-
Notifications
You must be signed in to change notification settings - Fork 419
/
Copy pathtest_diagnostics.py
39 lines (30 loc) · 1.07 KB
/
test_diagnostics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
import numpy as np
import tensorflow as tf
from zhusuan.diagnostics import *
class TestEffectiveSampleSize(tf.test.TestCase):
def test_effective_sample_size(self):
rng = np.random.RandomState(1)
n = 10000
stride = 1
dims = 2
# Gaussian samples
idepg = rng.normal(size=(n, dims))
self.assertTrue(effective_sample_size(idepg, burn_in=100) >= 2000)
# Gaussian samples by MCMC
mcmc = []
current = np.array([0, 0])
rate = 0
for i in range(n):
next = current + rng.normal(size=(dims)) * stride
acceptance_rate = np.exp(
np.minimum(0, -0.5 * np.sum((next ** 2 - current ** 2))))
if np.random.random() < acceptance_rate:
current = next
rate += 1
mcmc.append(list(current))
mcmc = np.array(mcmc)
self.assertTrue(effective_sample_size(mcmc, burn_in=100) <= 1000)