diff --git a/src/api.py b/src/api.py index 36c257a..04e85b5 100644 --- a/src/api.py +++ b/src/api.py @@ -1,22 +1,23 @@ -from fastapi import FastAPI, UploadFile, File -from PIL import Image import torch +from fastapi import FastAPI, File, UploadFile +from PIL import Image from torchvision import transforms + from main import Net # Importing Net class from main.py # Load the model model = Net() -model.load_state_dict(torch.load("mnist_model.pth")) +model.load_state_dict(torch.load("mnist_cnn_model.pth")) model.eval() # Transform used for preprocessing the image -transform = transforms.Compose([ - transforms.ToTensor(), - transforms.Normalize((0.5,), (0.5,)) -]) +transform = transforms.Compose( + [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))] +) app = FastAPI() + @app.post("/predict/") async def predict(file: UploadFile = File(...)): image = Image.open(file.file).convert("L") diff --git a/src/cnn.py b/src/cnn.py new file mode 100644 index 0000000..797b013 --- /dev/null +++ b/src/cnn.py @@ -0,0 +1,60 @@ +import torch +import torch.nn as nn +import torch.optim as optim +from torch.utils.data import DataLoader +from torchvision import datasets, transforms + + +class CNN(nn.Module): + def __init__(self): + super(CNN, self).__init__() + self.conv1 = nn.Conv2d(1, 32, kernel_size=5) + self.conv2 = nn.Conv2d(32, 64, kernel_size=5) + self.fc1 = nn.Linear(4 * 4 * 64, 1024) + self.fc2 = nn.Linear(1024, 10) + + def forward(self, x): + x = nn.functional.relu(self.conv1(x)) + x = nn.functional.max_pool2d(x, 2) + x = nn.functional.relu(self.conv2(x)) + x = nn.functional.max_pool2d(x, 2) + x = x.view(-1, 4 * 4 * 64) + x = nn.functional.relu(self.fc1(x)) + x = self.fc2(x) + return nn.functional.log_softmax(x, dim=1) + + +def load_data(): + transform = transforms.Compose( + [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))] + ) + + trainset = datasets.MNIST(".", download=True, train=True, transform=transform) + trainloader = DataLoader(trainset, batch_size=64, shuffle=True) + return trainloader + + +def train(model, trainloader): + optimizer = optim.SGD(model.parameters(), lr=0.01) + criterion = nn.NLLLoss() + + epochs = 3 + for _epoch in range(epochs): + for images, labels in trainloader: + optimizer.zero_grad() + output = model(images) + loss = criterion(output, labels) + loss.backward() + optimizer.step() + + torch.save(model.state_dict(), "mnist_cnn_model.pth") + + +def main(): + model = CNN() + trainloader = load_data() + train(model, trainloader) + + +if __name__ == "__main__": + main() diff --git a/src/main.py b/src/main.py index 243a31e..01becec 100644 --- a/src/main.py +++ b/src/main.py @@ -1,48 +1,34 @@ -from PIL import Image import torch import torch.nn as nn import torch.optim as optim -from torchvision import datasets, transforms from torch.utils.data import DataLoader -import numpy as np +from torchvision import datasets, transforms + +from cnn import CNN +from train import train + + epochs = 3 + for _epoch in range(epochs): + for images, labels in trainloader: + optimizer.zero_grad() + output = model(images) + loss = criterion(output, labels) + loss.backward() + optimizer.step() + return model + # Step 1: Load MNIST Data and Preprocess -transform = transforms.Compose([ - transforms.ToTensor(), - transforms.Normalize((0.5,), (0.5,)) -]) +transform = transforms.Compose( + [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))] +) -trainset = datasets.MNIST('.', download=True, train=True, transform=transform) +trainset = datasets.MNIST(".", download=True, train=True, transform=transform) trainloader = DataLoader(trainset, batch_size=64, shuffle=True) # Step 2: Define the PyTorch Model -class Net(nn.Module): - def __init__(self): - super().__init__() - self.fc1 = nn.Linear(28 * 28, 128) - self.fc2 = nn.Linear(128, 64) - self.fc3 = nn.Linear(64, 10) - - def forward(self, x): - x = x.view(-1, 28 * 28) - x = nn.functional.relu(self.fc1(x)) - x = nn.functional.relu(self.fc2(x)) - x = self.fc3(x) - return nn.functional.log_softmax(x, dim=1) +model = CNN() # Step 3: Train the Model -model = Net() -optimizer = optim.SGD(model.parameters(), lr=0.01) -criterion = nn.NLLLoss() - -# Training loop -epochs = 3 -for epoch in range(epochs): - for images, labels in trainloader: - optimizer.zero_grad() - output = model(images) - loss = criterion(output, labels) - loss.backward() - optimizer.step() - -torch.save(model.state_dict(), "mnist_model.pth") \ No newline at end of file +train(model, trainloader) +torch.save(model.state_dict(), "mnist_cnn_model.pth") diff --git a/src/train.py b/src/train.py new file mode 100644 index 0000000..fdbac32 --- /dev/null +++ b/src/train.py @@ -0,0 +1,19 @@ +import torch.nn as nn +import torch.optim as optim + + +def train(model, trainloader): + optimizer = optim.SGD(model.parameters(), lr=0.01) + criterion = nn.NLLLoss() + + epochs = 3 + for epoch in range(epochs): + running_loss = 0 + for images, labels in trainloader: + optimizer.zero_grad() + output = model(images) + loss = criterion(output, labels) + loss.backward() + optimizer.step() + running_loss += loss.item() + print(f"Training loss at epoch {epoch+1}: {running_loss/len(trainloader)}")