Skip to content

Releases: tidymodels/infer

First major release

13 Aug 18:42
e375221

Choose a tag to compare

infer 1.0.0

v1.0.0 is the first major release of the {infer} package! By and large, the core verbs specify(), hypothesize(), generate(), and calculate() will interface as they did before. This release makes several improvements to behavioral consistency of the package and introduces support for theory-based inference as well as randomization-based inference with multiple explanatory variables.

Behavioral consistency

A major change to the package in this release is a set of standards for behavorial consistency of calculate() (#356). Namely, the package will now

  • supply a consistent error when the supplied stat argument isn't well-defined
    for the variables specify()d
gss %>%
  specify(response = hours) %>%
  calculate(stat = "diff in means")
#> Error: A difference in means is not well-defined for a 
#> numeric response variable (hours) and no explanatory variable.

or

gss %>%
  specify(college ~ partyid, success = "degree") %>%
  calculate(stat = "diff in props")
#> Error: A difference in proportions is not well-defined for a dichotomous categorical 
#> response variable (college) and a multinomial categorical explanatory variable (partyid).
  • supply a consistent message when the user supplies unneeded information via hypothesize() to calculate() an observed statistic
# supply mu = 40 when it's not needed
gss %>%
  specify(response = hours) %>%
  hypothesize(null = "point", mu = 40) %>%
  calculate(stat = "mean")
#> Message: The point null hypothesis `mu = 40` does not inform calculation of 
#> the observed statistic (a mean) and will be ignored.
#> # A tibble: 1 x 1
#>    stat
#>   <dbl>
#> 1  41.4

and

  • supply a consistent warning and assume a reasonable null value when the user does not supply sufficient information to calculate an observed statistic
# don't hypothesize `p` when it's needed
gss %>%
    specify(response = sex, success = "female") %>%
    calculate(stat = "z")
#> # A tibble: 1 x 1
#>    stat
#>   <dbl>
#> 1 -1.16
#> Warning message:
#> A z statistic requires a null hypothesis to calculate the observed statistic. 
#> Output assumes the following null value: `p = .5`. 

or

# don't hypothesize `p` when it's needed
gss %>%
  specify(response = partyid) %>%
  calculate(stat = "Chisq")
#> # A tibble: 1 x 1
#>    stat
#>  <dbl>
#> 1  334.
#> Warning message:
#> A chi-square statistic requires a null hypothesis to calculate the observed statistic. 
#> Output assumes the following null values: `p = c(dem = 0.2, ind = 0.2, rep = 0.2, other = 0.2, DK = 0.2)`.

To accommodate this behavior, a number of new calculate methods were added or improved. Namely:

  • Implemented the standardized proportion $z$ statistic for one categorical variable
  • Extended calculate() with stat = "t" by passing mu to the calculate() method for stat = "t" to allow for calculation of t statistics for one numeric variable with hypothesized mean
  • Extended calculate() to allow lowercase aliases for stat arguments (#373).
  • Fixed bugs in calculate() for to allow for programmatic calculation of statistics

This behavorial consistency also allowed for the implementation of observe(), a wrapper function around specify(), hypothesize(), and calculate(), to calculate observed statistics. The function provides a shorthand alternative to calculating observed statistics from data:

# calculating the observed mean number of hours worked per week
gss %>%
  observe(hours ~ NULL, stat = "mean")
#> # A tibble: 1 x 1
#>    stat
#>   <dbl>
#> 1  41.4

# equivalently, calculating the same statistic with the core verbs
gss %>%
  specify(response = hours) %>%
  calculate(stat = "mean")
#> # A tibble: 1 x 1
#>    stat
#>   <dbl>
#> 1  41.4

# calculating a t statistic for hypothesized mu = 40 hours worked/week
gss %>%
  observe(hours ~ NULL, stat = "t", null = "point", mu = 40)
#> # A tibble: 1 x 1
#>    stat
#>   <dbl>
#> 1  2.09

# equivalently, calculating the same statistic with the core verbs
gss %>%
  specify(response = hours) %>%
  hypothesize(null = "point", mu = 40) %>%
  calculate(stat = "t")
#> # A tibble: 1 x 1
#>    stat
#>   <dbl>
#> 1  2.09

We don't anticipate that these changes are "breaking" in the sense that code that previously worked will continue to, though it may now message or warn in a way that it did not used to or error with a different (and hopefully more informative) message.

