-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayesian-nn.py
241 lines (180 loc) · 7.37 KB
/
bayesian-nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 21 15:47:23 2019
Credit:
https://github.com/paraschopra/bayesian-neural-network-mnist
@author: ashannon
"""
#%% Libraries to use
import torch
from torch import nn
from torch.utils.data import DataLoader
import torch.nn.functional as F
import numpy as np
from torchvision import datasets, transforms
from matplotlib import pyplot as plt
from matplotlib import colors
import pyro # pip install pyro-ppl
from pyro import optim
from pyro.infer import SVI, Trace_ELBO
import pyro.distributions as dist
device = 'cuda' if torch.cuda.is_available() else 'cpu'
#%% Define the PyTorch module
class NN(nn.Module):
def __init__(self, in_shape, hidden_shape, out_shape):
super(NN, self).__init__()
self.fc1 = nn.Linear(in_shape, hidden_shape)
self.out = nn.Linear(hidden_shape, out_shape)
def forward(self, x):
x = x.flatten(1)
x = F.relu(self.fc1(x))
return self.out(x)
train_loader = DataLoader(
datasets.MNIST('emnist', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=128, shuffle=True, num_workers=4)
test_loader = DataLoader(
datasets.MNIST('emnist', train=False,
transform=transforms.ToTensor()),
batch_size=128, shuffle=True, num_workers=4)
# this will be our neural network
net = NN(28*28, 1024, 10).to(device)
#%% Convert to Pyro model
def model(x, y):
priors = {}
for name, param in net.named_parameters():
priors[name] = dist.Normal(loc=torch.zeros_like(param.data),
scale=torch.ones_like(param.data))
lifted_module = pyro.random_module("module", net, priors)
lifted_clf_model = lifted_module()
lhat = F.log_softmax(lifted_clf_model(x), 1)
pyro.sample("obs", dist.Categorical(logits=lhat), obs=y)
#%% Define the guide for SVI
def guide(x, y):
priors = {}
for name, param in net.named_parameters():
mu = torch.randn_like(param)
sigma = torch.randn_like(param)
mu_param = pyro.param(name+'.mu', mu)
sigma_param = F.softplus(pyro.param(name+'.sigma', sigma))
prior = dist.Normal(loc=mu_param, scale=sigma_param)
priors[name] = prior
lifted_module = pyro.random_module('module', net, priors)
return lifted_module()
#%% Set up optimizer and loss function
opt = optim.Adam({'lr': 0.01})
svi = SVI(model, guide, opt, loss=Trace_ELBO())
#%% Train Model
def train():
pyro.clear_param_store()
epochs = 10
loss = 0
for epoch in range(1, epochs + 1):
loss = 0
for x, y in train_loader:
loss += svi.step(x.flatten(1).to(device), y.to(device))
total_loss = loss / len(train_loader.dataset)
print(f'epoch: {epoch}\tLoss: {total_loss:.4g}')
train()
#%% Evaluate model
"""There are two ways to evaluate this network.
The first is to force it to predict even if it's unsure.
The second is to make the network say 'I don't know.' Which is what we want
Let's try the first one:
"""
num_samples = 10
def predict(x):
sampled_models = [guide(None, None) for _ in range(num_samples)]
yhats = [model(x.to(device)).data for model in sampled_models]
mean = torch.mean(torch.stack(yhats), 0)
return np.argmax(mean.cpu().numpy(), axis=1)
print('Prediction when network is forced to predict')
correct = 0
total = 0
for x, y in test_loader:
predicted = predict(x.flatten(1))
total += y.size(0)
correct += (predicted == y.numpy()).sum().item()
print(f'Accuracy: {correct/total:.2%}')
#%% Now we let the network decide whether or not to predict
classes = [str(i) for i in range(10)]
num_samples = 100
def give_uncertainities(x):
sampled_models = [guide(None, None) for _ in range(num_samples)]
yhats = [F.log_softmax(model(x.flatten(1).to(device)).data, 1).cpu().detach().numpy() for model in sampled_models]
return np.asarray(yhats)
#mean = torch.mean(torch.stack(yhats), 0)
#return np.argmax(mean, axis=1)
def test_batch(images, labels, plot=True):
y = give_uncertainities(images)
predicted_for_images = 0
correct_predictions=0
for i in range(len(labels)):
if(plot):
print("Real: ",labels[i].item())
fig, axs = plt.subplots(1, 10, sharey=True,figsize=(20,2))
all_digits_prob = []
highted_something = False
for j in range(len(classes)):
highlight=False
histo = []
histo_exp = []
for z in range(y.shape[0]):
histo.append(y[z][i][j])
histo_exp.append(np.exp(y[z][i][j]))
prob = np.percentile(histo_exp, 50) #sampling median probability
if(prob>0.2): #select if network thinks this sample is 20% chance of this being a label
highlight = True #possibly an answer
all_digits_prob.append(prob)
if(plot):
N, bins, patches = axs[j].hist(histo, bins=8, color = "lightgray", lw=0, weights=np.ones(len(histo)) / len(histo), density=False)
axs[j].set_title(str(j)+" ("+str(round(prob,2))+")")
if(highlight):
highted_something = True
if(plot):
# We'll color code by height, but you could use any scalar
fracs = N / N.max()
# we need to normalize the data to 0..1 for the full range of the colormap
norm = colors.Normalize(fracs.min(), fracs.max())
# Now, we'll loop through our objects and set the color of each accordingly
for thisfrac, thispatch in zip(fracs, patches):
color = plt.cm.viridis(norm(thisfrac))
thispatch.set_facecolor(color)
if(plot):
plt.show()
predicted = np.argmax(all_digits_prob)
if(highted_something):
predicted_for_images+=1
if(labels[i].item()==predicted):
if(plot):
print("Correct")
correct_predictions +=1.0
else:
if(plot):
print("Incorrect :()")
else:
if(plot):
print("Undecided.")
if(plot):
plt.imshow(images[i].squeeze())
if(plot):
print("Summary")
print("Total images: ",len(labels))
print("Predicted for: ",predicted_for_images)
print(f"Accuracy when predicted: {correct_predictions/predicted_for_images:.2%}")
return len(labels), correct_predictions, predicted_for_images
#%% Prediction when network can decide not to predict
print('Prediction when network can refuse')
correct = 0
total = 0
total_predicted_for = 0
for x, y in test_loader:
total_minibatch, correct_minibatch, predictions_minibatch = test_batch(
x.to(device), y.to(device), plot=False)
total += total_minibatch
correct += correct_minibatch
total_predicted_for += predictions_minibatch
print("Total images: ", total)
print("Skipped: ", total-total_predicted_for)
print(f"Accuracy when made predictions: {correct/total_predicted_for:.2%}")