| 
 | 1 | +# ParaCL Specification (Draft)  | 
 | 2 | + | 
 | 3 | +## 1.0 Introduction  | 
 | 4 | + | 
 | 5 | +**ParaCL** is a statically typed programming language with extensive type deduction and lightweight syntax.  | 
 | 6 | +It is designed primarily for educational purposes and focuses on explicit data flow, structural composition, and strong typing with predictable semantics.  | 
 | 7 | + | 
 | 8 | +---  | 
 | 9 | + | 
 | 10 | +## 1.1 Keywords and Program Structure  | 
 | 11 | + | 
 | 12 | +The following keywords are reserved and cannot be used as identifiers:  | 
 | 13 | + | 
 | 14 | +```  | 
 | 15 | +input, output, repeat, glue, bind, if, else, for, in, return, char, int, float, double  | 
 | 16 | +```  | 
 | 17 | + | 
 | 18 | +Every program consists of one or more **translation units (TUs)**.  | 
 | 19 | +A TU is a sequence of statements that must be executed in the specified order.  | 
 | 20 | + | 
 | 21 | +Example:  | 
 | 22 | + | 
 | 23 | +```pcl  | 
 | 24 | +// square.pcl  | 
 | 25 | +v0 : int = input(0);  | 
 | 26 | +output(0, v0);  | 
 | 27 | +```  | 
 | 28 | + | 
 | 29 | +As shown above, comments start with `//` and continue to the end of the line.  | 
 | 30 | + | 
 | 31 | +---  | 
 | 32 | + | 
 | 33 | +## 1.2 Types  | 
 | 34 | + | 
 | 35 | +Every entity (variable, constant, function, etc.) is introduced upon its first mention.  | 
 | 36 | +An entity always has an associated type, which can be either explicitly specified or automatically deduced by the compiler.  | 
 | 37 | + | 
 | 38 | +The special entities `input` and `output` are generic I/O primitives.  | 
 | 39 | +Conceptually, `input(0)` behaves like a typed standard input stream, and `output(0, value)` behaves like a typed standard output stream.  | 
 | 40 | + | 
 | 41 | +Example:  | 
 | 42 | + | 
 | 43 | +```pcl  | 
 | 44 | +v0 = 0;  | 
 | 45 | +v1 : double = v0;  | 
 | 46 | +v2 = input(0) : int;   // not input(v0)  | 
 | 47 | +v3 : int;  | 
 | 48 | +output(0, v1);  | 
 | 49 | +```  | 
 | 50 | + | 
 | 51 | +For integer types, you can explicitly specify the bit width:  | 
 | 52 | + | 
 | 53 | +```pcl  | 
 | 54 | +v0 : int(16) = 0; // 16-bit integer  | 
 | 55 | +```  | 
 | 56 | + | 
 | 57 | +By default, `int` is a 32-bit signed integer.  | 
 | 58 | + | 
 | 59 | +Integers use **two’s complement** representation and arithmetic wraps around on overflow—there is no undefined behavior.  | 
 | 60 | + | 
 | 61 | +The `char` type is a raw byte type, similar to `std::byte` in C++.  | 
 | 62 | + | 
 | 63 | +---  | 
 | 64 | + | 
 | 65 | +## 1.3 Arrays  | 
 | 66 | + | 
 | 67 | +An **array** is a contiguous collection of elements of the same type.  | 
 | 68 | +Arrays are stack-allocated. If the size is compile-time known, the array has a fixed length; otherwise, it behaves like a variable-length array (VLA).  | 
 | 69 | + | 
 | 70 | +A **vector** is a SIMD container that can only hold primitive element types.  | 
 | 71 | +Vectors always have compile-time known sizes and indices.  | 
 | 72 | + | 
 | 73 | +The `repeat` expression is syntactic sugar for constructing an array with repeated elements:  | 
 | 74 | + | 
 | 75 | +```pcl  | 