A framework for theoretical inference

This release also introduces a more complete and principled interface for theoretical inference. While the package previously supplied some methods for visualization of theory-based curves, the interface did not provide any object that was explicitly a "null distribution" that could be supplied to helper functions like get_p_value() and get_confidence_interval(). The new interface is based on a new verb, assume(), that returns a null distribution that can be interfaced in the same way that simulation-based null distributions can be interfaced with.

As an example, we'll work through a full infer pipeline for inference on a mean using infer's gss dataset. Supposed that we believe the true mean number of hours worked by Americans in the past week is 40.

First, calculating the observed t-statistic:

obs_stat <- gss %>%
  specify(response = hours) %>%
  hypothesize(null = "point", mu = 40) %>%
  calculate(stat = "t")

obs_stat
#> Response: hours (numeric)
#> Null Hypothesis: point
#> # A tibble: 1 x 1
#>    stat
#>   <dbl>
#> 1  2.09

The code to define the null distribution is very similar to that required to calculate a theorized observed statistic, switching out calculate() for assume() and replacing arguments as needed.

null_dist <- gss %>%
  specify(response = hours) %>%
  assume(distribution = "t")

null_dist 
#> A T distribution with 499 degrees of freedom.

This null distribution can now be interfaced with in the same way as a simulation-based null distribution elsewhere in the package. For example, calculating a p-value by juxtaposing the observed statistic and null distribution:

get_p_value(null_dist, obs_stat, direction = "both")
#> # A tibble: 1 x 1
#>   p_value
#>     <dbl>
#> 1  0.0376

…or visualizing the null distribution alone:

visualize(null_dist)

…or juxtaposing the two visually:

visualize(null_dist) + 
  shade_p_value(obs_stat, direction = "both")

Confidence intervals lie in data space rather than the standardized scale of the theoretical distributions. Calculating a mean rather than the standardized t-statistic:

obs_mean <- gss %>%
  specify(response = hours) %>%
  calculate(stat = "mean")

The null distribution here just defines the spread for the standard error calculation.

ci <- 
  get_confidence_interval(
    null_dist,
    level = .95,
    point_estimate = obs_mean
  )

ci
#> # A tibble: 1 x 2
#>   lower_ci upper_ci
#>      <dbl>    <dbl>
#> 1     40.1     42.7

Visualizing the confidence interval results in the theoretical distribution being recentered and rescaled to align with the scale of the observed data:

visualize(null_dist) + 
  shade_confidence_interval(ci)

Previous methods for interfacing with theoretical distributions are superseded—they will continue to be supported, though documentation will forefront the assume() interface.

Support for multiple regression

The 2016 "Guidelines for Assessment and Instruction in Statistics Education" [1] state that, in introductory statistics courses, "[s]tudents should gain experience with how statistical models, including multivariable models, are used." In line with this recommendation, we introduce support for randomization-based inference with multiple explanatory variables via a new fit.infer core verb.

If passed an infer object, the method will parse a formula out of the formula or response and explanatory arguments, and pass both it and data to a stats::glm call.

gss %>%
  specify(hours ~ age + college) %>%
  fit()
#> # A tibble: 3 x 2
#>   term          estimate
#>   <chr>            <dbl>
#> 1 intercept     40.6    
#> 2 age            0.00596
#> 3 collegedegree  1.53

Note that the function returns the model coefficients as estimate rather than their associated t-statistics as stat.

If passed a generate()d object, the model will be fitted to each replicate.

gss %>%
  specify(hours ~ age + college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 100, type = "permute") %>%
  fit()
#> # A tibble: 300 x 3
#> # Groups:   replicate [100]
#>    replicate term          estimate
#>        <int> <chr>            <dbl>
#>  1         1 intercept     44.4    
#>  2         1 age           -0.0767 
#>  3         1 collegedegree  0.121  
#>  4         2 intercept     41.8    
#>  5         2 age            0.00344
#>  6         2 collegedegree -1.59   
#>  7         3 intercept     38.3    
#>  8         3 age            0.0761 
#>  9         3 collegedegree  0.136  
#> 10         4 intercept     43.1    
#> # … with 290 more rows

If type = "permute", a set of unquoted column names in the data to permute (independently of each other) can be passed via the variables argument to generate. It defaults to only the response variable.

