-
Notifications
You must be signed in to change notification settings - Fork 45
/
streamlit_app.py
267 lines (218 loc) · 8.62 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from io import BytesIO
import numpy as np
import PIL.Image
import streamlit as st
import tensorflow as tf
"# Deep Dream :sleeping:"
def download(url, max_dim=None):
"""Download an image from a URL and read it into a NumPy array."""
name = url.split("/")[-1]
image_path = tf.keras.utils.get_file(name, origin=url)
img = PIL.Image.open(image_path)
if max_dim:
img.thumbnail((max_dim, max_dim))
return np.array(img)
def deprocess(img):
"""Normalize an image"""
img = 255 * (img + 1.0) / 2.0
return tf.cast(img, tf.uint8)
def img_to_bytes(img):
"""Convert a PIL image to a byte array so users can download it"""
with BytesIO() as buf:
result.save(buf, format="PNG")
img_bytes = buf.getvalue()
return img_bytes
def random_roll(img, maxroll):
"""Randomly shift the image to avoid tiled boundaries."""
shift = tf.random.uniform(
shape=[2], minval=-maxroll, maxval=maxroll, dtype=tf.int32
)
img_rolled = tf.roll(img, shift=shift, axis=[0, 1])
return shift, img_rolled
@st.cache_resource
def load_base_model():
return tf.keras.applications.InceptionV3(include_top=False, weights="imagenet")
@st.cache_resource
def load_all_layers(_model):
return {layer.name: layer.output for layer in _model.layers}
def load_dream_model(base_model, layers):
return tf.keras.Model(inputs=base_model.input, outputs=layers)
def show(dg, img):
"""Display an image."""
dg.image(PIL.Image.fromarray(np.array(img)), use_column_width=True)
return dg
# Below is the actual logic for this app. It's a bit messy because it's almost a
# straight copy/paste from the original DeepDream example repo, which is also
# messy:
# https://github.com/tensorflow/docs/blob/9ae740ab7b5b3f9c32ca060332037b51d95674ae/site/en/tutorials/generative/deepdream.ipynb
def calc_loss(img, model):
"""Pass forward the image through the model to retrieve the activations."""
img_batch = tf.expand_dims(img, axis=0)
layer_activations = model(img_batch)
if len(layer_activations) == 1:
layer_activations = [layer_activations]
losses = []
for act in layer_activations:
loss = tf.math.reduce_mean(act)
losses.append(loss)
return tf.reduce_sum(losses)
class TiledGradients(tf.Module):
def __init__(self, model):
self.model = model
@tf.function(
input_signature=(
tf.TensorSpec(shape=[None, None, 3], dtype=tf.float32),
tf.TensorSpec(shape=[2], dtype=tf.int32),
tf.TensorSpec(shape=[], dtype=tf.int32),
)
)
def __call__(self, img, img_size, tile_size=512):
shift, img_rolled = random_roll(img, tile_size)
gradients = tf.zeros_like(img_rolled)
xs = tf.range(0, img_size[1], tile_size)[:-1]
if not tf.cast(len(xs), bool):
xs = tf.constant([0])
ys = tf.range(0, img_size[0], tile_size)[:-1]
if not tf.cast(len(ys), bool):
ys = tf.constant([0])
for x in xs:
for y in ys:
with tf.GradientTape() as tape:
tape.watch(img_rolled)
img_tile = img_rolled[y : y + tile_size, x : x + tile_size]
loss = calc_loss(img_tile, self.model)
gradients = gradients + tape.gradient(loss, img_rolled)
gradients = tf.roll(gradients, shift=-shift, axis=[0, 1])
gradients /= tf.math.reduce_std(gradients) + 1e-8
return gradients
def run_deep_dream_with_octaves(
img, steps_per_octave=100, step_size=0.01, octaves=range(-2, 3), octave_scale=1.3
):
base_shape = tf.shape(img)
img = tf.keras.utils.img_to_array(img)
img = tf.keras.applications.inception_v3.preprocess_input(img)
initial_shape = img.shape[:-1]
img = tf.image.resize(img, initial_shape)
text_template = "Octave: %s\n\nStep: %s"
progress_widget = st.sidebar.progress(0)
p = 0.0
for octave in octaves:
new_size = tf.cast(tf.convert_to_tensor(base_shape[:-1]), tf.float32) * (
octave_scale**octave
)
new_size = tf.cast(new_size, tf.int32)
img = tf.image.resize(img, new_size)
for step in range(steps_per_octave):
gradients = get_tiled_gradients(img, new_size)
img = img + gradients * step_size
img = tf.clip_by_value(img, -1, 1)
p += 1
progress_widget.progress(
p / (steps_per_octave * len(octaves)),
text_template % (octave, step + 1),
)
if step % 10 == 0:
show(image_widget, deprocess(img))
result = PIL.Image.fromarray(np.array(deprocess(img)))
return result
# Load and cache the base model and all layers
base_model = load_base_model()
all_layers = load_all_layers(base_model)
st.sidebar.caption(
"""This Streamlit app is based entirely on
[TensorFlow's DeepDream tutorial](https://github.com/tensorflow/docs/blob/9ae740ab7b5b3f9c32ca060332037b51d95674ae/site/en/tutorials/generative/deepdream.ipynb)."""