 | 76 | +arr0 = repeat(v0, 5);              // array of 5 identical elements  | 
 | 77 | +arr1 : int[5] = {1, 2, 3, 4};      // fixed-size array  | 
 | 78 | +arr2 : vector<int, 5> = {1, 2, 3, 4, 5}; // SIMD vector  | 
 | 79 | +
  | 
 | 80 | +v3 = 3;  | 
 | 81 | +v4 = arr0[v3];  | 
 | 82 | +v5 = arr2[3];                      // vector indexing requires constant index  | 
 | 83 | +arr_inputs = input(0..3) : int[4]; // array of 4 inputs  | 
 | 84 | +```  | 
 | 85 | + | 
 | 86 | +---  | 
 | 87 | + | 
 | 88 | +## 1.4 Structures  | 
 | 89 | + | 
 | 90 | +A **structure** is a compound entity that combines multiple entities of possibly different types.  | 
 | 91 | +Structures can be created using the `glue` expression, which aggregates several entities into one.  | 
 | 92 | + | 
 | 93 | +Members can be accessed by compile-time-known indices or by explicitly assigned names.  | 
 | 94 | + | 
 | 95 | +Examples:  | 
 | 96 | + | 
 | 97 | +```pcl  | 
 | 98 | +s0 = glue(v0, v2);  | 
 | 99 | +v3 = s0[0];  | 
 | 100 | +
  | 
 | 101 | +s1 = glue(s0 : x, v0 : y, arr0 : z);  | 
 | 102 | +v5 = s1.y;           // access by name  | 
 | 103 | +v6 = s1.z[0];  | 
 | 104 | +
  | 
 | 105 | +s2 : { x : int[5], y : double } = glue(repeat(v0, 5), v1);  | 
 | 106 | +s2.x = repeat(0, 5);  | 
 | 107 | +```  | 
 | 108 | + | 
 | 109 | +In the last example, a structure with an array field `x` and a scalar field `y` is created.  | 
 | 110 | + | 
 | 111 | +---  | 
 | 112 | + | 
 | 113 | +## 1.5 Functions  | 
 | 114 | + | 
 | 115 | +A **function** is an abstraction that encapsulates a sequence of expressions.  | 
 | 116 | +The result of a function is the value of its last expression, unless an explicit `return` is used.  | 
 | 117 | + | 
 | 118 | +Inside a function, the `input` expression returns the value of the corresponding argument.  | 
 | 119 | +If a function argument’s type is not explicitly declared, the function is **generic**.  | 
 | 120 | + | 
 | 121 | +Examples:  | 
 | 122 | + | 
 | 123 | +```pcl  | 
 | 124 | +f0 = { v3 = input(0) + 1; v3 * v3; };  | 
 | 125 | +v7 = f0(2); // but not f0(2, 3)  | 
 | 126 | +
  | 
 | 127 | +f1 : (x) = { v3 = x + 1; v3 * v3; };  // x is generic  | 
 | 128 | +f2 : (x, y) = { v3 = x + y; v3 * v3; }; // both generic  | 
 | 129 | +
  | 
 | 130 | +f3 : (x : int, y : double) : int = { v3 = x + y; v3 * v3; };  | 
 | 131 | +v8 = f3(v0, v1);  | 
 | 132 | +```  | 
 | 133 | + | 
 | 134 | +---  | 
 | 135 | + | 
 | 136 | +## 1.6 Methods  | 
 | 137 | + | 
 | 138 | +Functions can be **bound** to structures, turning them into **methods**.  | 
 | 139 | +The `bind` expression associates a function with a structure, optionally pre-filling some of its parameters with structure fields.  | 
 | 140 | + | 
 | 141 | +If the number of bound members is smaller than the number of parameters, the remaining ones must be passed explicitly when calling the method.  | 
 | 142 | + | 
 | 143 | +Examples:  | 
 | 144 | + | 
 | 145 | +```pcl  | 
 | 146 | +s3 : { x : int, g : () } = glue(v0, bind(f1, s3.x)); // bind requires function name  | 
 | 147 | +v9 = s3.g(); // (v0 + 1) * (v0 + 1)  | 
 | 148 | +
  | 