gss %>%
  specify(hours ~ age + college) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 100, type = "permute", variables = c(age, college)) %>%
  fit()
#> # A tibble: 300 x 3
#> # Groups:   replicate [100]
#>   ...
Read more

Standardized proportion z statistic, improvements to various helpers

13 Jan 17:00
cffc082

Choose a tag to compare

  • rep_sample_n() no longer errors when supplied a prob argument (#279)
  • Added rep_slice_sample(), a light wrapper around rep_sample_n(), that more closely resembles dplyr::slice_sample() (the function that supersedes dplyr::sample_n()) (#325)
  • Added a success, correct, and z argument to prop_test() (#343, #347, #353)
  • Implemented observed statistic calculation for the standardized proportion $z$ statistic (#351, #353)
  • Various bug fixes and improvements to documentation and errors.

Bias-corrected confidence intervals

15 Jul 16:59
5b57562

Choose a tag to compare

  • get_confidence_interval() can now produce bias-corrected confidence intervals
    by setting type = "bias-corrected". Thanks to @davidbaniadam for the
    initial implementation (#237, #318)!
  • get_confidence_interval() now uses column names ('lower_ci' and 'upper_ci')
    in output that are consistent with other infer functionality (#317).
  • Fix CRAN check failures related to long double errors.

New test statistics and vignettes, improved warnings/errors

14 Jun 22:21

Choose a tag to compare

  • Warn the user when a p-value of 0 is reported (#257, #273)
  • Added new vignettes: chi_squared and anova (#268)
  • Updates to documentation and existing vignettes (#268)
  • Add alias for hypothesize() (hypothesise()) (#271)
  • Subtraction order no longer required for difference-based tests--a warning will be raised in the case that the user doesn't supply an order argument (#275, #281)
  • Add new messages for common errors (#277)
  • Increase coverage of theoretical methods in documentation (#278, #280)
  • Drop missing values and reduce size of gss dataset used in examples (#282)
  • Add stat = "ratio of props" and stat = "odds ratio" to calculate (#285)
  • Add prop_test(), a tidy interface to prop.test() (#284, #287)
  • Updates to visualize() for compatibility with ggplot2 v3.3.0 (#289)
  • Fix error when bootstrapping with small samples and raise warnings/errors
    when appropriate (#239, #244, #291)
  • Fix unit test failures resulting from breaking changes in dplyr v1.0.0
  • Fix error in generate() when response variable is named x (#299)
  • Add two-sided and two sided as aliases for two_sided for the
    direction argument in get_p_value() and shade_p_value() (#302)
  • Fix t_test() and t_stat() ignoring the order argument (#310)

Documentation and other tweaks

19 Nov 15:28
babfe7b

Choose a tag to compare

0.5.1

Update NEWS.md

Update chi squared tests

01 Oct 21:48
6021338

Choose a tag to compare

infer 0.5.0

Breaking changes

  • shade_confidence_interval() now plots vertical lines starting from zero (previously - from the bottom of a plot) (#234).
  • shade_p_value() now uses "area under the curve" approach to shading (#229).

Other

  • Updated chisq_test() to take arguments in a response/explanatory format, perform goodness of fit tests, and default to the approximation approach (#241).
  • Updated chisq_stat() to do goodness of fit (#241).
  • Make interface to hypothesize() clearer by adding the options for the point null parameters to the function signature (#242).
  • Manage infer class more systematically (#219).
  • Use vdiffr for plot testing (#221).

change p-val computation; add visualization layers

16 Nov 19:57
db509aa

Choose a tag to compare

infer 0.4.0

Breaking changes

  • Changed method of computing two-sided p-value to a more conventional one. It also makes get_pvalue() and visualize() more aligned (#205).

Deprecation changes

  • Deprecated p_value() (use get_p_value() instead) (#180).
  • Deprecated conf_int() (use get_confidence_interval() instead) (#180).
  • Deprecated (via warnings) plotting p-value and confidence interval in visualize() (use new functions shade_p_value() and shade_confidence_interval() instead) (#178).

New functions

  • shade_p_value() - {ggplot2}-like layer function to add information about p-value region to visualize() output. Has alias shade_pvalue().
  • shade_confidence_interval() - {ggplot2}-like layer function to add information about confidence interval region to visualize() output. Has alias shade_ci().

