-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathpageRank.py
88 lines (72 loc) · 2.67 KB
/
pageRank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import operator
import math, random, sys, csv
from utils import parse, print_results
class PageRank:
def __init__(self, graph, directed):
self.graph = graph
self.V = len(self.graph)
self.d = 0.85
self.directed = directed
self.ranks = dict()
def rank(self):
for key, node in self.graph.nodes(data=True):
if self.directed:
self.ranks[key] = 1/float(self.V)
else:
self.ranks[key] = node.get('rank')
for _ in range(10):
for key, node in self.graph.nodes(data=True):
rank_sum = 0
curr_rank = node.get('rank')
if self.directed:
neighbors = self.graph.out_edges(key)
for n in neighbors:
outlinks = len(self.graph.out_edges(n[1]))
if outlinks > 0:
rank_sum += (1 / float(outlinks)) * self.ranks[n[1]]
else:
neighbors = self.graph[key]
for n in neighbors:
if self.ranks[n] is not None:
outlinks = len(self.graph.neighbors(n))
rank_sum += (1 / float(outlinks)) * self.ranks[n]
# actual page rank compution
self.ranks[key] = ((1 - float(self.d)) * (1/float(self.V))) + self.d*rank_sum
return p
if __name__ == '__main__':
if len(sys.argv) == 1:
print 'Expected input format: python pageRank.py <data_filename> <directed OR undirected>'
else:
filename = sys.argv[1]
isDirected = False
if sys.argv[2] == 'directed':
isDirected = True
graph = parse(filename, isDirected)
p = PageRank(graph, isDirected)
p.rank()
sorted_r = sorted(p.ranks.iteritems(), key=operator.itemgetter(1), reverse=True)
for tup in sorted_r:
print '{0:30} :{1:10}'.format(str(tup[0]), tup[1])
# for node in graph.nodes():
# print node + rank(graph, node)
#neighbs = graph.neighbors(node)
#print node + " " + str(neighbs)
#print random.uniform(0,1)
def rank(graph, node):
#V
nodes = graph.nodes()
#|V|
nodes_sz = len(nodes)
#I
neighbs = graph.neighbors(node)
#d
rand_jmp = random.uniform(0, 1)
ranks = []
ranks.append( (1/nodes_sz) )
for n in nodes:
rank = (1-rand_jmp) * (1/nodes_sz)
trank = 0
for nei in neighbs:
trank += (1/len(neighbs)) * ranks[len(ranks)-1]
rank = rank + (d * trank)
ranks.append(rank)