-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathra2c.py
482 lines (410 loc) · 18.2 KB
/
ra2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
'''
Author: Sunghoon Hong
Title: ra2c.py
Description:
Recurrent Advantage Actor Critic Agent for Airsim
Detail:
- not use join()
- reset for zero-image error
- tensorflow v1 + keras
- hard update for target critic
'''
import os
import csv
import time
import random
import argparse
from copy import deepcopy
from datetime import datetime as dt
import cv2
import numpy as np
import tensorflow as tf
import keras.backend as K
from keras.layers import TimeDistributed, BatchNormalization, Flatten, Activation
from keras.layers import Conv2D, MaxPooling2D, Dense, GRU, Input, ELU
from keras.optimizers import Adam
from keras.models import Model
from PIL import Image
from airsim_env import Env, ACTION
agent_name = 'ra2c'
class A2CAgent(object):
def __init__(self, state_size, action_size, actor_lr, critic_lr, tau,
gamma, lambd, entropy, horizon, load_model):
self.state_size = state_size
self.action_size = action_size
self.vel_size = 3
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.tau = tau
self.gamma = gamma
self.lambd = lambd
self.entropy = entropy
self.horizon = horizon
self.sess = tf.Session()
K.set_session(self.sess)
self.actor, self.critic = self.build_model()
_, self.target_critic = self.build_model()
self.actor_update = self.build_actor_optimizer()
self.critic_update = self.build_critic_optimizer()
self.sess.run(tf.global_variables_initializer())
if load_model:
self.load_model('./save_model/'+ agent_name)
self.target_critic.set_weights(self.critic.get_weights())
self.states, self.actions, self.rewards = [], [], []
def build_model(self):
# shared network
image = Input(shape=self.state_size)
image_process = BatchNormalization()(image)
image_process = TimeDistributed(Conv2D(32, (8, 8), activation='elu', padding='same', kernel_initializer='he_normal'))(image_process)
image_process = TimeDistributed(MaxPooling2D((2, 2)))(image_process)
image_process = TimeDistributed(Conv2D(32, (5, 5), activation='elu', kernel_initializer='he_normal'))(image_process)
image_process = TimeDistributed(MaxPooling2D((2, 2)))(image_process)
image_process = TimeDistributed(Conv2D(16, (3, 3), activation='elu', kernel_initializer='he_normal'))(image_process)
image_process = TimeDistributed(MaxPooling2D((2, 2)))(image_process)
image_process = TimeDistributed(Conv2D(8, (1, 1), activation='elu', kernel_initializer='he_normal'))(image_process)
image_process = TimeDistributed(Flatten())(image_process)
image_process = GRU(64, kernel_initializer='he_normal', use_bias=False)(image_process)
image_process = BatchNormalization()(image_process)
image_process = Activation('tanh')(image_process)
# vel process
vel = Input(shape=[self.vel_size])
# vel_process = Dense(6, kernel_initializer='he_normal', use_bias=False)(vel)
# vel_process = BatchNormalization()(vel_process)
# vel_process = Activation('tanh')(vel_process)
state_process = image_process
# Actor
policy = Dense(128, kernel_initializer='he_normal', use_bias=False)(state_process)
policy = ELU()(policy)
policy = BatchNormalization()(policy)
policy = Dense(self.action_size, activation='softmax', kernel_initializer=tf.random_uniform_initializer(minval=-2e-3, maxval=2e-3))(policy)
actor = Model(inputs=[image, vel], outputs=policy)
# Critic
value = Dense(128, kernel_initializer='he_normal', use_bias=False)(state_process)
value = ELU()(value)
value = BatchNormalization()(value)
value = Dense(1, kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))(value)
critic = Model(inputs=[image, vel], outputs=value)
actor._make_predict_function()
critic._make_predict_function()
