-
Notifications
You must be signed in to change notification settings - Fork 419
/
Copy pathtest_utils.py
304 lines (258 loc) · 11.6 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
import tensorflow as tf
from scipy.special import logsumexp
import numpy as np
import six
from zhusuan.utils import *
from zhusuan.utils import add_name_scope, if_raise, log_sum_exp
from tests._div_op import regular_div, floor_div
from tests._true_div_op import true_div
class _SimpleTensor(TensorArithmeticMixin):
def __init__(self, value):
self.value = tf.convert_to_tensor(value)
@property
def dtype(self):
return self.value.dtype
@property
def shape(self):
return self.value.shape
def _to_tensor(value, dtype=None, name=None, as_ref=False):
if dtype and not dtype.is_compatible_with(value.dtype):
raise ValueError('Incompatible type conversion requested to type '
'%s for variable of type %s' %
(dtype.name, value.dtype.name))
if as_ref:
raise ValueError('%r: Ref type not supported.' % value)
return value.value
tf.register_tensor_conversion_function(_SimpleTensor, _to_tensor)
class ArithMixinTestCase(tf.test.TestCase):
def test_prerequisite(self):
# Tensorflow has deprecated Python 2 division semantics,
# regular division in Python 3 is true division.
# if six.PY2:
# self.assertAlmostEqual(regular_div(3, 2), 1)
# self.assertAlmostEqual(regular_div(3.3, 1.6), 2.0625)
# else:
self.assertAlmostEqual(regular_div(3, 2), 1.5)
self.assertAlmostEqual(regular_div(3.3, 1.6), 2.0625)
self.assertAlmostEqual(true_div(3, 2), 1.5)
self.assertAlmostEqual(true_div(3.3, 1.6), 2.0625)
self.assertAlmostEqual(floor_div(3, 2), 1)
self.assertAlmostEqual(floor_div(3.3, 1.6), 2.0)
def test_unary_op(self):
def check_op(name, func, x):
x_tensor = tf.convert_to_tensor(x)
ans = func(x_tensor)
res = tf.convert_to_tensor(func(_SimpleTensor(x_tensor)))
self.assertEqual(
res.dtype, ans.dtype,
msg='Result dtype does not match answer after unary operator '
'%s is applied: %r vs %r (x is %r).' %
(name, res.dtype, ans.dtype, x)
)
res_val = res.eval()
ans_val = ans.eval()
np.testing.assert_equal(
res_val, ans_val,
err_msg='Result value does not match answer after unary '
'operator %s is applied: %r vs %r (x is %r).' %
(name, res_val, ans_val, x)
)
with tf.Graph().as_default(), self.session(use_gpu=True):
int_data = np.asarray([1, -2, 3], dtype=np.int32)
float_data = np.asarray([1.1, -2.2, 3.3], dtype=np.float32)
bool_data = np.asarray([True, False, True], dtype=np.bool)
check_op('abs', abs, int_data)
check_op('abs', abs, float_data)
check_op('neg', (lambda v: -v), int_data)
check_op('neg', (lambda v: -v), float_data)
check_op('invert', (lambda v: ~v), bool_data)
def test_binary_op(self):
def check_op(name, func, x, y):
x_tensor = tf.convert_to_tensor(x)
y_tensor = tf.convert_to_tensor(y)
ans = func(x_tensor, y_tensor)
res_1 = tf.convert_to_tensor(
func(_SimpleTensor(x_tensor), y_tensor))
res_2 = tf.convert_to_tensor(
func(x_tensor, _SimpleTensor(y_tensor)))
res_3 = tf.convert_to_tensor(
func(_SimpleTensor(x_tensor), _SimpleTensor(y_tensor)))
for tag, res in [('left', res_1), ('right', res_2),
('both', res_3)]:
self.assertEqual(
res.dtype, ans.dtype,
msg='Result dtype does not match answer after %s binary '
'operator %s is applied: %r vs %r (x is %r, y is %r).'
% (tag, name, res.dtype, ans.dtype, x, y)
)
res_val = res.eval()
ans_val = ans.eval()
np.testing.assert_equal(
res_val, ans_val,
err_msg='Result value does not match answer after %s '
'binary operator %s is applied: %r vs %r '
'(x is %r, y is %r).' %
(tag, name, res_val, ans_val, x, y)
)
def run_ops(x, y, ops):
for name, func in six.iteritems(ops):
check_op(name, func, x, y)
arith_ops = {
'add': lambda x, y: x + y,
'sub': lambda x, y: x - y,
'mul': lambda x, y: x * y,
'div': regular_div,
'truediv': true_div,
'floordiv': floor_div,
'mod': lambda x, y: x % y,
}
logical_ops = {
'and': lambda x, y: x & y,
'or': lambda x, y: x | y,
'xor': lambda x, y: x ^ y,
}
relation_ops = {
'lt': lambda x, y: x < y,
'le': lambda x, y: x <= y,
'gt': lambda x, y: x > y,
'ge': lambda x, y: x >= y,
}
with tf.Graph().as_default(), self.session(use_gpu=True):
# arithmetic operators
run_ops(np.asarray([-4, 5, 6], dtype=np.int32),
np.asarray([1, -2, 3], dtype=np.int32),
arith_ops)
run_ops(np.asarray([-4.4, 5.5, 6.6], dtype=np.float32),
np.asarray([1.1, -2.2, 3.3], dtype=np.float32),
arith_ops)
