forked from shubhomoydas/ad_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aad.sh
executable file
·672 lines (601 loc) · 24 KB
/
aad.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
#!/bin/bash
# To run:
# bash ./aad.sh <dataset> <budget> <reruns> <tau> <detector_type> <query_type> <query_confident[0|1]> <streaming[0|1]> <streaming_window> <retention_type[0|1]> <with_prior[0|1]> <init_type[0|1|2]>
#
# =========
# Examples:
# ---------
#
# Batch Mode Isolation Forest
# ---------------------------
# bash ./aad.sh toy2 35 1 0.03 7 1 0 0 512 0 1 1
#
# Streaming Mode Isolation Forest
# -------------------------------
# bash ./aad.sh toy2 35 1 0.03 11 1 0 1 512 0 1 1
#
# Compute angle between optimal hyperplane and uniform weight Isolation Forest
# -------------------------------
# bash ./aad.sh toy2 35 1 0.03 7 1 0 2 512 0 1 1
ARGC=$#
if [[ "$ARGC" -gt "0" ]]; then
DATASET=$1
BUDGET=$2
RERUNS=$3
TAU=$4
# ==============================
# Supported DETECTOR_TYPE:
# ------------------------------
# 7 - AAD_IFOREST
# 11 - AAD_HSTREES
# 12 - AAD_RSFOREST
# 13 - LODA
# 15 - AAD_MULTIVIEW_FOREST
# ------------------------------
DETECTOR_TYPE=$5
# ==============================
# Query types
# ------------------------------
# QUERY_DETERMINISIC = 1
# QUERY_TOP_RANDOM = 2
# QUERY_QUANTILE = 3
# QUERY_RANDOM = 4
# QUERY_SEQUENTIAL = 5
# QUERY_GP = 6 (Gaussian Process)
# QUERY_SCORE_VAR = 7 (Score Variance)
# QUERY_CUSTOM_MODULE = 8
# QUERY_EUCLIDEAN = 9
# NOTE: QUERY_CUSTOM_MODULE requires --query_module_name and --query_class_name
# to specify the correct query model class. By default:
# --query_module_name=aad.query_model_other
# --query_class_name=QueryTopDiverseSubspace
# The above two options imply that diverse query strategy will be employed
# when query_type=8 (i.e., --querytype=8).
# ------------------------------
QUERY_TYPE=$6
# ==============================
# Query Confident
# ------------------------------
# 0 - No confidence check
# 1 - Query only instances having higher score
# than tau-th score with 95% confidence
# ------------------------------
QUERY_CONFIDENT=$7
# ==============================
# Streaming Ind
# ------------------------------
# 0 - No streaming
# 1 - Streaming
# 2 - Compute angle between optimal hyperplane and
# uniform weight vector. This option is technically
# not related to 'streaming', but just a hack.
# ------------------------------
STREAMING_IND=$8
STREAM_WINDOW=$9 # 512
# ===========================================
# RETENTION_TYPE: Determines which instances
# are retained in memory when a new window
# of data arrives.
# 0 - ignore all part data and overwrite with new
# 1 - merge current unlabeled data with new window
# and then retain top-most anomalous instances.
# -------------------------------------------
RETENTION_TYPE=${10}
# =====================================================
# Following option determines whether we want to put
# a prior on weights. The type of prior is determined
# by option UNIF_PRIOR (defined later)
# WITH_PRIOR="" - Puts no prior on weights
# WITH_PRIOR="--withprior" - Adds prior to weights as
# determined by UNIF_PRIOR
# -----------------------------------------------------
WITH_PRIOR_IND=${11}
