|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 37, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from nltk.tokenize import RegexpTokenizer\n", |
| 10 | + "from stop_words import get_stop_words\n", |
| 11 | + "from nltk.stem.porter import PorterStemmer\n", |
| 12 | + "from gensim import corpora, models\n", |
| 13 | + "import gensim" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 44, |
| 19 | + "metadata": { |
| 20 | + "collapsed": true |
| 21 | + }, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "tokenizer = RegexpTokenizer(r'\\w+')\n", |
| 25 | + "\n", |
| 26 | + "# create English stop words list\n", |
| 27 | + "en_stop = get_stop_words('en')\n", |
| 28 | + "\n", |
| 29 | + "# Create p_stemmer of class PorterStemmer\n", |
| 30 | + "p_stemmer = PorterStemmer()\n", |
| 31 | + " \n", |
| 32 | + "# create sample documents\n", |
| 33 | + "doc_a = \"Brocolli is good to eat. My brother likes to eat good brocolli, but not my mother.\"\n", |
| 34 | + "doc_b = \"My mother spends a lot of time driving my brother around to baseball practice.\"\n", |
| 35 | + "doc_c = \"Some health experts suggest that driving may cause increased tension and blood pressure.\"\n", |
| 36 | + "doc_d = \"I often feel pressure to perform well at school, but my mother never seems to drive my brother to do better.\"\n", |
| 37 | + "doc_e = \"Health professionals say that brocolli is good for your health.\" \n", |
| 38 | + "\n", |
| 39 | + "# compile sample documents into a list\n", |
| 40 | + "doc_set = [doc_a, doc_b, doc_c, doc_d, doc_e]\n", |
| 41 | + "\n", |
| 42 | + "# list for tokenized documents in loop\n", |
| 43 | + "texts = []\n", |
| 44 | + "\n", |
| 45 | + "# loop through document list\n", |
| 46 | + "for i in doc_set:\n", |
| 47 | + " \n", |
| 48 | + " # clean and tokenize document string\n", |
| 49 | + " raw = i.lower()\n", |
| 50 | + " tokens = tokenizer.tokenize(raw)\n", |
| 51 | + "\n", |
| 52 | + " # remove stop words from tokens\n", |
| 53 | + " stopped_tokens = [i for i in tokens if not i in en_stop]\n", |
| 54 | + " \n", |
| 55 | + " # stem tokens\n", |
| 56 | + " stemmed_tokens = [p_stemmer.stem(i) for i in stopped_tokens]\n", |
| 57 | + " \n", |
| 58 | + " # add tokens to list\n", |
| 59 | + " texts.append(stemmed_tokens)\n", |
| 60 | + "\n", |
| 61 | + "# turn our tokenized documents into a id <-> term dictionary\n", |
| 62 | + "dictionary = corpora.Dictionary(texts)\n", |
| 63 | + " \n", |
| 64 | + "# convert tokenized documents into a document-term matrix\n", |
| 65 | + "corpus = [dictionary.doc2bow(text) for text in texts]\n", |
| 66 | + "\n", |
| 67 | + "# generate LDA model\n", |
| 68 | + "ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=2, id2word = dictionary, passes=20)" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": 45, |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [ |
| 76 | + { |
| 77 | + "name": "stdout", |
| 78 | + "output_type": "stream", |
| 79 | + "text": [ |
| 80 | + "[(0, '0.072*\"drive\" + 0.043*\"health\" + 0.043*\"pressur\" + 0.043*\"caus\"'), (1, '0.081*\"brocolli\" + 0.081*\"good\" + 0.059*\"brother\" + 0.059*\"mother\"')]\n" |
| 81 | + ] |
| 82 | + } |
| 83 | + ], |
| 84 | + "source": [ |
| 85 | + "print(ldamodel.print_topics(num_topics=2, num_words=4))" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "code", |
| 90 | + "execution_count": 47, |
| 91 | + "metadata": {}, |
| 92 | + "outputs": [ |
| 93 | + { |
| 94 | + "name": "stdout", |
| 95 | + "output_type": "stream", |
| 96 | + "text": [ |
| 97 | + "[(0, '0.072*\"drive\" + 0.043*\"health\" + 0.043*\"pressur\"'), (1, '0.081*\"brocolli\" + 0.081*\"good\" + 0.059*\"brother\"')]\n" |
| 98 | + ] |
| 99 | + } |
| 100 | + ], |
| 101 | + "source": [ |
| 102 | + "print(ldamodel.print_topics(num_topics=3, num_words=3))" |
| 103 | + ] |
| 104 | + } |
| 105 | + ], |
| 106 | + "metadata": { |
| 107 | + "kernelspec": { |
| 108 | + "display_name": "Python 3", |
| 109 | + "language": "python", |
| 110 | + "name": "python3" |
| 111 | + }, |
| 112 | + "language_info": { |
| 113 | + "codemirror_mode": { |
| 114 | + "name": "ipython", |
| 115 | + "version": 3 |
| 116 | + }, |
| 117 | + "file_extension": ".py", |
| 118 | + "mimetype": "text/x-python", |
| 119 | + "name": "python", |
| 120 | + "nbconvert_exporter": "python", |
| 121 | + "pygments_lexer": "ipython3", |
| 122 | + "version": "3.6.1" |
| 123 | + } |
| 124 | + }, |
| 125 | + "nbformat": 4, |
| 126 | + "nbformat_minor": 2 |
| 127 | +} |
0 commit comments