You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thanks for your great work, I encountered the following error when running the ./scripts/train_nsvf_lego.sh script:
My GPU is RTX3090 and the system is Ubuntu 18.04.6 LTS.
error message are show in the "details":
[Taichi] version 1.7.0, llvm 15.0.4, commit a992f22e, linux, python 3.9.16
[Taichi] Starting on arch=cuda
Loading 100 train images ...
100it [00:02, 38.78it/s]
Loading 200 test images ...
200it [00:05, 39.27it/s]
Hash Encoder: base_res=16 max_res=1024 hash_level=16 feat_per_level=2 per_level_scale=0.2772588722239781 total_hash_size=5710032
Failed to import apex FusedAdam, use torch Adam instead.
[W 07/06/23 20:09:27.367 19027] [type_check.cpp:type_check_store@37] [$13858] Local store may lose precision: f16 <- f32
[W 07/06/23 20:09:27.367 19027] [type_check.cpp:type_check_store@37] [$13883] Local store may lose precision: f16 <- f32
[W 07/06/23 20:09:27.367 19027] [type_check.cpp:type_check_store@37] [$13908] Local store may lose precision: f16 <- f32
Thanks for your great work, I encountered the following error when running the
./scripts/train_nsvf_lego.sh
script:My GPU is RTX3090 and the system is Ubuntu 18.04.6 LTS.
error message are show in the "details":
[Taichi] version 1.7.0, llvm 15.0.4, commit a992f22e, linux, python 3.9.16
[Taichi] Starting on arch=cuda
Loading 100 train images ...
100it [00:02, 38.78it/s]
Loading 200 test images ...
200it [00:05, 39.27it/s]
Hash Encoder: base_res=16 max_res=1024 hash_level=16 feat_per_level=2 per_level_scale=0.2772588722239781 total_hash_size=5710032
Failed to import apex FusedAdam, use torch Adam instead.
[W 07/06/23 20:09:27.367 19027] [type_check.cpp:type_check_store@37] [$13858] Local store may lose precision: f16 <- f32
[W 07/06/23 20:09:27.367 19027] [type_check.cpp:type_check_store@37] [$13883] Local store may lose precision: f16 <- f32
[W 07/06/23 20:09:27.367 19027] [type_check.cpp:type_check_store@37] [$13908] Local store may lose precision: f16 <- f32
elapsed_time=2.19s | step=0 | psnr=10.84 | loss=0.082505 | rays=8192 | rm_s=246.9 | vr_s=246.9 |
elapsed_time=18.99s | step=1000 | psnr=28.49 | loss=0.001417 | rays=8192 | rm_s=26.7 | vr_s=14.3 |
elapsed_time=31.39s | step=2000 | psnr=31.23 | loss=0.000753 | rays=8192 | rm_s=24.6 | vr_s=9.8 |
elapsed_time=43.47s | step=3000 | psnr=31.70 | loss=0.000675 | rays=8192 | rm_s=24.9 | vr_s=9.0 |
elapsed_time=55.69s | step=4000 | psnr=32.43 | loss=0.000572 | rays=8192 | rm_s=24.3 | vr_s=8.3 |
elapsed_time=68.28s | step=5000 | psnr=33.79 | loss=0.000418 | rays=8192 | rm_s=22.9 | vr_s=8.1 |
elapsed_time=81.02s | step=6000 | psnr=33.98 | loss=0.000400 | rays=8192 | rm_s=23.7 | vr_s=7.1 |
elapsed_time=93.21s | step=7000 | psnr=34.45 | loss=0.000359 | rays=8192 | rm_s=23.5 | vr_s=7.0 |
elapsed_time=105.40s | step=8000 | psnr=35.15 | loss=0.000305 | rays=8192 | rm_s=23.7 | vr_s=7.0 |
elapsed_time=118.02s | step=9000 | psnr=35.66 | loss=0.000272 | rays=8192 | rm_s=23.4 | vr_s=6.7 |
elapsed_time=130.00s | step=10000 | psnr=35.29 | loss=0.000296 | rays=8192 | rm_s=23.0 | vr_s=6.6 |
elapsed_time=142.20s | step=11000 | psnr=34.47 | loss=0.000357 | rays=8192 | rm_s=23.4 | vr_s=6.6 |
elapsed_time=154.58s | step=12000 | psnr=35.71 | loss=0.000269 | rays=8192 | rm_s=24.0 | vr_s=6.5 |
elapsed_time=166.82s | step=13000 | psnr=36.06 | loss=0.000248 | rays=8192 | rm_s=23.7 | vr_s=6.6 |
elapsed_time=179.23s | step=14000 | psnr=36.39 | loss=0.000230 | rays=8192 | rm_s=22.9 | vr_s=6.3 |
elapsed_time=191.38s | step=15000 | psnr=36.37 | loss=0.000231 | rays=8192 | rm_s=23.4 | vr_s=6.4 |
elapsed_time=203.60s | step=16000 | psnr=36.54 | loss=0.000222 | rays=8192 | rm_s=23.4 | vr_s=6.6 |
elapsed_time=216.32s | step=17000 | psnr=37.19 | loss=0.000191 | rays=8192 | rm_s=23.1 | vr_s=6.5 |
elapsed_time=229.25s | step=18000 | psnr=37.12 | loss=0.000194 | rays=8192 | rm_s=22.7 | vr_s=6.1 |
elapsed_time=241.81s | step=19000 | psnr=37.59 | loss=0.000174 | rays=8192 | rm_s=22.7 | vr_s=6.4 |
elapsed_time=253.84s | step=20000 | psnr=37.10 | loss=0.000195 | rays=8192 | rm_s=22.5 | vr_s=6.1 |
evaluating: 0%| | 0/200 [00:00<?, ?it/s][W 07/06/23 20:13:40.575 18824] [type_check.cpp:type_check_store@37] [$28398] Global store may lose precision: u8 <- i32
File "/data2/gwx/taichi-nerfs/modules/ray_march.py", line 254, in raymarching_test_kernel:
valid_mask[idx] = 1
^^^^^^^^^^^^^^^^^^^
evaluating: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:10<00:00, 19.48it/s]
evaluation: psnr_avg=34.72092056274414 | ssim_avg=0.9757876992225647
[Taichi] Starting on arch=cuda
Loading 100 train images ...
100it [00:02, 39.17it/s]
Hash Encoder: base_res=16 max_res=1024 hash_level=16 feat_per_level=2 per_level_scale=0.2772588722239781 total_hash_size=5710032
loading ckpt from: results/model.pth
./scripts/train_nsvf_lego.sh: 行 11: 18824 段错误 (核心已转储) python3 train.py --root_dir $DATA_DIR/Lego --exp_name Lego --batch_size 8192 --lr 1e-2 --gui
The text was updated successfully, but these errors were encountered: