_{f_*} & \CH_k(X) \ar[d]^{f_*} \\
Z_k(Y) \ar[r] & \CH_k(Y)
}
$$
of groups of $k$-cycles.
\section{Flat pullback and rational equivalence}
\label{section-flat-pullback-and-rational-equivalence}
\noindent
Suppose that $f : X \to Y$ is a flat morphism of varieties.
Set $r = \dim(X) - \dim(Y)$.
Let $\alpha \sim_{rat} 0$ be a $k$-cycle on
$Y$ rationally equivalent to $0$. Then the pullback
of $\alpha$ is rationally equivalent to zero:
$f^* \alpha \sim_{rat} 0$. See Chapter I of \cite{F} or
Chow Homology, Lemma \ref{chow-lemma-flat-pullback-rational-equivalence}.
\medskip\noindent
Therefore we obtain a commutative diagram
$$
\xymatrix{
Z_{k + r}(X) \ar[r] & \CH_{k + r}(X) \\
Z_k(Y) \ar[r] \ar[u]^{f^*} & \CH_k(Y) \ar[u]_{f^*}
}
$$
of groups of $k$-cycles.
\section{The short exact sequence for an open}
\label{section-ses}
\noindent
Let $X$ be a variety and let $U \subset X$ be an open subvariety.
Let $X \setminus U = \bigcup Z_i$ be the decomposition into irreducible
components\footnote{Since in this chapter we only consider Chow groups
of varieties, we are prohibited from taking $Z_k(X \setminus U)$
and $\CH_k(X \setminus U)$, hence the approach using the varieties $Z_i$.}.
Then for each $k \geq 0$ there exists a commutative diagram
$$
\xymatrix{
\bigoplus Z_k(Z_i) \ar[r] \ar[d] &
Z_k(X) \ar[r] \ar[d] &
Z_k(U) \ar[d] \ar[r] &
0 \\
\bigoplus \CH_k(Z_i) \ar[r] &
\CH_k(X) \ar[r] &
\CH_k(U) \ar[r] &
0
}
$$
with exact rows. Here the vertical arrows are the canonical quotient maps.
The left horizontal arrows are given by proper pushforward along the closed
immersions $Z_i \to X$. The right horizontal arrows are given by flat
pullback along the open immersion $j : U \to X$. Since we have seen that
these maps factor through rational equivalence we obtain the commutativity
of the squares. The top row is exact simply because every subvariety
of $X$ is either contained in some $Z_i$ or has irreducible intersection
with $U$. The bottom row is exact because every principal divisor
$\text{div}_W(f)$ on $U$ is the restriction of a principal divisor on $X$.
More precisely, if $W \subset U$ is a $(k + 1)$-dimensional closed subvariety
and $f \in \mathbf{C}(W)^*$, then denote $\overline{W}$ the closure of $W$
in $X$. Then $W \subset \overline{W}$ is an open immersion, so
$\mathbf{C}(W) = \mathbf{C}(\overline{W})$ and we may think of $f$
as a nonconstant rational function on $\overline{W}$. Then clearly
$$
j^*\text{div}_{\overline{W}}(f) = \text{div}_W(f)
$$
in $Z_k(X)$. The exactness of the lower row follows easily from this.
For details see Chow Homology, Lemma \ref{chow-lemma-restrict-to-open}.
\section{Proper intersections}
\label{section-intersect-properly}
\noindent
First a few lemmas to get dimension estimates.
\begin{lemma}
\label{lemma-dimension-product-varieties}
Let $X$ and $Y$ be varieties. Then $X \times Y$ is a variety and
$\dim(X \times Y) = \dim(X) + \dim(Y)$.
\end{lemma}
\begin{proof}
The scheme $X \times Y = X \times_{\Spec(\mathbf{C})} Y$ is a variety by
Varieties, Lemma \ref{varieties-lemma-product-varieties}.
The statement on dimension is
Varieties, Lemma \ref{varieties-lemma-dimension-product-locally-algebraic}.
\end{proof}
\noindent
Recall that a regular immersion $i : X \to Y$ of schemes
is a closed immersion whose
corresponding sheaf of ideals is locally generated by a regular sequence, see
Divisors, Section \ref{divisors-section-regular-immersions}.