# it seems that tf.pow(x, y) does not support negative integers
# yet, so we individually test this operator here.
check_op('pow',
(lambda x, y: x ** y),
np.asarray([-4, 5, 6], dtype=np.int32),
np.asarray([1, 2, 3], dtype=np.int32))
check_op('pow',
(lambda x, y: x ** y),
np.asarray([-4.4, 5.5, 6.6], dtype=np.float32),
np.asarray([1.1, -2.2, 3.3], dtype=np.float32))
# logical operators
run_ops(np.asarray([True, False, True, False], dtype=np.bool),
np.asarray([True, True, False, False], dtype=np.bool),
logical_ops)
# relation operators
run_ops(np.asarray([1, -2, 3, -4, 5, 6, -4, 5, 6], dtype=np.int32),
np.asarray([1, -2, 3, 1, -2, 3, -4, 5, 6], dtype=np.int32),
relation_ops)
run_ops(
np.asarray([1.1, -2.2, 3.3, -4.4, 5.5, 6.6, -4.4, 5.5, 6.6],
dtype=np.float32),
np.asarray([1.1, -2.2, 3.3, 1.1, -2.2, 3.3, -4.4, 5.5, 6.6],
dtype=np.float32),
relation_ops
)
def test_getitem(self):
def check_getitem(x, y, xx, yy):
ans = tf.convert_to_tensor(x[y])
res = xx[yy]
self.assertEqual(
res.dtype, ans.dtype,
msg='Result dtype does not match answer after getitem '
'is applied: %r vs %r (x is %r, y is %r, xx is %r, '
'yy is %r).' % (res.dtype, ans.dtype, x, y, xx, yy)
)
res_val = res.eval()
ans_val = ans.eval()
np.testing.assert_equal(
res_val, ans_val,
err_msg='Result value does not match answer after '
'getitem is applied: %r vs %r (x is %r, y is %r, '
'xx is %r, yy is %r).' %
(res_val, ans_val, x, y, xx, yy)
)
class _SliceGenerator(object):
def __getitem__(self, item):
return item
sg = _SliceGenerator()
with tf.Graph().as_default(), self.session(use_gpu=True):
data = np.asarray([1, 2, 3, 4, 5, 6, 7, 8], dtype=np.int32)
indices_or_slices = [
0,
-1,
# TensorFlow has not supported array index yet.
# np.asarray([0, 3, 2, 6], dtype=np.int32),
# np.asarray([-1, -2, -3], dtype=np.int32),
sg[0:],
sg[:1],
sg[:: 2],
sg[-1:],
sg[: -1],
sg[:: -1],
]
for s in indices_or_slices:
x_tensor = tf.convert_to_tensor(data)
x_simple_tensor = _SimpleTensor(x_tensor)
check_getitem(data, s, x_simple_tensor, s)
if not isinstance(s, slice):
y_tensor = tf.convert_to_tensor(s)
y_simple_tensor = _SimpleTensor(y_tensor)
check_getitem(data, s, x_simple_tensor, y_tensor)
check_getitem(data, s, x_simple_tensor, y_simple_tensor)
check_getitem(data, s, x_tensor, y_simple_tensor)
def test_disallowed_operator(self):
with tf.Graph().as_default():
with self.assertRaisesRegexp(
TypeError, '_SimpleTensor object is not iterable'):
_ = iter(_SimpleTensor(1))
with self.assertRaisesRegexp(
TypeError, 'Using a `_SimpleTensor` object as a Python '
'`bool` is not allowed'):
_ = not _SimpleTensor(1)
with self.assertRaisesRegexp(
TypeError, 'Using a `_SimpleTensor` object as a Python '
'`bool` is not allowed'):
if _SimpleTensor(1):
pass
class TestLogSumExp(tf.test.TestCase):
def test_log_sum_exp(self):
with self.session(use_gpu=True) as sess:
a = np.array([[[1., 3., 0.2], [0.7, 2., 1e-6]],
[[0., 1e6, 1.], [1., 1., 1.]]])
for keepdims in [True, False]:
true_values = logsumexp(a, (0, 2), keepdims=keepdims)
test_values = sess.run(log_sum_exp(
tf.constant(a), (0, 2), keepdims))
self.assertAllClose(test_values, true_values)
self.assertEqual(test_values.dtype, true_values.dtype)
class TestLogMeanExp(tf.test.TestCase):
def test_log_mean_exp(self):
with self.session(use_gpu=True) as sess:
a = np.array([[[1., 3., 0.2], [0.7, 2., 1e-6]],
[[0., 1e6, 1.], [1., 1., 1.]]])
for keepdims in [True, False]:
true_values = logsumexp(a, (0, 2), keepdims=keepdims) - \
np.log(a.shape[0] * a.shape[2])
test_values = sess.run(log_mean_exp(
tf.constant(a), (0, 2), keepdims))
self.assertAllClose(test_values, true_values)
self.assertEqual(test_values.dtype, true_values.dtype)
b = np.array([[0., 1e-6, 10.1]])
test_values = sess.run(log_mean_exp(b, 0, keepdims=False))
self.assertTrue(np.abs(test_values - b).max() < 1e-6)
class TestAddNameScope(tf.test.TestCase):
def test_add_name_scope(self):
class A:
@add_name_scope
def f(self):
return tf.ones(1)
a = A()
node = a.f()
self.assertEqual(node.name, 'A.f/ones:0')
class TestIfRaise(tf.test.TestCase):
def test_if_raise(self):
with self.assertRaisesRegexp(RuntimeError, "if_raise"):
if_raise(True, RuntimeError("if_raise"))
if_raise(False, RuntimeError("if_raise"))