# ===========================================
# INIT_TYPE: Determines how the weight vector
# should be initialized.
# 0 - zeros
# 1 - uniform (and normalized to unit length)
# 2 - random (and normalized to unit length)
# -------------------------------------------
INIT_TYPE=${12}
fi
# =====================================================
# The option UNIF_PRIOR is applicable only when WITH_PRIOR_IND=1
# When UNIF_PRIOR_IND = 0:
# UNIF_PRIOR="" - Puts previous iteration weights as prior
# When UNIF_PRIOR_IND = 1:
# UNIF_PRIOR="--unifprior" - Adds uniform prior on weights
# -----------------------------------------------------
UNIF_PRIOR_IND=1
# =====================================================
# PRIOR_INFLUENCE
# 0 - Keep the prior influence fixed
# 1 - Lower the prior influence as the number of
# labeled instances increases
PRIOR_INFLUENCE=1
# -----------------------------------------------------
if [[ "$STREAMING_IND" == "1" ]]; then
PRIOR_INFLUENCE=0 # to protect against noise in streaming setting
fi
REPS=1 # number of independent data samples (input files)
# =====================================================
# N_EXPLORE and N_BATCH apply to:
# QUERY_DETERMINISTIC, QUERY_TOP_RANDOM, QUERY_GP,
# QUERY_SCORE_VAR, QUERY_CUSTOM_MODULE
N_EXPLORE=10 # number of unlabeled top ranked instances to explore
N_BATCH=1 # Number of queries per feedback iteration
N_BATCH_SIG=""
if [[ "${N_BATCH}" != "1" ]]; then
N_BATCH_SIG="b${N_BATCH}"
fi
# =====================================================
# QUERY_EUCLIDEAN_DIST_TYPE: Distance type to use when
# QUERY_TYPE==9.
# 0 - Selected instances in a query batch will be diversified
# by maximizing average distance to other instances in the
# same query batch.
# 1 - Selected instances in a query batch will be diversified
# by maximizing the minimum distance to other instances
# in the same query batch.
QUERY_EUCLIDEAN_DIST_TYPE=0
QUERY_SIG="q${QUERY_TYPE}${N_BATCH_SIG}"
if [[ "${QUERY_TYPE}" == "2" || "${QUERY_TYPE}" == "8" || "${QUERY_TYPE}" == "9" || "${QUERY_TYPE}" == "10" ]]; then
QUERY_SIG="q${QUERY_TYPE}n${N_EXPLORE}b${N_BATCH}"
fi
# IMPORTANT: If the detector type is LODA, the data will not be normalized
NORM_UNIT_IND=1
# =====================================================
# DO_NOT_UPDATE_WEIGHTS_IND: Whether weights will be
# updated with each feedback.
# 0 - Weights will be updated after each feedback
# 1 - Do not update weights. This mode is used to evaluate
# performance of algorithms in default mode.
# NOTE: Applies only to both batch and streaming mode.
DO_NOT_UPDATE_WEIGHTS_IND=0
if [[ "$DO_NOT_UPDATE_WEIGHTS_IND" == "1" ]]; then
DO_NOT_UPDATE_WEIGHTS_SIG="_no_upd"
DO_NOT_UPDATE_WEIGHTS="--do_not_update_weights"
else
DO_NOT_UPDATE_WEIGHTS_SIG=""
DO_NOT_UPDATE_WEIGHTS=""
fi
# ==============================
# CONSTRAINT_TYPE:
# ------------------------------
# AAD_CONSTRAINT_NONE = 0 (no constraints)
# [unsupported] AAD_CONSTRAINT_PAIRWISE = 1 (slack vars [0, Inf]; weights [-Inf, Inf])
# [unsupported] AAD_CONSTRAINT_PAIRWISE_WEIGHTS_POSITIVE_SUM_1 = 2 (slack vars [0, Inf]; weights [0, Inf])
# [unsupported] AAD_CONSTRAINT_WEIGHTS_POSITIVE_SUM_1 = 3 (no pairwise; weights [0, Inf], sum(weights)=1)
# AAD_CONSTRAINT_TAU_INSTANCE = 4 (tau-th quantile instance will be used in pairwise constraints)
CONSTRAINT_TYPE=4
if [[ "$CONSTRAINT_TYPE" == "4" ]]; then
TAU_SIG="_xtau"
else
TAU_SIG=""