Moreover, the conormal sheaf $\mathcal{C}_{X/Y}$ is finite locally free of
rank equal to the length of the regular sequence. Let us say $i$ is a
{\it regular immersion of codimension $c$}
if $\mathcal{C}_{X/Y}$ is locally free of rank $c$.
\medskip\noindent
More generally, recall
(More on Morphisms, Section \ref{more-morphisms-section-lci})
that $f : X \to Y$ is a local complete intersection
morphism if we can cover $X$ by opens $U$ such that we can factor
$f|_U$ as
$$
\xymatrix{
U \ar[rr]_i \ar[rd] & & \mathbf{A}^n_Y \ar[ld] \\
& Y
}
$$
where $i$ is a Koszul regular immersion (if $Y$ is locally Noetherian
this is the same as asking $i$ to be a regular immersion, see
Divisors, Lemma \ref{divisors-lemma-regular-immersion-noetherian}).
Let us say that $f$ is a {\it local complete intersection morphism
of relative dimension $r$} if for any factorization as above, the
closed immersion $i$ has conormal sheaf of rank $n - r$ (in other
words if $i$ is a Koszul-regular immersion of codimension $n - r$
which in the Noetherian case just means it is regular immersion of
codimension $n - r$).
\begin{lemma}
\label{lemma-pullback-by-regular-immersion}
Let $f : X \to Y$ be a morphism of varieties.
\begin{enumerate}
\item If $Z \subset Y$ is a subvariety dimension $d$ and $f$ is a regular
immersion of codimension $c$, then every irreducible component
of $f^{-1}(Z)$ has dimension $\geq d - c$.
\item If $Z \subset Y$ is a subvariety of dimension $d$ and
$f$ is a local complete intersection morphism of relative dimension $r$,
then every irreducible component of $f^{-1}(Z)$ has dimension $\geq d + r$.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). We may work locally, hence we may assume that
$Y = \Spec(A)$ and $X = V(f_1, \ldots, f_c)$ where $f_1, \ldots, f_c$
is a regular sequence in $A$. If $Z = \Spec(A/\mathfrak p)$, then
we see that $f^{-1}(Z) = \Spec(A/\mathfrak p + (f_1, \ldots, f_c))$.
If $V$ is an irreducible component of $f^{-1}(Z)$, then we can
choose a closed point $v \in V$ not contained in any other irreducible
component of $f^{-1}(Z)$. Then
$$
\dim(Z) = \dim \mathcal{O}_{Z, v}
\quad\text{and}\quad
\dim(V) = \dim \mathcal{O}_{V, v} = \dim \mathcal{O}_{Z, v}/(f_1, \ldots, f_c)
$$
The first equality for example by
Algebra, Lemma \ref{algebra-lemma-dimension-prime-polynomial-ring}
and the second equality by our choice of closed point.
The result now follows from the fact that dividing by one element
in the maximal ideal decreases the dimension by at most $1$, see
Algebra, Lemma \ref{algebra-lemma-one-equation}.
\medskip\noindent
Proof of (2). Choose a factorization as in the definition of a
local complete intersection and apply (1). Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-diagonal-regular-immersion}
Let $X$ be a nonsingular variety. Then the diagonal
$\Delta : X \to X \times X$ is a regular immersion of codimension $\dim(X)$.
\end{lemma}
\begin{proof}
In fact, any closed immersion between nonsingular projective
varieties is a regular immersion, see Divisors,
Lemma \ref{divisors-lemma-immersion-smooth-into-smooth-regular-immersion}.
\end{proof}
\noindent
The following lemma demonstrates how reduction to the diagonal works.
\begin{lemma}
\label{lemma-intersect-in-smooth}
Let $X$ be a nonsingular variety and let $W,V \subset X$
be closed subvarieties with $\dim(W) = s$ and $\dim(V) = r$. Then every
irreducible component $Z$ of $V \cap W$ has dimension $\geq r + s - \dim(X)$.
\end{lemma}
\begin{proof}
Since $V \cap W = \Delta^{-1}(V \times W)$ (scheme theoretically)
we conclude by Lemmas \ref{lemma-diagonal-regular-immersion} and
\ref{lemma-pullback-by-regular-immersion}.
