@@ -1291,6 +1291,56 @@ visualize(sampling_dist) +
12911291
12921292Note that the ` t ` distribution is recentered and rescaled to lie on the scale of the observed data.
12931293
1294+ ` infer ` also provides functionality to calculate ratios of means. The workflow looks similar to that for ` diff in means ` .
1295+
1296+ Finding the observed statistic,
1297+
1298+ ``` {r}
1299+ d_hat <- gss %>%
1300+ specify(hours ~ college) %>%
1301+ calculate(stat = "ratio of means", order = c("degree", "no degree"))
1302+ ```
1303+
1304+ Alternatively, using the ` observe() ` wrapper to calculate the observed statistic,
1305+
1306+ ``` {r}
1307+ d_hat <- gss %>%
1308+ observe(hours ~ college,
1309+ stat = "ratio of means", order = c("degree", "no degree"))
1310+ ```
1311+
1312+ Then, generating a bootstrap distribution,
1313+
1314+ ``` {r}
1315+ boot_dist <- gss %>%
1316+ specify(hours ~ college) %>%
1317+ generate(reps = 1000, type = "bootstrap") %>%
1318+ calculate(stat = "ratio of means", order = c("degree", "no degree"))
1319+ ```
1320+
1321+ Use the bootstrap distribution to find a confidence interval,
1322+
1323+ ``` {r}
1324+ percentile_ci <- get_ci(boot_dist)
1325+ ```
1326+
1327+ Visualizing the observed statistic alongside the distribution,
1328+
1329+ ``` {r}
1330+ visualize(boot_dist) +
1331+ shade_confidence_interval(endpoints = percentile_ci)
1332+ ```
1333+
1334+ Alternatively, use the bootstrap distribution to find a confidence interval using the standard error,
1335+
1336+ ``` {r}
1337+ standard_error_ci <- boot_dist %>%
1338+ get_ci(type = "se", point_estimate = d_hat)
1339+
1340+ visualize(boot_dist) +
1341+ shade_confidence_interval(endpoints = standard_error_ci)
1342+ ```
1343+
12941344### One numerical variable, one categorical (2 levels) (t)
12951345
12961346Finding the standardized point estimate,
0 commit comments