fi
CA=1 #100
CX=1
#CX=0.001
MAX_BUDGET=10000
TOPK=0
# The below two limits will be changed later.
# See further below for detector-specific settings.
MAX_ANOMALIES_CONSTRAINT=1000 # 50
MAX_NOMINALS_CONSTRAINT=1000 # 50
# LODA specific min/max number of projections
# Since we will be labeling many instances, we will need to increase
# the capacity of the model. Therefore, we make MIN_K high for LODA.
MIN_K=300
MAX_K=500
N_SAMPLES=256
N_JOBS=4 # Number of parallel threads
# ==============================
# FOREST_SCORE_TYPE:
# 0 - IFOR_SCORE_TYPE_INV_PATH_LEN
# 1 - IFOR_SCORE_TYPE_INV_PATH_LEN_EXP
# 3 - IFOR_SCORE_TYPE_CONST
# 4 - IFOR_SCORE_TYPE_NEG_PATH_LEN
# 5 - HST_LOG_SCORE_TYPE
# 6 - HST_SCORE_TYPE
# 7 - RSF_LOG_SCORE_TYPE
# 8 - RSF_SCORE_TYPE
# 9 - ORIG_TREE_SCORE_TYPE
# ------------------------------
INFERENCE_NAME="undefined"
FEATURE_PARTITIONS=
FOREST_SCORE_TYPE=3
N_TREES=100
MAX_DEPTH=100 # 9 #15 # 10
FOREST_LEAF_ONLY=1
if [[ "$DETECTOR_TYPE" == "7" ]]; then
INFERENCE_NAME="if_aad"
MAX_DEPTH=100
elif [[ "$DETECTOR_TYPE" == "11" ]]; then
INFERENCE_NAME="hstrees"
NORM_UNIT_IND=0 # DO NOT normalize for HSTrees
FOREST_SCORE_TYPE=5 # 5-HSTrees Log Score # 6-HSTrees Score # 9-Original
N_TREES=50 # 25 # 50 # 30 # 100
MAX_DEPTH=8 # 10 # 15 # 9
FOREST_LEAF_ONLY=1 # Allow only leaf nodes for HS Trees at this time...
CA=1
# HS Trees are usually deep. Therefore the computation is more expensive.
# We set the max labeled nominal/anomalies to a reasonable number.
MAX_ANOMALIES_CONSTRAINT=50
MAX_NOMINALS_CONSTRAINT=50
if [[ "$FOREST_SCORE_TYPE" == "9" ]]; then
# These are settings in original published literature
N_TREES=25
MAX_DEPTH=15
fi
elif [[ "$DETECTOR_TYPE" == "12" ]]; then
INFERENCE_NAME="rsforest"
NORM_UNIT_IND=0 # DO NOT normalize for RSForest
FOREST_SCORE_TYPE=7 # 7-RSForest Log Score # 8-RSForest Score # 9-Original
N_TREES=50 # 30
MAX_DEPTH=8 # 15
FOREST_LEAF_ONLY=1 # Allow only leaf nodes for RS Forest at this time...
CA=1
# RS Forest are usually deep. Therefore the computation is more expensive.
# We set the max labeled nominal/anomalies to a reasonable number.
MAX_ANOMALIES_CONSTRAINT=50
MAX_NOMINALS_CONSTRAINT=50
if [[ "$FOREST_SCORE_TYPE" == "9" ]]; then
# These are settings in original published literature
N_TREES=30
MAX_DEPTH=15
fi
elif [[ "$DETECTOR_TYPE" == "13" ]]; then
INFERENCE_NAME="loda_k${MIN_K}t${MAX_K}"