return actor, critic
def build_actor_optimizer(self):
action = K.placeholder(shape=[None, self.action_size])
advantages = K.placeholder(shape=[None, ])
policy = self.actor.output
action_prob = K.sum(action * policy, axis=1)
cross_entropy = K.log(action_prob + 1e-6) * advantages
cross_entropy = -K.mean(cross_entropy)
entropy = K.sum(policy * K.log(policy + 1e-6), axis=1)
entropy = K.mean(entropy)
loss = cross_entropy + self.entropy * entropy
optimizer = Adam(lr=self.actor_lr)
updates = optimizer.get_updates(self.actor.trainable_weights, [], loss)
train = K.function([self.actor.input[0], self.actor.input[1], action, advantages],
[loss], updates=updates)
return train
def build_critic_optimizer(self):
y = K.placeholder(shape=(None, 1))
value = self.critic.output
# MSE loss
loss = K.mean(K.square(y - value))
# # Huber loss
# error = K.abs(y - value)
# quadratic = K.clip(error, 0.0, 1.0)
# linear = error - quadratic
# loss = K.mean(0.5 * K.square(quadratic) + linear)
optimizer = Adam(lr=self.critic_lr)
updates = optimizer.get_updates(self.critic.trainable_weights, [], loss)
train = K.function([self.critic.input[0], self.critic.input[1], y],
[loss], updates=updates)
return train
def get_action(self, state):
policy = self.actor.predict(state)[0]
policy = np.array(policy)
action = np.random.choice(self.action_size, 1, p=policy)[0]
return action, policy
def train_model(self, next_state, done):
images = np.zeros([len(self.states) + 1] + self.state_size, dtype=np.float32)
vels = np.zeros([len(self.states) + 1, self.vel_size], dtype=np.float32)
for i in range(len(self.states)):
images[i], vels[i] = self.states[i]
images[-1], vels[-1] = next_state
states = [images, vels]
values = self.target_critic.predict(states)
values = np.reshape(values, len(values))
advantage = np.zeros_like(self.rewards, dtype=np.float32)
gae = 0
if done:
values[-1] = np.float32([0])
for t in reversed(range(len(self.rewards))):
delta = self.rewards[t] + self.gamma * values[t+1] - values[t]
gae = delta + self.gamma * self.lambd * gae
advantage[t] = gae
target_val = advantage + values[:-1]
target_val = target_val.reshape((-1, 1))
advantage = (advantage - np.mean(advantage)) / (np.std(advantage) + 1e-6)
states = [images[:-1], vels[:-1]]
actor_loss = self.actor_update(states + [self.actions, advantage])
critic_loss = self.critic_update(states + [target_val])
self.clear_sample()
return actor_loss[0], critic_loss[0]
def append_sample(self, state, action, reward):
self.states.append(state)
act = np.zeros(self.action_size)
act[action] = 1
self.actions.append(act)
self.rewards.append(reward)
def clear_sample(self):
self.states.clear()
self.actions.clear()
self.rewards.clear()
def update_target_model(self):
self.target_critic.set_weights(self.critic.get_weights())
def load_model(self, name):
if os.path.exists(name + '_actor.h5'):
self.actor.load_weights(name + '_actor.h5')
print('Actor loaded')
if os.path.exists(name + '_critic.h5'):
self.critic.load_weights(name + '_critic.h5')
print('Critic loaded')
def save_model(self, name):
self.actor.save_weights(name + '_actor.h5')
self.critic.save_weights(name + '_critic.h5')
'''
Environment interaction
'''
def transform_input(responses, img_height, img_width):
img1d = np.array(responses[0].image_data_float, dtype=np.float)
img1d = np.array(np.clip(255 * 3 * img1d, 0, 255), dtype=np.uint8)
img2d = np.reshape(img1d, (responses[0].height, responses[0].width))
image = Image.fromarray(img2d)
image = np.array(image.resize((img_width, img_height)).convert('L'))
cv2.imwrite('view.png', image)
image = np.float32(image.reshape(1, img_height, img_width, 1))
image /= 255.0
return image
def interpret_action(action):
scaling_factor = 1.