Other

  • Account for NULL value in left hand side of formula in specify() (#156) and type in generate() (#157).
  • Update documentation code to follow tidyverse style guide (#159).
  • Remove help page for internal set_params() (#165).
  • Fully use {tibble} (#166).
  • Fix calculate() to not depend on order of p for type = "simulate" (#122).
  • Reduce code duplication (#173).
  • Make transparancy in visualize() to not depend on method and data volume.
  • Make visualize() work for "One sample t" theoretical type with method = "both".
  • Add stat = "sum" and stat = "count" options to calculate() (#50).

Bug fixes and switch to {glue}

06 Aug 22:28
0c487a5

Choose a tag to compare

  • Stop using package {assertive} in favor of custom type checks (#149)
  • Fixed t_stat() to use ... so var.equal works
  • With the help of @echasnovski, fixed var.equal = TRUE for specify() %>% calculate(stat = "t")
  • Use custom functions for error, warning, message, and paste() handling (#155)

Add p_value and conf_int functions and observed stat shortcut with specify() %>% calculate()

11 Jul 02:12
ee1b621

Choose a tag to compare

  • Added conf_int logical argument and conf_level argument to t_test()
  • Switched shade_color argument in visualize() to be pvalue_fill instead
    since fill color for confidence intervals is also added now
  • Shading for Confidence Intervals in visualize()
    • Green is default color for CI and red for p-values
    • direction = "between" to get the green shading
    • Currently working only for simulation-based methods
  • Implemented conf_int() function for computing confidence interval provided a simulation-based method with a stat variable
    • get_ci() and get_confidence_interval() are aliases for conf_int()
    • Converted longer confidence interval calculation code in vignettes to use get_ci() instead
  • Implemented p_value() function for computing p-value provided a simulation-based method with a stat variable
    • get_pvalue() is an alias for p_value()
    • Converted longer p-value calculation code in vignettes to use get_pvalue() instead
  • Implemented Chi-square Goodness of Fit observed stat depending on params being set in hypothesize with specify() %>% calculate() shortcut
  • Removed "standardized" slope $t$ since its formula is different than "standardized" correlation and there is no way currently to give one over the other
  • Implemented correlation with bootstrap CI and permutation hypothesis test
  • Filled the type argument automatically in generate() based
    on specify() and hypothesize()
    • Added message if type is given differently than expected
  • Implemented specify() %>% calculate() for getting observed
    statistics.
    • visualize() works with either a 1x1 data frame or a vector
      for its obs_stat argument
    • Got stat = "t" working
  • Refactored calculate() into smaller functions to reduce complexity
  • Produced error if mu is given in hypothesize() but stat = "median"
    is provided in calculate() and other similar mis-specifications
  • Tweaked chisq_stat() and t_stat() to match with specify() %>% calculate() framework
    • Both work in the one sample and two sample cases by providing formula
    • Added order argument to t_stat()
  • Added implementation of one sample t_test() by passing in the mu argument to t.test
    from hypothesize()
  • Tweaked pkgdown page to include ToDo's using {dplyr} example

Theoretical distributions to visualize and a few wrapper functions

15 May 17:56

Choose a tag to compare

  • Switched to !! instead of UQ() since UQ() is deprecated in
    {rlang} 0.2.0
  • Added many new files: CONDUCT.md, CONTRIBUTING.md, and TO-DO.md
  • Updated README file with more development information
  • Added wrapper functions t_test() and chisq_test() that use a
    formula interface and provide an intuitive wrapper to t.test() and
    chisq.test()
  • Created stat = "z" and stat = "t" options
  • Added many new arguments to visualize() to prescribe colors to shade and
    use for observed statistics and theoretical density curves
  • Added check so that a bar graph created with visualize() if number of
    unique values for generated statistics is small
  • Added shading for method = "theoretical"
  • Implemented shading for simulation methods w/o a traditional distribution
    • Use percentiles to determine two-tailed shading
  • Changed method = "randomization" to method = "simulation"
  • Added warning when theoretical distribution is used that
    assumptions should be checked
  • Added theoretical distributions to visualize() alone and as overlay with
    current implementations being
    • Two sample t
    • ANOVA F
    • One proportion z
    • Two proportion z
    • Chi-square test of independence
    • Chi-square Goodness of Fit test
    • Standardized slope (t)