\end{proof}
\noindent
This lemma suggests the following definition.
\begin{definition}
\label{definition-proper-intersection}
Let $X$ be a nonsingular variety.
\begin{enumerate}
\item Let $W,V \subset X$ be closed subvarieties with
$\dim(W) = s$ and $\dim(V) = r$. We say that $W$ and $V$
{\it intersect properly} if $\dim(V \cap W) \leq r + s - \dim(X)$.
\item Let $\alpha = \sum n_i [W_i]$ be an $s$-cycle,
and $\beta = \sum_j m_j [V_j]$ be an $r$-cycle on $X$. We say
that $\alpha$ and $\beta$ {\it intersect properly} if
$W_i$ and $V_j$ intersect properly for all $i$ and $j$.
\end{enumerate}
\end{definition}
\section{Intersection multiplicities using Tor formula}
\label{section-tor-formula}
\noindent
A basic fact we will use frequently is that given sheaves of
modules $\mathcal{F}$, $\mathcal{G}$ on a ringed space $(X, \mathcal{O}_X)$
and a point $x \in X$ we have
$$
\text{Tor}_p^{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})_x =
\text{Tor}_p^{\mathcal{O}_{X, x}}(\mathcal{F}_x, \mathcal{G}_x)
$$
as $\mathcal{O}_{X, x}$-modules. This can be seen in several ways
from our construction of derived tensor products in
Cohomology, Section \ref{cohomology-section-flat}, for example it follows from
Cohomology, Lemma \ref{cohomology-lemma-check-K-flat-stalks}.
Moreover, if $X$ is a scheme and $\mathcal{F}$ and $\mathcal{G}$
are quasi-coherent, then the modules
$\text{Tor}_p^{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ are
quasi-coherent too, see
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-tensor-product}.
More important for our purposes is the following result.
\begin{lemma}
\label{lemma-tensor-coherent}
Let $X$ be a locally Noetherian scheme.
\begin{enumerate}
\item If $\mathcal{F}$ and $\mathcal{G}$ are coherent $\mathcal{O}_X$-modules,
then $\text{Tor}_p^{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is too.
\item If $L$ and $K$ are in $D^-_{\textit{Coh}}(\mathcal{O}_X)$, then
so is $L \otimes_{\mathcal{O}_X}^\mathbf{L} K$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let us explain how to prove (1) in a more elementary way and part (2)
using previously developed general theory.
\medskip\noindent
Proof of (1). Since formation of $\text{Tor}$ commutes with localization
we may assume $X$ is affine. Hence $X = \Spec(A)$ for some Noetherian
ring $A$ and $\mathcal{F}$, $\mathcal{G}$ correspond to finite $A$-modules
$M$ and $N$ (Cohomology of Schemes, Lemma
\ref{coherent-lemma-coherent-Noetherian}).
By Derived Categories of Schemes, Lemma
\ref{perfect-lemma-quasi-coherence-tensor-product} we may
compute the $\text{Tor}$'s by first computing the $\text{Tor}$'s
of $M$ and $N$ over $A$, and then taking the associated $\mathcal{O}_X$-module.
Since the modules $\text{Tor}_p^A(M, N)$ are finite by
Algebra, Lemma \ref{algebra-lemma-tor-noetherian}
we conclude.
\medskip\noindent
By Derived Categories of Schemes, Lemma
\ref{perfect-lemma-identify-pseudo-coherent-noetherian}
the assumption is equivalent to asking $L$ and $K$ to be
(locally) pseudo-coherent. Then $L \otimes_{\mathcal{O}_X}^\mathbf{L} K$
is pseudo-coherent by
Cohomology, Lemma \ref{cohomology-lemma-tensor-pseudo-coherent}.
\end{proof}
\begin{lemma}
\label{lemma-compute-tor-nonsingular}
Let $X$ be a nonsingular variety.
Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_X$-modules.
The $\mathcal{O}_X$-module
$\text{Tor}_p^{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$
is coherent, has stalk at $x$ equal to
$\text{Tor}_p^{\mathcal{O}_{X, x}}(\mathcal{F}_x, \mathcal{G}_x)$,
is supported on
$\text{Supp}(\mathcal{F}) \cap \text{Supp}(\mathcal{G})$, and
is nonzero only for $p \in \{0, \ldots, \dim(X)\}$.