NORM_UNIT_IND=0 # DO NOT normalize for LODA
PRIOR_INFLUENCE=0 # fixed prior for compatibility with earlier results
# For compatibility with earlier published results
CA=100
CX=0.001
# Keep the below limits at reasonable values so that
# execution can be speeded up with minimal difference
# in accuracy from published results. Note: Published
# results took max 100 feedback.
MAX_ANOMALIES_CONSTRAINT=100
MAX_NOMINALS_CONSTRAINT=100
elif [[ "$DETECTOR_TYPE" == "15" ]]; then
INFERENCE_NAME="multiview"
MAX_DEPTH=100
FEATURE_PARTITIONS="--feature_partitions=120,100"
fi
if [[ "$DETECTOR_TYPE" == "7" || "$DETECTOR_TYPE" == "11" || "$DETECTOR_TYPE" == "12" || "$DETECTOR_TYPE" == "15" ]]; then
if [[ "$FOREST_LEAF_ONLY" == "1" ]]; then
FOREST_LEAF_ONLY="--forest_add_leaf_nodes_only"
FOREST_LEAF_ONLY_SIG="_leaf"
if [[ "$DETECTOR_TYPE" == "7" ]]; then
# IFOR_SCORE_TYPE_NEG_PATH_LEN supported only for isolation forest leaf-only
FOREST_SCORE_TYPE=4
elif [[ "$DETECTOR_TYPE" == "12" && "$FOREST_SCORE_TYPE" != 9 ]]; then
# NOTE: scoretype 7 is geometric mean. scoretype 6 is arithmetic mean.
# When used with AAD where gradients are required for optimization with
# SGD, then using geometric means might help because we can work with
# logarithmic leaf scores.
FOREST_SCORE_TYPE=7 #7 #8
elif [[ "$DETECTOR_TYPE" == "15" ]]; then
# 3 - IFOR_SCORE_TYPE_CONST
# 4 - IFOR_SCORE_TYPE_NEG_PATH_LEN (isolation forest leaf-only)
FOREST_SCORE_TYPE=4
fi
else
FOREST_LEAF_ONLY=""
FOREST_LEAF_ONLY_SIG=""
fi
else
FOREST_LEAF_ONLY=""
FOREST_LEAF_ONLY_SIG=""
fi
if [[ "$NORM_UNIT_IND" == "1" ]]; then
NORM_UNIT_SIG="_norm"
NORM_UNIT="--norm_unit"
else
NORM_UNIT_SIG=""
NORM_UNIT=""
fi
RAND_SEED=42
OPERATION="aad"
# =========================================
# Input CSV file properties.
# the startcol and labelindex are 1-indexed
# -----------------------------------------
STARTCOL=2
LABELINDEX=1
# SIGMA2 determines the weight on prior.
SIGMA2=0.5
# ===================================================
# TAU_SCORE_TYPE: Determines whether the
# tau-th score should be computed after
# each feedback or whether it should be
# estimated once using the unlabeled training
# data at the start and then kept fixed. From
# the analysis point of view, this might have
# some implications which are yet open for
# research.
# 0 - Do not use the tau-th score in the hinge loss
# 1 - Determine the tau-th score after each feedback
# 2 - Estimate tau-th score once and keep fixed.
# ---------------------------------------------------
TAU_SCORE_TYPE=1
PRIOR_INFLUENCE_SIG=
if [[ "$PRIOR_INFLUENCE" == "1" ]]; then
PRIOR_INFLUENCE_SIG="_adapt"
fi
if [[ "$WITH_PRIOR_IND" == "1" ]]; then
WITH_PRIOR="--withprior"
WITH_PRIOR_SIG="_s${SIGMA2}${PRIOR_INFLUENCE_SIG}"
else
WITH_PRIOR=""
WITH_PRIOR_SIG="_noprior"
fi
if [[ "$UNIF_PRIOR_IND" == "1" ]]; then
UNIF_PRIOR="--unifprior"
else
UNIF_PRIOR=""
fi
if [[ "$TAU_SCORE_TYPE" == "0" ]]; then
FIXED_TAU_SCORE_SIG="_notau"
elif [[ "$TAU_SCORE_TYPE" == "2" ]]; then
FIXED_TAU_SCORE_SIG="_fixedtau"
else
# $TAU_SCORE_TYPE" == "1"
FIXED_TAU_SCORE_SIG=""
fi
MIN_FEEDBACK_PER_WINDOW=2
MAX_FEEDBACK_PER_WINDOW=20
MAX_WINDOWS=30
TILL_BUDGET_IND=1
ALLOW_STREAM_UPDATE_IND=1
RULES_IND=0
RULE_OUTPUT_INTERVAL="--rule_output_interval=20"
if [[ "$RULES_IND" == "1" ]]; then
OPERATION="aad_rules"
COMPACT_RULES="--compact_rules"
BAYESIAN_RULES="--bayesian_rules"
else
COMPACT_RULES=""
BAYESIAN_RULES=""
