From 9bb2399087e205c95e4dc4e7f085684d35ca820a Mon Sep 17 00:00:00 2001 From: "sweep-nightly[bot]" <131841235+sweep-nightly[bot]@users.noreply.github.com> Date: Fri, 21 Jun 2024 02:55:00 +0000 Subject: [PATCH] Updated 1 files --- sweepai/core/vector_db_test.py | 77 ++++++++++++++++++++++++++++++++++ 1 file changed, 77 insertions(+) create mode 100644 sweepai/core/vector_db_test.py diff --git a/sweepai/core/vector_db_test.py b/sweepai/core/vector_db_test.py new file mode 100644 index 0000000000..4bbe2b0917 --- /dev/null +++ b/sweepai/core/vector_db_test.py @@ -0,0 +1,77 @@ +import pytest +import numpy as np +from unittest.mock import patch, MagicMock +from sweepai.core.vector_db import ( + cosine_similarity, + chunk, + multi_get_query_texts_similarity, + normalize_l2, + embed_text_array, + openai_call_embedding, +) + +@pytest.fixture +def mock_openai_client(): + with patch("sweepai.core.vector_db.get_embeddings_client") as mock_client: + yield mock_client + +@pytest.fixture +def mock_redis_client(): + with patch("sweepai.core.vector_db.Cache") as mock_cache: + yield mock_cache.return_valuedef test_cosine_similarity(): + a = np.array([[1, 0, 1]]) + B = np.array([[1, 0, 1], [0, 1, 0], [1, 1, 1]]) + result = cosine_similarity(a, B) + expected = np.array([[1.0, 0.0, 0.8164966]]) + np.testing.assert_array_almost_equal(result, expected, decimal=6)def test_chunk(): + texts = ["text1", "text2", "text3", "text4", "text5"] + batch_size = 2 + result = list(chunk(texts, batch_size)) + expected = [["text1", "text2"], ["text3", "text4"], ["text5"]] + assert result == expecteddef test_normalize_l2(): + x = np.array([[3, 4], [6, 8]]) + result = normalize_l2(x) + expected = np.array([[0.6, 0.8], [0.6, 0.8]]) + np.testing.assert_array_almost_equal(result, expected, decimal=6)def test_embed_text_array(mock_openai_client): + texts = ["Hello, world!", "This is a test."] + mock_embeddings = [ + np.array([0.1, 0.2, 0.3]), + np.array([0.4, 0.5, 0.6]) + ] + mock_openai_client.return_value.embeddings.create.return_value.data = [ + MagicMock(embedding=emb) for emb in mock_embeddings + ] + + result = embed_text_array(texts) + expected = np.array(mock_embeddings) + np.testing.assert_array_almost_equal(result, expected, decimal=6) + + mock_openai_client.return_value.embeddings.create.assert_called_once_with( + input=texts, model="text-embedding-3-small", encoding_format="float" + )def test_openai_call_embedding_with_cache(mock_redis_client, mock_openai_client): + batch = ["Hello, world!", "This is a test."] + cache_keys = ["hash1", "hash2"] + mock_embeddings = [ + np.array([0.1, 0.2, 0.3]), + np.array([0.4, 0.5, 0.6]) + ] + + # Simulate cache hit for the first item and cache miss for the second + mock_redis_client.get.side_effect = [json.dumps(mock_embeddings[0].tolist()), None] + + mock_openai_client.return_value.embeddings.create.return_value.data = [ + MagicMock(embedding=mock_embeddings[1]) + ] + + with patch("sweepai.core.vector_db.hash_sha256", side_effect=cache_keys): + result = openai_call_embedding(batch) + + expected = np.array(mock_embeddings) + np.testing.assert_array_almost_equal(result, expected, decimal=6) + + # Check if cache was used for the first item and OpenAI was called for the second + mock_redis_client.get.assert_called_with(cache_keys[1] + CACHE_VERSION) + mock_openai_client.return_value.embeddings.create.assert_called_once_with( + input=[batch[1]], model="text-embedding-3-small", encoding_format="float" + ) + mock_redis_client.set.assert_called_once() \ No newline at end of file