|
| 1 | +def function(x): |
| 2 | + return x*3 + x*2 + x + 1 |
| 3 | + |
| 4 | +def trapezoidal(function, a, b, n): |
| 5 | + h = (b - a) / n |
| 6 | + integration = function(a) + function(b) |
| 7 | + |
| 8 | + for i in range(1, n): |
| 9 | + k = a + i * h |
| 10 | + integration += 2 * function(k) |
| 11 | + |
| 12 | + integration *= h / 2 |
| 13 | + return integration |
| 14 | + |
| 15 | +def simp_one_third(function, a, b, n): |
| 16 | + h = (b - a) / n |
| 17 | + integration = function(a) + function(b) |
| 18 | + |
| 19 | + for interval in range(1, n): |
| 20 | + x = a + interval * h |
| 21 | + if interval % 2 == 0: |
| 22 | + integration += 2 * function(x) |
| 23 | + else: |
| 24 | + integration += 4 * function(x) |
| 25 | + |
| 26 | + integration *= h / 3 |
| 27 | + return integration |
| 28 | + |
| 29 | +def simp_third_eight(function, a, b, n): |
| 30 | + h = (b - a) / n |
| 31 | + integration = function(a) + 3 * function(a + h) + 3 * function(a + 2 * h) + function(b) |
| 32 | + |
| 33 | + for i in range(3, n, 2): |
| 34 | + integration += 4 * function(a + i * h) |
| 35 | + |
| 36 | + for i in range(4, n, 2): |
| 37 | + integration += 2 * function(a + i * h) |
| 38 | + |
| 39 | + integration *= 3 * h / 8 |
| 40 | + return integration |
| 41 | + |
| 42 | +def romberg_integration(method, function, a, b, n): |
| 43 | + table = [] |
| 44 | + for i in range(n + 1): |
| 45 | + row = [0] * (n + 1) |
| 46 | + table.append(row) |
| 47 | + for i in range(0, n+1): |
| 48 | + if method == "trapezoidal": |
| 49 | + table[i][0] = trapezoidal(function, a, b, 2**i) |
| 50 | + elif method == "simpson_one_third": |
| 51 | + table[i][0] = simp_one_third(function, a, b, 2**i) |
| 52 | + elif method == "simpson_three_eight": |
| 53 | + table[i][0] = simp_third_eight(function, a, b, 3*2**i) |
| 54 | + |
| 55 | + for j in range(1, n+1): |
| 56 | + for i in range(j, n+1): |
| 57 | + table[i][j] = (4*j * table[i][j-1] - table[i-1][j-1]) / (4*j - 1) |
| 58 | + |
| 59 | + return table[n][n] |
| 60 | + |
| 61 | + |
| 62 | +lower_limit = float(input("Enter lower limit: ")) |
| 63 | +upper_limit = float(input("Enter upper limit: ")) |
| 64 | +num_intervals = int(input("Enter number of intervals: ")) |
| 65 | + |
| 66 | +print("Choose the method to solve Romberg integration:") |
| 67 | +print("1. Trapezoidal") |
| 68 | +print("2. Simpson's 1/3") |
| 69 | +print("3. Simpson's 3/8") |
| 70 | + |
| 71 | +method_choice = int(input("Enter method choice (1, 2, or 3): ")) |
| 72 | + |
| 73 | +if method_choice == 1: |
| 74 | + method = "trapezoidal" |
| 75 | +elif method_choice == 2: |
| 76 | + method = "simpson_one_third" |
| 77 | +elif method_choice == 3: |
| 78 | + method = "simpson_three_eight" |
| 79 | +else: |
| 80 | + print("Invalid method choice. Please choose a valid method.") |
| 81 | + |
| 82 | + |
| 83 | +result = romberg_integration(method, function, lower_limit, upper_limit, num_intervals) |
| 84 | +print("Integration result using Romberg with %s method: %0.4f" % (method, result)) |
0 commit comments