fi
# =====================================================
# TREE_UPDATE_TYPE_VAL - applies only to HS Trees and RD Forest
# 0 - Replace the old sample node counts with new
# 1 - Replace old sample counts with the average of the old
# sample counts and new sample counts.
TREE_UPDATE_TYPE_VAL=0
TREE_UPDATE_TYPE_SIG=""
TREE_UPDATE_TYPE="--tree_update_type=${TREE_UPDATE_TYPE_VAL}"
if [[ "$DETECTOR_TYPE" == "11" || "$DETECTOR_TYPE" == "12" ]]; then
if [[ "$TREE_UPDATE_TYPE_VAL" == "1" ]]; then
TREE_UPDATE_TYPE_SIG="_incr"
fi
fi
# =====================================================
# RESTRICT_LABELED_SET - Applies only to stream setting
# 0 - Use all labeled instances for minimizing AAD loss
# and enforcing constraints. The problem with this
# setting is that the proportion of labeled instances
# will grow relative to the fixed-sized stream window
# and eventually, optimization will become extremely
# biased towards historical [labeled] data.
# 1 - Use a random subset of labeled instances while
# minimizing AAD loss and enforcing constraints.
# The size of the random subset is determined by the options:
# --labeled_to_window_ratio : Ratio of labeled instances
# to stream window size, and
# --max_labeled_for_stream : The upper bound on the
# subset size irrespective of labeled_to_window_ratio
# See also: MAX_LABELED_FOR_STREAM, LABELED_TO_WINDOW_RATIO
RESTRICT_LABELED_SET=0
LABELED_TO_WINDOW_RATIO=""
MAX_LABELED_FOR_STREAM=""
if [[ "$RESTRICT_LABELED_SET" == "1" ]]; then
LABELED_TO_WINDOW_RATIO="--labeled_to_window_ratio=0.2"
MAX_LABELED_FOR_STREAM="--max_labeled_for_stream=100"
fi
# ===================================================
# N_WEIGHT_UPDATES_AFTER_STREAM: The number of times
# the weights will be updated *without* feedback
# immediately after the model is updated due to a new
# window of data. This is helpful when (say) many trees
# are dropped we need to run multiple iterations of learning
# ensemble weights as well as estimating the tau-quantile
# score. This option applies to streaming setting only.
N_WEIGHT_UPDATES_AFTER_STREAM=10 # 5
# ---------------------------------------------------
# ===================================================
# FOREST_REPLACE_FRAC: The fraction of trees which will
# be replaced (*for forests which support this update*)
# in a streaming setting.
# This option applies only when ALLOW_STREAM_UPDATE_IND=1
# and currently only Isolation Forest supports this.
FOREST_REPLACE_FRAC=0.2
# FOREST_REPLACE_FRAC=1.0
# FOREST_REPLACE_FRAC=0.8
# ---------------------------------------------------
if [[ "$TILL_BUDGET_IND" == "1" ]]; then
TILL_BUDGET="--till_budget"
TILL_BUDGET_SIG="_tillbudget"
else
TILL_BUDGET=
TILL_BUDGET_SIG=
fi
if [[ "$QUERY_CONFIDENT" == "1" ]]; then
QUERY_CONFIDENT="--query_confident"
QUERY_CONFIDENT_SIG="_conf"
MAX_WINDOWS=30
else
QUERY_CONFIDENT=
QUERY_CONFIDENT_SIG=
fi
ALLOW_STREAM_UPDATE=
ALLOW_STREAM_UPDATE_SIG=
if [[ "$ALLOW_STREAM_UPDATE_IND" == "1" ]]; then
ALLOW_STREAM_UPDATE="--allow_stream_update"
ALLOW_STREAM_UPDATE_SIG="asu"
