-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_multiple_model.py
111 lines (89 loc) · 4.09 KB
/
train_multiple_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import keras
import os
from model import get_model, get_augmentation
from opt import get_opt
from keras.api.preprocessing import image_dataset_from_directory
def get_dataset(root_dir, img_size, batch_size):
"""
Retrieves datasets for training, validation, and testing from the specified root directory.
Parameters:
- root_dir: The root directory containing the datasets.
- size: The size of the input images.
- batch_size: The batch size for the datasets.
Returns:
A tuple containing the training dataset, validation dataset, and class names.
"""
train_dataset = image_dataset_from_directory(directory=f"{root_dir}/train",
shuffle=True,
image_size=img_size,
batch_size=batch_size,
label_mode="categorical")
val_dataset = image_dataset_from_directory(directory=f"{root_dir}/val",
shuffle=True,
image_size=img_size,
batch_size=batch_size, label_mode="categorical")
class_names = train_dataset.class_names
augmentation = get_augmentation()
train_dataset = train_dataset.map(lambda x, y: (augmentation(x, training=True), y))
val_dataset = val_dataset.map(lambda x, y: (augmentation(x, training=True), y))
train_ds = train_dataset.cache().shuffle(len(train_dataset))
val_dataset = val_dataset.cache().shuffle(len(train_ds))
return train_dataset, val_dataset,class_names
def train_single(model, train_ds, val_ds, epoch, export_dir=None, h5_dir=None):
"""
Trains a single model using the provided dataset and parameters.
Parameters:
- model: The model to train.
- train_ds: The training dataset.
- val_ds: The validation dataset.
- epoch: The number of epochs to train.
- export_dir: The directory to export the trained model.
- h5_dir: The directory to save the model in h5 format.
Returns:
None
"""
model.fit(train_ds, epochs=epoch, validation_data=val_ds)
if export_dir:
if not os.path.exists(export_dir):
os.makedirs(export_dir, exist_ok=True)
print(f"Export model to {export_dir}")
model.export(f"{export_dir}/{model.name}")
if h5_dir:
if not os.path.exists(h5_dir):
os.makedirs(h5_dir, exist_ok=True)
print(f"Save model to {h5_dir}")
model.save(f"{h5_dir}/{model.name}.h5")
def train_disease_classification(root_dir, img_size, batch_size, epoch, export_dir=None, h5_dir=None):
"""
Trains a disease classification model based on datasets in the specified root directory.
Parameters:
- root_dir: The root directory containing the datasets.
- size: The size of the input images.
- batch_size: The batch size for training.
- epoch: The number of epochs to train the model.
- export_dir: Path to export the trained model.
- h5_dir: Path to save the model in h5 format.
Returns:
None
"""
list_dataset_name = os.listdir(root_dir)
print(f"Found {len(list_dataset_name)} dataset in {root_dir}")
print("Start training...")
for name in list_dataset_name:
model_name = f"{name}_classification"
data_root = f"{root_dir}/{name}"
print(f"Get train, val, test ds in {data_root}")
train_ds, val_ds, class_names = get_dataset(f"{root_dir}/{name}", (img_size, img_size), batch_size)
print(f"Get model for {name} dataset")
model = get_model((img_size, img_size, 3), len(class_names), model_name)
model.compile(
loss=keras.losses.CategoricalCrossentropy(),
optimizer=keras.optimizers.Adam(learning_rate=0.001),
metrics=["accuracy"], )
print(f"Training model with {epoch} epochs")
train_single(model, train_ds, val_ds, epoch, export_dir, h5_dir)
def trainer():
opt = get_opt()
train_disease_classification(**vars(opt))
if __name__ == "__main__":
trainer()