if action == 0:
quad_offset = (0, 0, 0)
elif action == 1:
quad_offset = (scaling_factor, 0, 0)
elif action == 2:
quad_offset = (0, scaling_factor, 0)
elif action == 3:
quad_offset = (0, 0, scaling_factor)
elif action == 4:
quad_offset = (-scaling_factor, 0, 0)
elif action == 5:
quad_offset = (0, -scaling_factor, 0)
elif action == 6:
quad_offset = (0, 0, -scaling_factor)
return quad_offset
if __name__ == '__main__':
# CUDA config
# tf_config = tf.ConfigProto()
# tf_config.gpu_options.allow_growth = True
parser = argparse.ArgumentParser()
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--load_model', action='store_true')
parser.add_argument('--play', action='store_true')
parser.add_argument('--img_height', type=int, default=72)
parser.add_argument('--img_width', type=int, default=128)
parser.add_argument('--actor_lr', type=float, default=5e-5)
parser.add_argument('--critic_lr', type=float, default=1e-4)
parser.add_argument('--tau', type=float, default=0.1)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--lambd', type=float, default=0.90)
parser.add_argument('--entropy', type=float, default=1e-3)
parser.add_argument('--horizon', type=int, default=32)
parser.add_argument('--seqsize', type=int, default=5)
parser.add_argument('--target_rate',type=int, default=1000)
args = parser.parse_args()
if not os.path.exists('save_graph/'+ agent_name):
os.makedirs('save_graph/'+ agent_name)
if not os.path.exists('save_stat'):
os.makedirs('save_stat')
if not os.path.exists('save_model'):
os.makedirs('save_model')
# Make RL agent
state_size = [args.seqsize, args.img_height, args.img_width, 1]
action_size = 7
agent = A2CAgent(
state_size=state_size,
action_size=action_size,
actor_lr=args.actor_lr,
critic_lr=args.critic_lr,
tau=args.tau,
gamma=args.gamma,
lambd=args.lambd,
entropy=args.entropy,
horizon=args.horizon,
load_model=args.load_model
)
# Train
episode = 0
highscoreY = 0.
if os.path.exists('save_stat/'+ agent_name + '_stat.csv'):
with open('save_stat/'+ agent_name + '_stat.csv', 'r') as f:
read = csv.reader(f)
episode = int(float(next(reversed(list(read)))[0]))
print('Last episode:', episode)
episode += 1
if os.path.exists('save_stat/'+ agent_name + '_highscore.scv'):
with open('save_stat/'+ agent_name + '_highscore.csv', 'r') as f:
read = csv.reader(f)
highscoreY = float(next(reversed(list(read)))[0])
print('Best Y:', highscoreY)
stats = []
env = Env()
if args.play:
while True:
try:
done = False
bug = False
# stats
bestY, timestep, score, pmax = 0., 0, 0., 0.
observe = env.reset()
image, vel = observe
try:
image = transform_input(image, args.img_height, args.img_width)
except:
continue
history = np.stack([image] * args.seqsize, axis=1)
vel = vel.reshape(1, -1)
state = [history, vel]
while not done:
timestep += 1
# snapshot = np.zeros([0, args.img_width, 1])
# for snap in state[0][0]:
# snapshot = np.append(snapshot, snap, axis=0)
# snapshot *= 128
# snapshot += 128
# cv2.imshow('%s' % timestep, np.uint8(snapshot))
# cv2.waitKey(0)
action, policy = agent.get_action(state)
real_action = interpret_action(action)
observe, reward, done, info = env.step(real_action)
image, vel = observe
try:
image = transform_input(image, args.img_height, args.img_width)
except:
bug = True
break
history = np.append(history[:, 1:], [image], axis=1)
vel = vel.reshape(1, -1)
next_state = [history, vel]
# stats
pmax += float(np.amax(policy))
score += reward
if info['Y'] > bestY:
bestY = info['Y']
print('%s' % (ACTION[action]), end='\r', flush=True)
if args.verbose:
print('Step %d Action %s Reward %.2f Info %s:' % (timestep, real_action, reward, info['status']))
state = next_state
if bug:
continue
pmax /= timestep
# done
print('Ep %d: BestY %.3f Step %d Score %.2f Pmax %.2f'
% (episode, bestY, timestep, score, pmax))
episode += 1
except KeyboardInterrupt:
env.disconnect()
break
else:
# Train
time_limit = 600
highscoreY = 0.