fi
# ==============================
# CHECK_KL: Whether to check KL-divergence before updating model
# in streaming mode. If true, then trees which exceed a threshold
# based on ${KL_ALPHA} will be discarded and replaced with new ones.
# NOTE: Applies only to streaming mode for forest-based algorithms
# when --allow_stream_update flag is set.
# ------------------------------
CHECK_KL_IND=1
CHECK_KL_SIG=""
CHECK_KL=""
KL_ALPHA=0.05
if [[ "$CHECK_KL_IND" == "1" ]]; then
CHECK_KL_SIG="_KL${KL_ALPHA}"
CHECK_KL="--check_KL_divergence"
fi
# ==============================
# PRETRAIN_IND:
# 0: Treats the first window of data in streaming setup as fully *unlabeled*.
# 1: Treats the first window of data in streaming setup as fully *labeled*.
# N_PRETRAIN: Number of times to run weight update on the first (labeled)
# window of data if pretrain is enabled. Applies to streaming setup
# with pretrain only.
# N_PRETRAIN_NOMINALS: Number of initial labeled nominal instances to retain
# after pretraining when pretrain is enabled. We should avoid including too
# many nominals since it would result in class imbalance. Internally, if
# N_PRETRAIN_NOMINALS > 0, then the algorithm will retain N_PRETRAIN_NOMINALS
# number of nominal instances which are most distinct from the *initial* labeled
# anomalies from the initial labeled set.
# NOTE: Applies only to streaming mode for forest-based algorithms.
# ------------------------------
PRETRAIN_IND=0
N_PRETRAIN=50
N_PRETRAIN_NOMINALS=10
PRETRAIN_SIG=""
PRETRAIN=""
if [[ "$PRETRAIN_IND" == "1" ]]; then
PRETRAIN_SIG="_p${N_PRETRAIN}"
if [[ "$N_PRETRAIN_NOMINALS" -gt "0" ]]; then
PRETRAIN_SIG="${PRETRAIN_SIG}n${N_PRETRAIN_NOMINALS}"
fi
PRETRAIN="--pretrain"
fi
DATASET_FOLDER=ad_examples/datasets
#if [[ "$DATASET" == "covtype" || "$DATASET" == "kddcup" ]]; then
if [[ "$DATASET" == "covtype" ]]; then
DATASET_FOLDER=datasets #${STREAMING_SIG}
MAX_WINDOWS=1000
fi
if [[ "$STREAMING_IND" == "1" ]]; then
STREAMING="--streaming"
STREAMING_SIG="_stream"
STREAMING_FLAGS="${STREAM_WINDOW}${ALLOW_STREAM_UPDATE_SIG}${CHECK_KL_SIG}${PRETRAIN_SIG}_mw${MAX_WINDOWS}f${MIN_FEEDBACK_PER_WINDOW}_${MAX_FEEDBACK_PER_WINDOW}_ret${RETENTION_TYPE}${TILL_BUDGET_SIG}"
if [[ "${DETECTOR_TYPE}" == "7" && "${ALLOW_STREAM_UPDATE_IND}" == "1" && "${FOREST_REPLACE_FRAC}" != "0.2" && "$CHECK_KL_IND" != "1" ]]; then
STREAMING_FLAGS="${STREAMING_FLAGS}_f${FOREST_REPLACE_FRAC}"
fi
if [[ "${N_WEIGHT_UPDATES_AFTER_STREAM}" != "0" ]]; then
STREAMING_FLAGS="${STREAMING_FLAGS}_u${N_WEIGHT_UPDATES_AFTER_STREAM}"
fi
PYSCRIPT=aad_stream.py
PYMODULE=ad_examples.aad.aad_stream
