You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -435,6 +437,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
435
437
panel_visibility="advanced">
436
438
<IntRangeDomainname="range"min="0"max="100" />
437
439
<Documentation>
440
+
Number of times the SMACOF algorithm will be run with different initializations. The final results will be the best output of the runs, determined by the run with the smallest final stress.
438
441
</Documentation>
439
442
</IntVectorProperty>
440
443
@@ -446,6 +449,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
446
449
panel_visibility="advanced">
447
450
<IntRangeDomainname="range"min="0"max="100" />
448
451
<Documentation>
452
+
Maximum number of iterations of the SMACOF algorithm for a single run.
449
453
</Documentation>
450
454
</IntVectorProperty>
451
455
@@ -468,6 +472,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50.
482
488
</Documentation>
483
489
</DoubleVectorProperty>
484
490
@@ -490,6 +496,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
Controls how tight natural clusters in the original space are in the embedded space and how much space will be between them. For larger values, the space between natural clusters will be larger in the embedded space.
493
500
</Documentation>
494
501
</DoubleVectorProperty>
495
502
@@ -501,6 +508,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
The learning rate for t-SNE is usually in the range [10.0, 1000.0]. If the learning rate is too high, the data may look like a ‘ball’ with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum increasing the learning rate may help.
504
512
</Documentation>
505
513
</DoubleVectorProperty>
506
514
@@ -512,6 +520,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
512
520
panel_visibility="advanced">
513
521
<IntRangeDomainname="range"min="0"max="100" />
514
522
<Documentation>
523
+
Maximum number of iterations for the optimization. Should be at least 250.
515
524
</Documentation>
516
525
</IntVectorProperty>
517
526
@@ -523,7 +532,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
523
532
panel_visibility="advanced">
524
533
<IntRangeDomainname="range"min="0"max="100" />
525
534
<Documentation>
526
-
Documentation.
535
+
Maximum number of iterations without progress before we abort the optimization, used after 250 initial iterations with early exaggeration. This value is rounded to the next multiple of 50.
527
536
</Documentation>
528
537
</IntVectorProperty>
529
538
@@ -535,6 +544,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
If the gradient norm is below this threshold, the optimization will be stopped.
538
548
</Documentation>
539
549
</DoubleVectorProperty>
540
550
@@ -544,21 +554,23 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
544
554
number_of_elements="1"
545
555
default_values="euclidean"
546
556
panel_visibility="advanced">
547
-
<Documentation>
557
+
<Documentation>
558
+
The metric to use when calculating distance between instances in a feature array.
548
559
</Documentation>
549
560
</StringVectorProperty>
550
561
551
562
<StringVectorPropertyname="tsne_Init"
552
563
label="Init"
553
564
command="Settsne_Init"
554
565
number_of_elements="1"
555
-
default_values="random"
566
+
default_values="pca"
556
567
panel_visibility="advanced">
557
568
<StringListDomainname="enum">
558
569
<Stringvalue="random"/>
559
570
<Stringvalue="pca"/>
560
571
</StringListDomain>
561
572
<Documentation>
573
+
Initialization of embedding. PCA initialization cannot be used with precomputed distances and is usually more globally stable than random initialization.
562
574
</Documentation>
563
575
</StringVectorProperty>
564
576
@@ -584,6 +596,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
584
596
<Stringvalue="exact"/>
585
597
</StringListDomain>
586
598
<Documentation>
599
+
By default the gradient calculation algorithm uses Barnes-Hut approximation running in O(NlogN) time. exact will run in time O(N^2) time. The exact algorithm should be used when nearest-neighbor errors need to be better than 3%.
587
600
</Documentation>
588
601
</StringVectorProperty>
589
602
@@ -595,6 +608,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
Only used for Barnes Hut. This is the trade-off between speed and accuracy for Barnes-Hut T-SNE. Angle less than 0.2 has quickly increasing computation time and angle greater 0.8 has quickly increasing error.
598
612
</Documentation>
599
613
</DoubleVectorProperty>
600
614
@@ -621,6 +635,7 @@ IEEE Transactions on Visualization and Computer Graphics 27(2): 561-571, 2020.
0 commit comments