Skip to content

Releases: tensorflow/tfjs

0.10.3

25 Apr 14:27
Compare
Choose a tag to compare

Core (0.7.1 ==> 0.8.4)

Features

  • Add tf.toPixels. (#941)
  • Add tf.erf op (#951). Thanks @Lewuathe.
  • Add tf.movingAverage. (#963)
  • Add tf.resizeNearestNeighbor (#955). Thanks @Lewuathe.
  • Add slice ergonomics. (#964). Thanks @ry.
  • Finish gradient for tf.pow (#954). Thanks @jgartman.
  • Add gradients for tf.batchNormalization4d (#959)
  • Finish gradient for tf.matMul (#957). Thanks @jgartman.
  • Add tf.logSigmoid and tf.softplus and gradients (#916). Thanks @jgartman.

Breaking changes

  • Require shape in tensor2d/3d/4d(flatValues, shape) (#969).
  • Align API with TF (#956).

Aligns the backend API and functionality (NaN propagation, dtype strictness, kernel signatures) with TensorFlow Python.

  • Remove backend.minPool since TF doesn't have it.
  • Remove normRegion param in localResponseNormalization kernel since TF doesn't support it.
  • Remove leakyRelu, prelu and preluDer from the backend and implement using higher-level ops, aligning with TF Python.
  • Make backend.multinomial take logits instead of probabilities and normalized: boolean param for backwards compatibility.
  • argMin and argMax take single axis: number instead of axes: number[]
  • Change eluDer(x: T): T signature to eluDer(dy: T, y: T): T to align with TF.
  • Change NaN behavior of max/avgPool and conv2d to align with TF.
  • Change avgPool out of bounds (padding) behavior to align with TF
  • Require indices in oneHot and gather to be of dtype int32

Fixes #195

  • Align webgl and cpu backend to be closer to TF (#947).
  • Remove NaN support for tensors of dtype bool and int32
  • Remove related tests
  • Make fromPixels test run only in the browser
  • Remove NaN propagation for min/max/argMin/argMax/compare/logical ops to align with TF
  • Speed up randomNormal tests
  • Minimize usage of isNaN checks in WebGL shaders

Bug fixes

  • Implement floordiv for integer division & update CONTRIBUTING.md. (#960)

Performance

TypeScript

  • Modify tf.split signature to preserve rank. (#973). Thanks @iansimon.

Development

  • Add yarn "link-local" and yarn "publish-local" (#983).

These commands are better alternatives to yarn link and resolve caching and de-duplication problems:

  • yarn publish-local replaces yarn link
  • yarn link-local PCK_NAME replaces yarn link PCK_NAME
  • Add quotemark rule to tslint. (#975). Thanks @ry.
  • Make core tests reusable by other packages (#926).

Documentation

Misc

  • Assert arguments to ops are Tensors. (#967)
  • test_util shouldn't depend on jasmine. (#974). Thanks @ry.
  • Clean up demo scripts. (#949). Thanks @manrajgrover.
  • Fix error message in clipByValue (#953). Thanks @mlajtos.
  • Remove deeplearnjs references (#948). Thanks @manrajgrover.
  • remove old demos, move benchmarks to integration_tests (#943).
  • Rename dl -> tf in unit tests (#944). Thanks @manrajgrover.

Layers (0.4.0 ==> 0.5.3)

Features

  • Support training of BatchNormalization layer (#139)
  • Expose tf.metrics; Add binaryCrossentropy metric (#144)
  • Export Reshape layer as tf.layers.reshape (#134).

Breaking changes

  • Typo: Corrected typo thresohldedReLU -> thresholdedReLU (#136). Thanks @xam-ps.

Bug fixes

  • Fix serialization of Sequential (#127)
  • Cast indices to int as needed. (#128).
  • Let Conv1D take [number] for dilationRate (#125)

Performance

TypeScript

  • Export Shape type alias: tf.Shape (#142). Thanks @ry.

Development

  • Improve DEVELOPMENT.md (#148).
  • Add yarn link-local and yarn publish-local to substitute yarn link and avoid problems with duplication of packages and caching
  • Add quotemark to tslint. (#143). Thanks @ry.
  • Update switch-tfjs-core-version.sh (switch-deeplearn-version.sh) (#138)

Documentation

  • add @doc to getLayer (#145)
  • Add some print-outs to a code snippet (#133).

Misc

  • Remove underscore as a dependency (#129)
  • Issues Template: Remove label issues from template (#124). Thanks @manrajgrover.

0.9.1

12 Apr 20:14
effbaa5
Compare
Choose a tag to compare

Bug fix

  • Layers: Fix bug in which Conv1D Layer cannot take an Array of a single number as dilationRate.

0.9.0

11 Apr 03:12
c6b0ab7
Compare
Choose a tag to compare

New features

  • Core ops: tf.rsqrt, tf.mod, tf.losses.absoluteDifference, tf.losses.computeWeightedLoss, tf.losses.squaredDifference, tf.sign, tf.floor, tf.reciprocal, tf.round, tf.asinh, tf.acosh, tf.atanh, tf.atan2.
  • Core: Centered RMSProp now supported.
  • Core: logicalNot, cast supports chaining.
  • Core: tf.stack and tf.concat allow a single tensor.
  • Core: Shader programs now work in GLSL 4.1.
  • Core: loadWeights now supports RequestInit.
  • Layers: Support dilation in Conv1D and Conv2D layers.
  • Layers: Add SeparableConv2D Layer (tf.layers.separableConv2d).

Bug fixes

  • Layers: Map weights to uniquefied tensor names during model loading, to prevent error on repeated loading of the same model with tf.loadModel() in the same browser page load.
  • Layers: Change class registry to AveragePooling(1|2)D and add symbol aliases to exports.

Acknowledgments to external contributors:

@manrajgrover for tf.exmp1, tf.squaredDifference, tf.rsqrt, tf.mod, absolute difference loss, tf.sign, fixing gradient for tf.floor, tf.reciprocal, logicalNot chaining support, fixing documentation, adding info to issue template.
@Lewuathe for centered RMSProp, unary ops benchmarks, tf.round. @jgartman for inverse trig hyperbolic functions and tf.atan2. @adarob for tf.split, 1-tensor tf.stack and tf.concat. @adarabi for fixing GLSL shader compiler for glsl 4.1.

0.8.0

11 Apr 03:26
1e69f64
Compare
Choose a tag to compare

New features

  • Layers: Add ZeroPadding2D layer.

Bug fixes

  • Layers: Fix duplicate weight names in Conv2DTranspose layer.

Acknowledgments to external contributors

@adarabi for shader syntax, @Lewuathe for work on tests, @manrajgrover for new ops, @jgartman for new ops

0.7.0

05 Apr 04:27
30e0d05
Compare
Choose a tag to compare

New features

  • Layers: Added some advanced activation layer types: LeakyReLU, ELU, ThresholdedReLU.
  • Layers: Added Conv2DTranspose layer. Inference is supported; training (backpropagation) is not supported yet.

Bug fixes

  • Layers: Fix a bug related to optimizer constructor names in minimized bundle.

Acknowledgments to external contributors:

bringtree@