elif [[ "$STREAMING_IND" == "0" ]]; then
STREAMING=""
STREAMING_SIG=
STREAMING_FLAGS=
PYSCRIPT=aad_batch.py
PYMODULE=ad_examples.aad.aad_batch
elif [[ "$STREAMING_IND" == "2" ]]; then
OPERATION="angles"
STREAMING=""
STREAMING_SIG=""
STREAMING_FLAGS="_angle"
PYSCRIPT=test_hyperplane_angles.py
PYMODULE=ad_examples.aad.test_hyperplane_angles
elif [[ "$STREAMING_IND" == "3" ]]; then
STREAMING=""
STREAMING_SIG=""
STREAMING_FLAGS=
PYSCRIPT=analyze_rules.py
PYMODULE=ad_examples.aad.analyze_rules
fi
# ===================================================================
# --runtype=[simple|multi]:
# Whether the there are multiple sub-samples for the input dataset
# -------------------------------------------------------------------
#RUN_TYPE=simple
RUN_TYPE=multi
NAME_PREFIX="undefined"
if [[ "$DETECTOR_TYPE" == "7" || "$DETECTOR_TYPE" == "11" || "$DETECTOR_TYPE" == "12" || "$DETECTOR_TYPE" == "15" ]]; then
NAME_PREFIX="${INFERENCE_NAME}${TREE_UPDATE_TYPE_SIG}_trees${N_TREES}_samples${N_SAMPLES}_i${DETECTOR_TYPE}_${QUERY_SIG}${QUERY_CONFIDENT_SIG}_bd${BUDGET}_nscore${FOREST_SCORE_TYPE}${FOREST_LEAF_ONLY_SIG}_tau${TAU}${TAU_SIG}${WITH_PRIOR_SIG}_init${INIT_TYPE}_ca${CA}_cx${CX}_ma${MAX_ANOMALIES_CONSTRAINT}_mn${MAX_NOMINALS_CONSTRAINT}_d${MAX_DEPTH}${STREAMING_SIG}${STREAMING_FLAGS}${DO_NOT_UPDATE_WEIGHTS_SIG}${NORM_UNIT_SIG}${FIXED_TAU_SCORE_SIG}"
elif [[ "$DETECTOR_TYPE" == "9" ]]; then
NAME_PREFIX="${INFERENCE_NAME}_trees${N_TREES}_samples${N_SAMPLES}"
elif [[ "$DETECTOR_TYPE" == "13" ]]; then
NAME_PREFIX="${INFERENCE_NAME}_i${DETECTOR_TYPE}_${QUERY_SIG}${QUERY_CONFIDENT_SIG}_bd${BUDGET}_tau${TAU}${TAU_SIG}${WITH_PRIOR_SIG}_init${INIT_TYPE}_ca${CA}_cx${CX}_ma${MAX_ANOMALIES_CONSTRAINT}_mn${MAX_NOMINALS_CONSTRAINT}${STREAMING_SIG}${STREAMING_FLAGS}${DO_NOT_UPDATE_WEIGHTS_SIG}${NORM_UNIT_SIG}"
fi
SCRIPT_PATH=./aad/${PYSCRIPT}
BASE_DIR=
if [ -d "/Users/moy" ]; then
# personal laptop
BASE_DIR=${DATASET_FOLDER}
LOG_PATH=./temp/${OPERATION}
PYTHON_CMD="python -m"
RESULTS_PATH="temp/${OPERATION}/$DATASET/${NAME_PREFIX}"
SCRIPT_PATH=${PYMODULE}
elif [ -d "/home/sdas/codebase/bb_python/ad_examples" ]; then
# cluster environment
BASE_DIR=/data/doppa/users/sdas/${DATASET_FOLDER}
LOG_PATH=/data/doppa/users/sdas/temp/${OPERATION}${STREAMING_SIG}
PYTHON_CMD="python -m"
RESULTS_PATH="${BASE_DIR}/results-${OPERATION}${STREAMING_SIG}/$DATASET/${NAME_PREFIX}"
source /home/sdas/py_venv/bin/activate
export PYTHONPATH=$PYTHONPATH:/home/sdas/codebase/bb_python/ad_examples/python
SCRIPT_PATH=${PYMODULE}
else
# default setting...
echo "Using default file paths..."