if os.path.exists('save_stat/'+ agent_name + '_stat.csv'):
with open('save_stat/'+ agent_name + '_stat.csv', 'r') as f:
read = csv.reader(f)
episode = int(float(next(reversed(list(read)))[0]))
print('Last episode:', episode)
episode += 1
if os.path.exists('save_stat/'+ agent_name + '_highscore.csv'):
with open('save_stat/'+ agent_name + '_highscore.csv', 'r') as f:
read = csv.reader(f)
highscoreY = float(next(reversed(list(read)))[0])
print('Best Y:', highscoreY)
global_step = 0
while True:
try:
done = False
bug = False
# stats
bestY, timestep, score, pmax = 0., 0, 0., 0.
t, actor_loss, critic_loss = 0, 0., 0.
observe = env.reset()
image, vel = observe
try:
image = transform_input(image, args.img_height, args.img_width)
except:
continue
history = np.stack([image] * args.seqsize, axis=1)
vel = vel.reshape(1, -1)
state = [history, vel]
while not done and timestep < time_limit:
t += 1
timestep += 1
global_step += 1
if global_step >= args.target_rate:
agent.update_target_model()
global_step = 0
action, policy = agent.get_action(state)
real_action = interpret_action(action)
observe, reward, done, info = env.step(real_action)
image, vel = observe
try:
if timestep < 3 and info['status'] == 'landed':
raise Exception
image = transform_input(image, args.img_height, args.img_width)
except:
bug = True
break
history = np.append(history[:, 1:], [image], axis=1)
vel = vel.reshape(1, -1)
next_state = [history, vel]
agent.append_sample(state, action, reward)
# stats
score += reward
pmax += float(np.amax(policy))
if info['Y'] > bestY:
bestY = info['Y']
print('%s | %.3f | %.3f' % (ACTION[action], policy[action], policy[2]), end='\r')
if args.verbose:
print('Step %d Action %s Reward %.2f Info %s:' % (timestep, action, reward, info['status']))
if t >= args.horizon or done:
t = 0
a_loss, c_loss = agent.train_model(next_state, done)
actor_loss += float(a_loss)
critic_loss += float(c_loss)
state = next_state
if bug:
continue
# done
pmax /= timestep
actor_loss /= (timestep // args.horizon + 1)
critic_loss /= (timestep // args.horizon + 1)
if args.verbose or episode % 10 == 0:
print('Ep %d: BestY %.3f Step %d Score %.2f Pmax %.2f'
% (episode, bestY, timestep, score, pmax))
stats = [
episode, timestep, score, bestY, \
pmax, actor_loss, critic_loss, info['level'], info['status']
]
# log stats
with open('save_stat/'+ agent_name + '_stat.csv', 'a', encoding='utf-8', newline='') as f:
wr = csv.writer(f)
wr.writerow(['%.4f' % s if type(s) is float else s for s in stats])
if highscoreY < bestY:
highscoreY = bestY
with open('save_stat/'+ agent_name + '_highscore.csv', 'w', encoding='utf-8', newline='') as f:
wr = csv.writer(f)
wr.writerow('%.4f' % s if type(s) is float else s for s in [highscoreY, episode, score, dt.now().strftime('%Y-%m-%d %H:%M:%S')])
agent.save_model('./save_model/'+ agent_name + '_best')
agent.save_model('./save_model/'+ agent_name)
episode += 1
except KeyboardInterrupt:
env.disconnect()
break