\end{lemma}
\begin{proof}
The result on stalks was discussed above and it implies the support
condition. The $\text{Tor}$'s are coherent by
Lemma \ref{lemma-tensor-coherent}. The vanishing of negative
$\text{Tor}$'s is immediate from the construction. The
vanishing of $\text{Tor}_p$ for $p > \dim(X)$ can be seen as follows:
the local rings $\mathcal{O}_{X, x}$ are regular
(as $X$ is nonsingular) of dimension $\leq \dim(X)$
(Algebra, Lemma \ref{algebra-lemma-dimension-prime-polynomial-ring}),
hence $\mathcal{O}_{X, x}$ has finite global dimension $\leq \dim(X)$
(Algebra, Lemma \ref{algebra-lemma-finite-gl-dim-finite-dim-regular})
which implies that $\text{Tor}$-groups of modules vanish beyond the dimension
(More on Algebra, Lemma \ref{more-algebra-lemma-finite-gl-dim-tor-dimension}).
\end{proof}
\noindent
Let $X$ be a nonsingular variety and $W, V \subset X$
be closed subvarieties with $\dim(W) = s$ and $\dim(V) = r$.
Assume $V$ and $W$ intersect properly.
In this case Lemma \ref{lemma-intersect-in-smooth} tells us all irreducible
components of $V \cap W$ have dimension equal to $r + s - \dim(X)$.
The sheaves $\text{Tor}_j^{\mathcal{O}_X}(\mathcal{O}_W, \mathcal{O}_V)$ are
coherent, supported on $V \cap W$, and zero if $j < 0$ or $j > \dim(X)$
(Lemma \ref{lemma-compute-tor-nonsingular}).
We define the {\it intersection product} as
$$
W \cdot V = \sum\nolimits_i (-1)^i
[\text{Tor}_i^{\mathcal{O}_X}(\mathcal{O}_W, \mathcal{O}_V)]_{r + s - \dim(X)}.
$$
We stress that this makes sense only because of our assumption that
$V$ and $W$ intersect properly. This fact will necessitate a moving
lemma in order to define the intersection product in general.
\medskip\noindent
With this notation, the cycle $V \cdot W$ is a formal linear
combination $\sum e_Z Z$ of the irreducible components $Z$
of the intersection $V \cap W$. The integers $e_Z$ are called
the {\it intersection multiplicities}
$$
e_Z = e(X, V \cdot W, Z) =
\sum\nolimits_i
(-1)^i
\text{length}_{\mathcal{O}_{X, Z}}
\text{Tor}_i^{\mathcal{O}_{X, Z}}(\mathcal{O}_{W, Z}, \mathcal{O}_{V, Z})
$$
where $\mathcal{O}_{X, Z}$, resp.\ $\mathcal{O}_{W, Z}$,
resp.\ $\mathcal{O}_{V, Z}$ denotes the local ring of $X$, resp.\ $W$,
resp.\ $V$ at the generic point of $Z$.
These alternating sums of lengths of $\text{Tor}$'s satisfy many good
properties, as we will see later on.
\medskip\noindent
In the case of transversal intersections, the intersection number is $1$.
\begin{lemma}
\label{lemma-transversal}
Let $X$ be a nonsingular variety. Let $V, W \subset X$ be
closed subvarieties which intersect properly. Let $Z$ be an irreducible
component of $V \cap W$ and assume that the multiplicity
(in the sense of Section \ref{section-cycle-of-closed}) of $Z$
in the closed subscheme $V \cap W$ is $1$.
Then $e(X, V \cdot W, Z) = 1$ and $V$ and $W$ are smooth
in a general point of $Z$.
\end{lemma}
\begin{proof}
Let $(A, \mathfrak m, \kappa) =
(\mathcal{O}_{X, \xi}, \mathfrak m_\xi, \kappa(\xi))$ where $\xi \in Z$
is the generic point. Then $\dim(A) = \dim(X) - \dim(Z)$, see
Varieties, Lemma \ref{varieties-lemma-dimension-locally-algebraic}.
Let $I, J \subset A$ cut out the trace of $V$ and $W$
in $\Spec(A)$. Set $\overline{I} = I + \mathfrak m^2/\mathfrak m^2$.
Then $\dim_\kappa \overline{I} \leq \dim(X) - \dim(V)$ with equality
if and only if $A/I$ is regular (this follows from the lemma cited
above and the definition of regular rings, see
Algebra, Definition \ref{algebra-definition-regular-local}
and the discussion preceding it). Similarly for $\overline{J}$.
