-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
230 lines (177 loc) · 8.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""Train and evaluate the model"""
import os
import torch
import random
import utils
import logging
import argparse
import torch.nn as nn
from tqdm import trange
from torch.autograd import Variable
import numpy as np
import sklearn.preprocessing
from itertools import chain
import random
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from Baseline import baseline_linear
from dataloader import PrepareData
from model import linearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import csv
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='dataset/housing.data', help="Directory containing the dataset")
parser.add_argument('--seed', type=int, default=2018, help="random seed for initialization")
parser.add_argument('--restore_dir', default=None,
help="Optional, name of the directory containing weights to reload before training, e.g., 'experiments/")
parser.add_argument('--outputDim', type=int, default=1, help="provides outputdimension")
parser.add_argument('--learningRate',type=int,default=0.00005, help="define the learningrate")
parser.add_argument("--epochs", type=int,default=100, help="Number of Epoches")
parser.add_argument("--test_trainsplit", default=0.3)
parser.add_argument("--batch_size",type=int, default=128)
# for now we are not storing pretrained weigths
def train_epoches(model,model2, train_set1,train_set2,unknow_point, epochs, criterion ,optimizer, restore_dir=None):
all_losses = []
for epoch in range(epochs):
optimizer.zero_grad()
## ToDO
# make below part parametric
# get output from the model, given the inputs
batch_losses = []
for ix, ((Xb1, yb1), (Xb2, yb2)) in enumerate(zip(train_set1,train_set2)):
_X1 = Variable(Xb1).float().to(device)
_y1 = Variable(yb1).float().to(device)
_X2 = Variable(Xb2).float().to(device)
_y2 = Variable(yb2).float().to(device)
outputs1 = model(_X1)
outputs2 = model2(_X2)
# get loss for the predicted output
loss1 = criterion(outputs1, _y1)+criterion(outputs2, _y2)
l2_reg = torch.tensor(0.).to(device)
for param in chain(model.parameters(), model2.parameters()):
l2_reg += torch.norm(param)
loss = loss1+ 1 * l2_reg + 1*(criterion(model(unknow_point[:100,:len(_X1[1])]), model2(unknow_point[:100,-(len(_X2[1])):]))) #co-regularsation term
#nn.utils.clip_grad_norm_(parameters=chain(model.parameters(), model2.parameters()), max_norm=params.clip_grad)
#adding loss for each functions
# get gradients w.r.t to parameters
loss.backward()
# update parameters
optimizer.step()
batch_losses.append(loss.item())
all_losses.append(loss.item())
#print(batch_losses)
meanbatchloss = np.sqrt(np.mean(batch_losses)).round(3)
logging.info("co-RMS-loss: {:05.2f}".format(meanbatchloss))
logging.info("Training completed for printing loss uncomment 78 and 79(the above to line) linn in train.")
