This repository was archived by the owner on Jan 6, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathindex.html
73 lines (52 loc) · 3.78 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
<!DOCTYPE html>
<html>
<link rel="shortcut icon" href="favicon.ico">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
<meta name="author" content="sunprinceS" >
<meta property="og:image" content="joy.png"/>
<!--<meta property="og:image" content="http://www.themainstreetmouse.com/wp-content/uploads/2015/06/inhinh657551-613x345-150x150.jpg"/>-->
<title>Machine Learning (2017, Spring)</title>
<xmp theme="cerulean" style="display:none;">
# Assignment #3 - Image Sentiment Classification
### 重要事項宣佈
* 投影片連結 <a href="https://docs.google.com/presentation/d/1QFK4-inv2QJ9UhuiUtespP4nC5ZqfBjd_jP2O41fpTc/edit?ts=58e452ff#slide=id.p" target="_blank"><i class="fa fa-slideshare"></i></a>
* Kaggle 連結 <a href="https://inclass.kaggle.com/c/ml2017-hw3" target="_blank"><i class="fa fa-trophy"></i></a>
* Deadline: 2017/05/04 11:59 P.M. (GMT+8)
* TA會於4/20釋出範例程式碼,亦為超過 Kaggle simple baseline 的加分截止期限
* 在做 P4及P5時,請大家先看過這個關於 <a href="https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html" target="_blank">visualization 的 tutorial</a>
<hr>
In this assignment, you will practice using Deep Learning libraries to experience the power of Neural Net.
The requirements of this assignment are as follows:
## <a href="./p1.html" target="_blank">P1: Build Convolution Neural Network (1%)</a>
*[Accuracy]* Build CNN model, and tune it to the best formance as possible as you can.
Record your model structure and training procedure.
## <a href="./p2.html" target="_blank">P2: Build Deep Neural Network (1%)</a>
*[Accuracy]* Using the same number of parameters as above CNN, build a DNN model to do this task.
Record your model structure and training procedure. Explain what you observed.
## <a href="./p3.html" target="_blank">P3: Analyze the Model by Confusion Matrix (1%)</a>
*[Analysis]* Observe the prediction of your validation data( 10% ~ 20% of training data is OK ).
Plot the prediction into confusion matrix and describe what you observed.
## <a href="./p4.html" target="_blank">P4: Analyze the Model by Plotting the Saliency Map (1%)</a>
*[Analysis]* Plot the saliency map of original image to see which part is important when classifying
## <a href="./p5.html" target="_blank">P5: Analyze the Model by Visualizing Filters (1%)</a>
*[Analysis]* Use Gradient Ascent method mentioned in class to find the image that activates the selected filter the most and plot them.
## <a href="./bonus.html" target="_blank">Bonus: Semi-supervised Learning (1%)</a>
You can split part of training data and remove their label.
Then try semi-supervised learning techniques (self-training, clustering...) taught in class, and record its performance.
</xmp>
</xmp> <script src="strapdown.js"></script> </html>
<footer>
<center><a href="./index.html"><i class="fa fa-home"></i></a></center>
<center><i class="fa fa-github"></i></a> Posted by: <a href="https://github.com/sunprinceS/" target="_blank">sunprinceS</a> </center>
<center><i class="fa fa-envelope"></i> Contact information: <a href="mailto:"> [email protected] </a>.</center>
<center><i class="fa fa-mortar-board"></i> Course information: <a href="http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html", target="_blank">Machine Learning (2017, Spring) @ National Taiwan University</a>.</center>
</footer>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-59748795-2', 'auto');
ga('send', 'pageview');
</script>
</html>