If the multiplicity is $1$, then
$\text{length}_A(A/I + J) = 1$, hence $I + J = \mathfrak m$, hence
$\overline{I} + \overline{J} = \mathfrak m/\mathfrak m^2$.
Then we get equality everywhere (because the intersection is
proper). Hence we find $f_1, \ldots, f_a \in I$ and $g_1, \ldots g_b \in J$
such that $\overline{f}_1, \ldots, \overline{g}_b$ is a basis
for $\mathfrak m/\mathfrak m^2$. Then $f_1, \ldots, g_b$ is a
regular system of parameters and a regular sequence
(Algebra, Lemma \ref{algebra-lemma-regular-ring-CM}).
The same lemma shows $A/(f_1, \ldots, f_a)$ is a regular local ring
of dimension $\dim(X) - \dim(V)$, hence $A/(f_1, \ldots, f_a) \to A/I$
is an isomorphism (if the kernel is nonzero, then the dimension
of $A/I$ is strictly less, see
Algebra, Lemmas \ref{algebra-lemma-regular-domain} and
\ref{algebra-lemma-one-equation}).
We conclude $I = (f_1, \ldots, f_a)$ and $J = (g_1, \ldots, g_b)$
by symmetry. Thus the Koszul complex $K_\bullet(A, f_1, \ldots, f_a)$
on $f_1, \ldots, f_a$ is a resolution of $A/I$, see
More on Algebra, Lemma \ref{more-algebra-lemma-regular-koszul-regular}.
Hence
\begin{align*}
\text{Tor}_p^A(A/I, A/J)
& =
H_p(K_\bullet(A, f_1, \ldots, f_a) \otimes_A A/J) \\
& =
H_p(K_\bullet(A/J, f_1 \bmod J, \ldots, f_a \bmod J))
\end{align*}
Since we've seen above that $f_1 \bmod J, \ldots, f_a \bmod J$ is
a regular system of parameters in the regular local ring $A/J$
we conclude that there is only one cohomology group, namely
$H_0 = A/(I + J) = \kappa$. This finishes the proof.
\end{proof}
\begin{example}
\label{example-naive-multiplicity-wrong}
In this example we show that it is necessary to use the higher
tors in the formula for the intersection multiplicities above.
Let $X$ be a nonsingular variety of dimension $4$.
Let $p \in X$ be a closed point. Let $V, W \subset X$
be closed subvarieties in $X$. Assume that there is an
isomorphism
$$
\mathcal{O}_{X, p}^\wedge \cong \mathbf{C}[[x, y, z, w]]
$$
such that the ideal of $V$ is $(xz, xw, yz, yw)$ and the ideal
of $W$ is $(x - z, y - w)$. Then a computation shows that
$$
\text{length}\ \mathbf{C}[[x, y, z, w]]/
(xz, xw, yz, yw, x - z, y - w) = 3
$$
On the other hand, the multiplicity $e(X, V \cdot W, p) = 2$
as can be seen from the fact that formal locally $V$ is the
union of two smooth planes $x = y = 0$ and $z = w = 0$ at $p$,
each of which has intersection multiplicity $1$ with the plane
$x - z = y - w = 0$ (Lemma \ref{lemma-transversal}). To make an
actual example, take
a general morphism $f : \mathbf{P}^2 \to \mathbf{P}^4$ given by
$5$ homogeneous polynomials of degree $> 1$. The image
$V \subset \mathbf{P}^4 = X$ will have singularities of the type
described above, because there will be $p_1, p_2 \in \mathbf{P}^2$
with $f(p_1) = f(p_2)$. To find $W$ take a general plane passing
through such a point.
\end{example}
\section{Algebraic multiplicities}
\label{section-multiplicities}
\noindent
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $M$ be a finite $A$-module and let $I \subset A$ be an ideal
of definition (Algebra, Definition \ref{algebra-definition-ideal-definition}).
Recall that the function
$$
\chi_{I, M}(n) = \text{length}_A(M/I^nM) =
\sum\nolimits_{p = 0, \ldots, n - 1} \text{length}_A(I^pM/I^{p + 1}M)
$$
is a numerical polynomial
(Algebra, Proposition \ref{algebra-proposition-hilbert-function-polynomial}).