#print('epoch {}, loss {}'.format(epoch, meanbatchloss/2))
# to keep the loss fair divide by m
## avoiding m factor in batch loss
def load_datafile( dataset_path, multiReg = 1):
np.random.seed(1)
try:
D = np.loadtxt(dataset_path)
except:
D = np.genfromtxt(dataset_path, delimiter=",", filling_values=np.nan)
#D = np.loadtxt(dataset_path)
col_mean = np.nanmean(D, axis = 0)
inds = np.where(np.isnan(D))
D[inds] = np.take(col_mean, inds[1])
np.random.shuffle(D)
X = D[:,:-(multiReg)]
Y = D[:,-(multiReg):]
return X,Y
def test_epochs(model,model2, test_set1,test_set2, criterion ,optimizer,normalised_rmse, restore_dir=None):
model.eval()
model2.eval()
all_losses = []
for (Xb1, yb1),(Xb2 , yb2) in zip(test_set1,test_set2):
_X1 = Variable(Xb1).float().to(device)
_y1 = Variable(yb1).float().to(device)
_X2 = Variable(Xb2).float().to(device)
_y2 = Variable(yb2).float().to(device)
with torch.no_grad(): # we don't need gradients in the testing phase
predicted = model(_X1)
predicted2 = model2(_X2)
L1 = criterion(predicted,_y1)
L2 =criterion(predicted2,_y2)
total_error = (L1 + L2)/2
#loss_avg.update(total_error.item())
all_losses.append(total_error.item())
meanbatchloss = np.sqrt(np.mean(all_losses)).round(3)
normalised_rmse = np.sqrt(np.mean(all_losses)).round(3)/ y_max_min
#print(total_error)
logging.info("Normalisedd RMSE (SSL): {:05.2f}".format(normalised_rmse))
print("done")
if (__name__ == "__main__"):
args = parser.parse_args()
log_model_dir = 'experiments/'
batch_size = args.batch_size
#TODO: Load the parameters from json file
# Use GPUs if available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Set the random seed for reproducible experiments
random.seed(args.seed)
torch.manual_seed(args.seed)
# Set the logger
utils.set_logger(os.path.join(log_model_dir, 'train.log'))
# Create the input data pipeline
# Initialize the DataLoader
data_dir = args.dataset
X, Y = load_datafile(args.dataset, args.outputDim)
ymin = torch.from_numpy(Y.min(axis=0))
ymax = torch.from_numpy(Y.max(axis=0))
y_max_min = (ymax-ymin).item()
# collecting indices for test and train sets
train_idx, test_idx = train_test_split(list(range(X.shape[0])), test_size=args.test_trainsplit)
# need to automate for random points
n = random.randint(1,len(X[0]))
print("split of attribute at")
print(n)
#print(n)
X1 = X[:,:n]
X2 = X[:,n:]
unseen_point = X[:,:]
unseen_point = StandardScaler().fit_transform(unseen_point)
ds1 = PrepareData(X1, y=Y, scale_X=True)
ds2 = PrepareData(X2, y=Y, scale_X=True)
# Load training data and test data
# TODO find better way of doing
train_set1 = DataLoader(ds1, batch_size=batch_size,
sampler=SubsetRandomSampler(train_idx))
train_set2 = DataLoader(ds2, batch_size=batch_size,
sampler=SubsetRandomSampler(train_idx))
test_set1 = DataLoader(ds1, batch_size=batch_size,
sampler=SubsetRandomSampler(test_idx))
test_set2 = DataLoader(ds2, batch_size=batch_size,
sampler=SubsetRandomSampler(test_idx))
unseen_point = torch.from_numpy(unseen_point.astype(np.float32)).to(device)
#X1_train,X2_train, Y_train, X1_test,X2_test, Y_test, unseen_point = load_housing(data_dir,False)
logging.info("Loading the datasets...")
logging.info("model...")
# Prepare model
#modeDataParallell.to(params.device)
inputDim1 = len(X1[1]) # takes variable 'x'
inputDim2 = len(X2[1])
outputDim = args.outputDim # takes variable 'y'
learningRate = args.learningRate
epochs = args.epochs
## TODO
# need to make parametric to input other kernals
model = linearRegression(inputDim1, outputDim)
model2= linearRegression(inputDim2, outputDim)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
model2 = nn.DataParallel(model2)
model.to(device)
model2.to(device)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(chain(model.parameters(), model2.parameters()), lr=learningRate)
logging.info("File name {}".format(data_dir.split('/')[-1]))
# Train and evaluate the model
logging.info("Starting training for {} epoch(s)".format(args.epochs))
train_epoches(model,model2, train_set1,train_set2, unseen_point, epochs, criterion ,optimizer, restore_dir=None)
logging.info("Starting testing for epoch(s)")
test_epochs(model,model2, test_set1,test_set2, criterion ,optimizer, y_max_min, restore_dir=None)
baseline_linear(X, Y, y_max_min, epochs, batch_size, learningRate, criterion, outputDim, args.test_trainsplit, device)