)
# Define a dictionary for image sources
image_sources = {
"Specify image by URL...": None,
"Upload image from my machine...": None,
"Grace Hopper example": "https://storage.googleapis.com/download.tensorflow.org/example_images/grace_hopper.jpg",
"Red sunflower example": "https://storage.googleapis.com/download.tensorflow.org/example_images/592px-Red_sunflower.jpg",
"Yellow labrador example": "https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg",
}
image_source = st.sidebar.selectbox(
"Input image",
list(image_sources.keys()),
help="""
Select an image to use as a starting point for Deep Dream.\n
Either enter a URL to an image on the web, upload an image
from your computer, or select one of the example images.""",
)
if image_source == "Specify image by URL...":
url = st.sidebar.text_input(
"Image URL",
image_sources["Yellow labrador example"],
help="The URL of the image to use as a starting point for Deep Dream.",
)
original_img = download(url, max_dim=500)
elif image_source == "Upload image from my machine...":
uploaded_file = st.sidebar.file_uploader(
"Upload your own image...",
type=["jpg", "png"],
help="Upload an image from your computer to use as a starting point for Deep Dream.\n\nUses the same image as the 'Yellow labrador example' if no image is uploaded.",
)
if uploaded_file is not None:
original_img = PIL.Image.open(uploaded_file)
original_img.thumbnail((500, 500))
original_img = np.array(original_img.copy())
else:
original_img = download(image_sources["Yellow labrador example"], max_dim=500)
else:
original_img = download(image_sources[image_source], max_dim=500)
octaves = st.sidebar.slider(
"Octaves",
min_value=-2,
max_value=3,
value=(-1, 0),
step=1,
help="The number of scales at which to run gradient ascent.",
)
steps_per_octave = st.sidebar.slider(
"Steps per Octave",
min_value=10,
max_value=100,
value=50,
step=10,
help="The number of gradient ascent steps to run at each octave.",
)
step_size = st.sidebar.slider(
"Step Size",
min_value=0.01,
max_value=0.1,
value=0.01,
step=0.01,
help="The step size for gradient ascent.",
)
names = st.sidebar.multiselect(
"Select layers to visualize",
list(all_layers.keys()),
default=["mixed3", "mixed5"],
help="""
For DeepDream, the layers of interest are those where the convolutions are concatenated.
There are 11 of these layers in InceptionV3, named 'mixed0' though 'mixed10'. \n\n
Using different layers will result in different dream-like images. Deeper layers respond
to higher-level features (such as eyes and faces), while earlier layers respond to simpler
features (such as edges, shapes, and textures).
Source: [TensorFlow DeepDream](https://www.tensorflow.org/tutorials/generative/deepdream?hl=en#prepare_the_feature_extraction_model)""",
)
# Retrieve specific user-chosen layers from multiselect
layers = [all_layers[name] for name in names]
dream_model = load_dream_model(base_model, layers)
get_tiled_gradients = TiledGradients(dream_model)
st.subheader("Original Image")
st.image(original_img, use_column_width=True)
st.subheader("Deep Dream Image")
image_widget = st.empty()
result = run_deep_dream_with_octaves(
img=original_img,
steps_per_octave=steps_per_octave,
step_size=step_size,
octaves=octaves,
)
img_bytes = img_to_bytes(result)
st.download_button(
label="Download Deep Dream Image",
data=img_bytes,
file_name="deep_dream.png",
mime="image/png",
)