1
-
2
1
[ // ] : # ( Image References )
3
- [ real0000 ] : ./examples/real0000.png
2
+ [ i3738 ] : ./examples/frame_003738.jpg
3
+ [ aloss ] : ./examples/TotLoss.png
4
+
5
+ # Traffic Light Detection
6
+
7
+ Implemented with TensorFlow Object Detection API.
8
+
9
+ Tested on LaRA dataset.
10
+
11
+ Model inference example:
12
+
13
+ ![ alt-text] [ i3738 ]
14
+
15
+ Check out the rendered video in
16
+ [ Youtube] ( https://youtu.be/BcPy9m__bY4 ) or
17
+ [ BaiduPan] ( https://pan.baidu.com/s/1slwWdBJ )
18
+
19
+
20
+ ## LaRA Traffic Lights Recognition (TLR) Public Benchmarks
21
+
22
+ On-board vehicle acquisition in a dense urban environment:
4
23
5
- # Traffic Light Detection and Classification with TensorFlow Object Detection API
24
+ - 11179 frames (8min 49sec, @25FPS )
25
+ - 640×480 (RGB, 8bits)
26
+ - Paris (France)
6
27
7
- The project is forked from https://github.com/coldKnight/TrafficLight_Detection-TensorFlowAPI.git
28
+ Links:
8
29
9
- A brief introduction to the project is available [ here ] ( https ://medium.com/@Vatsal410/traffic-light-detection-tensorflow-api-c75fdbadac62 )
30
+ - Download [ Dataset download link ] ( http ://s150102174.onlinehome.fr/Lara/files/Lara_UrbanSeq1_JPG.zip )
10
31
32
+ - Download [ Ground truth labels] ( http://s150102174.onlinehome.fr/Lara/files/Lara_UrbanSeq1_GroundTruth_GT.txt )
11
33
12
- ### Get the dataset
34
+ - [ A detailed dataset description ] ( http://www.lara.prd.fr/benchmarks/trafficlightsrecognition )
13
35
14
- [ Drive location] ( https://drive.google.com/file/d/0B-Eiyn-CUQtxdUZWMkFfQzdObUE/view?usp=sharing )
36
+ To make TFRecord files for Tensorflow tranning, read [ this] ( lara/README.md )
37
+
38
+
39
+ ## Performance
40
+
41
+ Here records an informal test performance on 592 unseen images:
42
+
43
+ - Model = SSD MobileNet, pre-trained on COCO
44
+ - Infer time per image = 9 ms
45
+ - Green light
[email protected] = 0.385
46
+ - Red light
[email protected] = 0.725
47
+ - Yellow light
[email protected] = 0.385
48
+ - Precision
[email protected] = 0.620
49
+
50
+ * Running on Tesla P40 GPU*
51
+
52
+ Training total loss:
53
+
54
+ ![ alt-text] [ aloss ]
15
55
16
56
17
57
### Get the tensorflow models lib
@@ -32,9 +72,8 @@ Download the required model tar.gz files and untar them into `models/` directory
32
72
33
73
` python data_conversion.py --input_yaml lara/annotations_test.yaml --output_path lara/test.record `
34
74
35
- ## Using Faster-RCNN / Inception SSD v2 / MobileNet SSD v1 model
36
75
37
- #### Training, Evaluating, and Tensorboarding
76
+ ### Training, Evaluating, and Tensorboarding
38
77
39
78
` sh train.sh <faster_rcnn | ssd_inception | ssd_mobilenet> `
40
79
@@ -44,13 +83,14 @@ Download the required model tar.gz files and untar them into `models/` directory
44
83
45
84
* note you'd better not run train & evaluate together because they will use up GPU memory*
46
85
47
- #### Saving Weights for Inference
86
+
87
+ ### Saving Weights for Inference
48
88
49
89
` sh freeze.sh <faster_rcnn | ssd_inception | ssd_mobilenet> <model checkpoint version num> `
50
- ---
51
90
52
91
53
- ** Inference results can be viewed using the TrafficLightDetection-Inference.ipynb or .html files.**
92
+ ### Infer Results, Visualize, and Make Video
93
+ using the ` TrafficLightDetection-Inference.ipynb `
94
+
54
95
55
- ### Camera Image and Model's Detection Sample
56
- ![ alt-text] [ real0000 ]
96
+ ###
0 commit comments