 | 149 | +s4 : { x : int, g : () } = glue(v0, bind(f2, s4.x));  | 
 | 150 | +v9 = s4.g(v1); // equivalent to f2(s4.x, v1)  | 
 | 151 | +```  | 
 | 152 | + | 
 | 153 | +---  | 
 | 154 | + | 
 | 155 | +## 1.7 Conditionals  | 
 | 156 | + | 
 | 157 | +Conditional statements use familiar syntax.  | 
 | 158 | +Both single-statement and block forms are supported:  | 
 | 159 | + | 
 | 160 | +```pcl  | 
 | 161 | +if (v2 == 0)  | 
 | 162 | +  v0 = f1(v0);  | 
 | 163 | +
  | 
 | 164 | +if (v2 == 0) {  | 
 | 165 | +  v0 = f1(v0);  | 
 | 166 | +}  | 
 | 167 | +
  | 
 | 168 | +if (v0 == v2) {  | 
 | 169 | +  v0 = f1(v0);  | 
 | 170 | +}  | 
 | 171 | +else {  | 
 | 172 | +  v2 = f1(v2);  | 
 | 173 | +}  | 
 | 174 | +```  | 
 | 175 | + | 
 | 176 | +---  | 
 | 177 | + | 
 | 178 | +## 1.8 Function Returns and Abbreviations  | 
 | 179 | + | 
 | 180 | +Functions can return early using the `return` statement.  | 
 | 181 | + | 
 | 182 | +Example:  | 
 | 183 | + | 
 | 184 | +```pcl  | 
 | 185 | +f4 : (x) = { if (x < 2) return 1; x * f4(x - 1); };  | 
 | 186 | +```  | 
 | 187 | + | 
 | 188 | +If a function body contains only a single expression, braces can be omitted:  | 
 | 189 | + | 
 | 190 | +```pcl  | 
 | 191 | +f5 : (x) = x * x;  | 
 | 192 | +f6 : (x) = { x * x; };  | 
 | 193 | +f7 : (x) = { return x * x; };  | 
 | 194 | +```  | 
 | 195 | + | 
 | 196 | +Functions with **generic** parameter types cannot be assigned to each other:  | 
 | 197 | + | 
 | 198 | +```pcl  | 
 | 199 | +f5 = f4; // invalid — types are generic  | 
 | 200 | +```  | 
 | 201 | + | 
 | 202 | +However, functions with **concrete** (fully specified) types can be reassigned:  | 
 | 203 | + | 
 | 204 | +```pcl  | 
 | 205 | +f8 : (x : int) = x + 1;  | 
 | 206 | +f9 : (x : int) = x * x + 1;  | 
 | 207 | +f8 = f9; // valid  | 
 | 208 | +```  | 
 | 209 | + | 
 | 210 | +---  | 
 | 211 | + | 
 | 212 | +## 1.9 Loops  | 
 | 213 | + | 
 | 214 | +Loop syntax is conventional and expressive.  | 
 | 215 | +Iteration over arrays is allowed, but **vectors cannot be iterated**.  | 
 | 216 | + | 
 | 217 | +Example:  | 
 | 218 | + | 
 | 219 | +```pcl  | 
 | 220 | +v0 = 5;  | 
 | 221 | +for (x in 0:5)          // or (x : int), (0:5:1), etc.  | 
 | 222 | +  v0 = v0 + x;  | 
 | 223 | +
  | 
 | 224 | +for (x in arr0) {        // array iteration  | 
 | 225 | +  v0 = v0 + x;  | 
 | 226 | +}  | 
 | 227 | +```  | 
 | 228 | + | 
 | 229 | +Additionally, ParaCL provides a `while` loop that executes while a condition remains true (non-zero).  | 
 | 230 | + | 
 | 231 | +Example: Fibonacci sequence  | 
 | 232 | + | 
 | 233 | +```pcl  | 
 | 234 | +n = 0;  | 
 | 235 | +a = 0;  | 
 | 236 | +b = 1;  | 
 | 237 | +x : int = input(0);  | 
 | 238 | +
  | 
 | 239 | +while (n < x) {  | 
 | 240 | +  n = n + 1;  | 
 | 241 | +
  | 
 | 242 | +  if (n == 1)  | 
 | 243 | +    output(0, a);  | 
 | 244 | +
  | 
 | 245 | +  if (n == 2)  | 
 | 246 | +    output(0, b);  | 
 | 247 | +
  | 
 | 248 | +  if (n > 2) {  | 
 | 249 | +    tmp = b;  | 
 | 250 | +    b = a + b;  | 
 | 251 | +    a = tmp;  | 
 | 252 | +    output(0, b);  | 
 | 253 | +  }  | 
 | 254 | +}  | 
 | 255 | +```  | 
 | 256 | + | 
0 commit comments