-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
djisktraCPP.cpp
52 lines (42 loc) · 1.5 KB
/
djisktraCPP.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include<bits/stdc++.h>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
int main(){
int n,m,source;
cin>>n>>m;
vector<pair<int,int>> g[n+1]; // 1-indexed adjacency list for of graph
int a,b,wt;
for(int i=0;i<m;i++){
cin>>a>>b>>wt;
g[a].push_back(make_pair(b,wt));
g[b].push_back(make_pair(a,wt));
}
cin>>source;
// Dijkstra's algorithm begins from here
priority_queue<pair<int,int>, vector<pair<int,int>> ,greater<pair<int,int>> pq; // min-heap ; In pair => (dist,from)
vector<int> distTo(n+!, INT_MAX); // 1-indexed array for calculating shortest paths;
distTo[source]=0;
pq.push(make_pair(0,source));
while(!pq.empty()){
int dist=pq.top().first;
int prev=pq.top().second;
pq.pop();
vector<pair<int,int>>:: iterator it;
for(it=g[prev].begin(); it!=g[prev].end();i++){
int next=it->first;
int nextDist=it->second;
if(distTo[next]> distTo[prev]+nextDist){
distTo[next]=distTo[prev]+nextDist;
pq.push(make_pair(distTo[next, next]));
}
}
}
cout<<"The distances from source, "<<source<<", are:\n";
for(int i=1;i<=n;i++){
cout<<distTo[i]<<" ";
cout<<"\n";
return 0;
}
}