BASE_DIR=${DATASET_FOLDER}
LOG_PATH=./temp/${OPERATION}
PYTHON_CMD="python -m"
RESULTS_PATH="temp/${OPERATION}/$DATASET/${NAME_PREFIX}"
SCRIPT_PATH=${PYMODULE}
fi
DATASET_DIR="${BASE_DIR}/anomaly/$DATASET"
LOG_FILE=$LOG_PATH/${NAME_PREFIX}_${DATASET}.log
echo ${LOG_FILE}
ORIG_FEATURES_PATH=${DATASET_DIR}/fullsamples
DATA_FILE=${ORIG_FEATURES_PATH}/${DATASET}_1.csv
mkdir -p "${LOG_PATH}"
mkdir -p "${RESULTS_PATH}"
MODEL_FILE=${LOG_PATH}/${NAME_PREFIX}.mdl
LOAD_MODEL= # "--load_model"
SAVE_MODEL= # "--save_model"
PLOT2D=
PLOT2D="--plot2D"
${PYTHON_CMD} ${SCRIPT_PATH} --startcol=$STARTCOL --labelindex=$LABELINDEX --header \
--filedir=$ORIG_FEATURES_PATH --datafile=$DATA_FILE \
--resultsdir=$RESULTS_PATH \
--randseed=$RAND_SEED --dataset=$DATASET --querytype=$QUERY_TYPE \
--detector_type=$DETECTOR_TYPE --constrainttype=$CONSTRAINT_TYPE \
--sigma2=$SIGMA2 --runtype=$RUN_TYPE --reps=$REPS --reruns=$RERUNS \
--budget=$BUDGET --maxbudget=$MAX_BUDGET --topK=$TOPK --init=${INIT_TYPE} \
--tau=$TAU --forest_n_trees=$N_TREES --forest_n_samples=$N_SAMPLES \
--forest_score_type=${FOREST_SCORE_TYPE} ${FOREST_LEAF_ONLY} \
--forest_max_depth=${MAX_DEPTH} --tau_score_type=${TAU_SCORE_TYPE} \
--Ca=$CA --Cn=1 --Cx=$CX $WITH_PRIOR $UNIF_PRIOR $NORM_UNIT \
--mink=${MIN_K} --maxk=${MAX_K} --prior_influence=${PRIOR_INFLUENCE} \
--max_anomalies_in_constraint_set=$MAX_ANOMALIES_CONSTRAINT \
--max_nominals_in_constraint_set=$MAX_NOMINALS_CONSTRAINT \
--n_explore=${N_EXPLORE} --num_query_batch=${N_BATCH} \
--log_file=$LOG_FILE --cachedir=$MODEL_PATH \
--modelfile=${MODEL_FILE} ${LOAD_MODEL} ${SAVE_MODEL} \
${DO_NOT_UPDATE_WEIGHTS} ${TREE_UPDATE_TYPE} \
${MAX_LABELED_FOR_STREAM} ${LABELED_TO_WINDOW_RATIO} \
${QUERY_CONFIDENT} --max_windows=${MAX_WINDOWS} \
--query_euclidean_dist_type=${QUERY_EUCLIDEAN_DIST_TYPE} \
--min_feedback_per_window=${MIN_FEEDBACK_PER_WINDOW} \
--max_feedback_per_window=${MAX_FEEDBACK_PER_WINDOW} \
${STREAMING} ${ALLOW_STREAM_UPDATE} --stream_window=${STREAM_WINDOW} \
--retention_type=${RETENTION_TYPE} ${TILL_BUDGET} \
--forest_replace_frac=${FOREST_REPLACE_FRAC} ${FEATURE_PARTITIONS} \
${CHECK_KL} --kl_alpha=${KL_ALPHA} \
${PRETRAIN} --n_pretrain=${N_PRETRAIN} --n_pretrain_nominals=${N_PRETRAIN_NOMINALS} \
--n_weight_updates_after_stream_window=${N_WEIGHT_UPDATES_AFTER_STREAM} \
${COMPACT_RULES} ${BAYESIAN_RULES} ${RULE_OUTPUT_INTERVAL} \
${PLOT2D} --debug