The degree of this polynomial is equal to $\dim(\text{Supp}(M))$ by
Algebra, Lemma \ref{algebra-lemma-support-dimension-d}.
\begin{definition}
\label{definition-multiplicity}
In the situation above, assume $d \geq \dim(\text{Supp}(M))$.
In this case, if $d > \dim(\text{Supp}(M))$, then we set $e_I(M, d) = 0$
and if $d = \dim(\text{Supp}(M))$, then we set $e_I(M, d)$ equal to $d!$
times the leading coefficient of the numerical polynomial $\chi_{I, M}$.
Thus in both cases we have
$$
\chi_{I, M}(n) \sim e_I(M, d) \frac{n^d}{d!} + \text{lower order terms}
$$
The {\it multiplicity of $M$ for the ideal of definition $I$}
is $e_I(M) = e_I(M, \dim(\text{Supp}(M)))$.
\end{definition}
\noindent
We have the following properties of these multiplicities.
\begin{lemma}
\label{lemma-multiplicity-ses}
Let $A$ be a Noetherian local ring. Let $I \subset A$ be an ideal of
definition. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence
of finite $A$-modules. Let $d \geq \dim(\text{Supp}(M))$. Then
$$
e_I(M, d) = e_I(M', d) + e_I(M'', d)
$$
\end{lemma}
\begin{proof}
Immediate from the definitions and
Algebra, Lemma \ref{algebra-lemma-hilbert-ses-chi}.
\end{proof}
\begin{lemma}
\label{lemma-multiplicity-as-a-sum}
Let $A$ be a Noetherian local ring. Let $I \subset A$ be an ideal of
definition. Let $M$ be a finite $A$-module. Let $d \geq \dim(\text{Supp}(M))$.
Then
$$
e_I(M, d) =
\sum \text{length}_{A_\mathfrak p}(M_\mathfrak p) e_I(A/\mathfrak p, d)
$$
where the sum is over primes $\mathfrak p \subset A$ with
$\dim(A/\mathfrak p) = d$.
\end{lemma}
\begin{proof}
Both the left and side and the right hand side are additive in short
exact sequences of modules of dimension $\leq d$, see
Lemma \ref{lemma-multiplicity-ses} and
Algebra, Lemma \ref{algebra-lemma-length-additive}.
Hence by Algebra, Lemma \ref{algebra-lemma-filter-Noetherian-module}
it suffices to prove this when $M = A/\mathfrak q$ for some
prime $\mathfrak q$ of $A$ with $\dim(A/\mathfrak q) \leq d$.
This case is obvious.
\end{proof}
\begin{lemma}
\label{lemma-leading-coefficient}
Let $P$ be a polynomial of degree $r$ with leading coefficient $a$.
Then
$$
r! a = \sum\nolimits_{i = 0, \ldots, r} (-1)^i{r \choose i} P(t - i)
$$
for any $t$.
\end{lemma}
\begin{proof}
Let us write $\Delta$ the operator which to a polynomial $P$ associates
the polynomial $\Delta(P) = P(t) - P(t - 1)$. We claim that
$$
\Delta^r(P) = \sum\nolimits_{i = 0, \ldots, r} (-1)^i {r \choose i} P(t - i)
$$
This is true for $r = 0, 1$ by inspection. Assume it is true for $r$.
Then we compute
\begin{align*}
\Delta^{r + 1}(P)
& =
\sum\nolimits_{i = 0, \ldots, r} (-1)^i {r \choose i} \Delta(P)(t - i) \\
& =
\sum\nolimits_{n = -r, \ldots, 0} (-1)^i {r \choose i}
(P(t - i) - P(t - i - 1))
\end{align*}
Thus the claim follows from the equality
$$
{r + 1 \choose i} = {r \choose i} + {r \choose i - 1}
$$
The lemma follows from the fact that $\Delta(P)$ is of degree $r - 1$
with leading coefficient $ra$ if the degree of $P$ is $r$.
\end{proof}
\noindent
An important fact is that one can compute the multiplicity in terms
of the Koszul complex. Recall that if $R$ is a ring and
$f_1, \ldots, f_r \in R$, then $K_\bullet(f_1, \ldots, f_r)$
denotes the Koszul complex, see
More on Algebra, Section \ref{more-algebra-section-koszul}.