forked from SheffieldML/GPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
53 lines (43 loc) · 1.91 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) 2015, Zhenwen Dai
# Licensed under the BSD 3-clause license (see LICENSE.txt)
from __future__ import print_function
from evaluation import RMSE
from methods import GP_RBF, SVIGP_RBF, SparseGP_RBF
from tasks import Housing, WineQuality
from outputs import ScreenOutput, CSVOutput, H5Output
import numpy as np
import time
outpath = '.'
prjname = 'regression'
config = {
'evaluations':[RMSE],
'methods':[GP_RBF, SVIGP_RBF, SparseGP_RBF],
'tasks':[WineQuality,Housing],
'repeats':2,
'outputs': [ScreenOutput(), CSVOutput(outpath, prjname), H5Output(outpath, prjname)]
}
if __name__=='__main__':
results = np.zeros((len(config['tasks']), len(config['methods']), len(config['evaluations'])+1, config['repeats']))
for task_i in range(len(config['tasks'])):
dataset = config['tasks'][task_i]()
print('Benchmarking on '+dataset.name)
res = dataset.load_data()
if not res: print('Fail to load '+config['tasks'][task_i].name); continue
train = dataset.get_training_data()
test = dataset.get_test_data()
for method_i in range(len(config['methods'])):
method = config['methods'][method_i]
print('With the method '+method.name, end='')
for ri in range(config['repeats']):
m = method()
t_st = time.time()
m.fit(train)
pred = m.predict(test[0])
t_pd = time.time() - t_st
for ei in range(len(config['evaluations'])):
evalu = config['evaluations'][ei]()
results[task_i, method_i, ei, ri] = evalu.evaluate(test[1], pred)
results[task_i, method_i, -1, ri] = t_pd
print('.',end='')
print()
[out.output(config, results) for out in config['outputs']]