|
| 1 | +#include <DiscreteVectorField.h> |
| 2 | + |
| 3 | +using namespace std; |
| 4 | +using namespace ttk; |
| 5 | +using namespace dcvf; |
| 6 | + |
| 7 | +int DiscreteVectorField::getDimensionality() const { |
| 8 | + return dimensionality_; |
| 9 | +} |
| 10 | + |
| 11 | +int DiscreteVectorField::getNumberOfDimensions() const { |
| 12 | + return dimensionality_ + 1; |
| 13 | +} |
| 14 | + |
| 15 | +void DiscreteVectorField::initMemory( |
| 16 | + const AbstractTriangulation &triangulation) { |
| 17 | + |
| 18 | + Timer tm{}; |
| 19 | + const int numberOfDimensions = this->getNumberOfDimensions(); |
| 20 | + |
| 21 | + // init number of cells by dimension |
| 22 | + std::vector<SimplexId> numberOfCells(numberOfDimensions); |
| 23 | + for(int i = 0; i < numberOfDimensions; ++i) { |
| 24 | + numberOfCells[i] = this->getNumberOfCells(i, triangulation); |
| 25 | + } |
| 26 | + |
| 27 | + // clear & init discrete vectors memory |
| 28 | + for(int i = 0; i < dimensionality_; ++i) { |
| 29 | + (*vectors_)[2 * i].clear(); |
| 30 | + (*vectors_)[2 * i].resize(numberOfCells[i], -1); |
| 31 | + (*vectors_)[2 * i + 1].clear(); |
| 32 | + (*vectors_)[2 * i + 1].resize(numberOfCells[i + 1], -1); |
| 33 | + } |
| 34 | + |
| 35 | + std::vector<std::vector<std::string>> rows{ |
| 36 | + {"#Vertices", std::to_string(numberOfCells[0])}, |
| 37 | + {"#Edges", std::to_string(numberOfCells[1])}, |
| 38 | + }; |
| 39 | + |
| 40 | + if(dimensionality_ >= 2) { |
| 41 | + rows.emplace_back( |
| 42 | + std::vector<std::string>{"#Triangles", std::to_string(numberOfCells[2])}); |
| 43 | + } |
| 44 | + |
| 45 | + if(dimensionality_ == 3) { |
| 46 | + rows.emplace_back( |
| 47 | + std::vector<std::string>{"#Tetras", std::to_string(numberOfCells[3])}); |
| 48 | + } |
| 49 | + |
| 50 | + this->printMsg(rows); |
| 51 | + this->printMsg("Initialized discrete vectors memory", 1.0, |
| 52 | + tm.getElapsedTime(), this->threadNumber_); |
| 53 | +} |
| 54 | + |
| 55 | +std::pair<size_t, SimplexId> |
| 56 | + DiscreteVectorField::numUnpairedFaces(const CellOutExt &c, |
| 57 | + const outwardStarType &ls) const { |
| 58 | + // c.dim_ cannot be <= 1 |
| 59 | + if(c.dim_ == 2) { |
| 60 | + return numUnpairedFacesTriangle(c, ls); |
| 61 | + } else if(c.dim_ == 3) { |
| 62 | + return numUnpairedFacesTetra(c, ls); |
| 63 | + } |
| 64 | + |
| 65 | + return {0, -1}; |
| 66 | +} |
| 67 | + |
| 68 | +std::pair<size_t, SimplexId> DiscreteVectorField::numUnpairedFacesTriangle( |
| 69 | + const CellOutExt &c, const outwardStarType &ls) const { |
| 70 | + // number of unpaired faces |
| 71 | + std::pair<size_t, SimplexId> res{0, -1}; |
| 72 | + |
| 73 | + // loop over edge faces of triangle |
| 74 | + // (2 edges per triangle in outward star) |
| 75 | + for(size_t i = 0; i < 2; ++i) { |
| 76 | + if(!ls[1][c.faces_[i]].paired_) { |
| 77 | + res.first++; |
| 78 | + res.second = c.faces_[i]; |
| 79 | + } |
| 80 | + } |
| 81 | + |
| 82 | + return res; |
| 83 | +} |
| 84 | + |
| 85 | +std::pair<size_t, SimplexId> |
| 86 | + DiscreteVectorField::numUnpairedFacesTetra(const CellOutExt &c, |
| 87 | + const outwardStarType &ls) const { |
| 88 | + // number of unpaired faces |
| 89 | + std::pair<size_t, SimplexId> res{0, -1}; |
| 90 | + |
| 91 | + // loop over triangle faces of tetra |
| 92 | + for(const auto f : c.faces_) { |
| 93 | + if(!ls[2][f].paired_) { |
| 94 | + res.first++; |
| 95 | + res.second = f; |
| 96 | + } |
| 97 | + } |
| 98 | + |
| 99 | + return res; |
| 100 | +} |
| 101 | + |
| 102 | +bool DiscreteVectorField::isCellCritical(const int cellDim, |
| 103 | + const SimplexId cellId) const { |
| 104 | + |
| 105 | + if(cellDim > this->dimensionality_) { |
| 106 | + return false; |
| 107 | + } |
| 108 | +#ifndef TTK_ENABLE_KAMIKAZE |
| 109 | + if(cellId < 0) { |
| 110 | + this->printErr("Invalid cell ID given to isCellCritical"); |
| 111 | + return false; |
| 112 | + } |
| 113 | +#endif |
| 114 | + |
| 115 | + if(cellDim == 0) { |
| 116 | + return ((*vectors_)[0][cellId] == NULL_CONNECTION); |
| 117 | + } |
| 118 | + |
| 119 | + if(cellDim == 1) { |
| 120 | + return ( |
| 121 | + (*vectors_)[1][cellId] == NULL_CONNECTION |
| 122 | + && (dimensionality_ == 1 || (*vectors_)[2][cellId] == NULL_CONNECTION)); |
| 123 | + } |
| 124 | + |
| 125 | + if(cellDim == 2) { |
| 126 | + return ( |
| 127 | + (*vectors_)[3][cellId] == NULL_CONNECTION |
| 128 | + && (dimensionality_ == 2 || (*vectors_)[4][cellId] == NULL_CONNECTION)); |
| 129 | + } |
| 130 | + |
| 131 | + if(cellDim == 3) { |
| 132 | + return ((*vectors_)[5][cellId] == NULL_CONNECTION); |
| 133 | + } |
| 134 | + |
| 135 | + return false; |
| 136 | +} |
| 137 | + |
| 138 | +bool DiscreteVectorField::isCellCritical(const Cell &cell) const { |
| 139 | + return isCellCritical(cell.dim_, cell.id_); |
| 140 | +} |
| 141 | + |
| 142 | +int DiscreteVectorField::setManifoldSize( |
| 143 | + const std::array<std::vector<SimplexId>, 4> &criticalCellsByDim, |
| 144 | + const SimplexId *const ascendingManifold, |
| 145 | + const SimplexId *const descendingManifold, |
| 146 | + std::vector<SimplexId> &manifoldSize) const { |
| 147 | + |
| 148 | + const auto nCritPoints{ |
| 149 | + criticalCellsByDim[0].size() + criticalCellsByDim[1].size() |
| 150 | + + criticalCellsByDim[2].size() + criticalCellsByDim[3].size()}; |
| 151 | + |
| 152 | + const auto dim{this->dimensionality_}; |
| 153 | + |
| 154 | + if(nCritPoints == 0 |
| 155 | + || (criticalCellsByDim[0].empty() && criticalCellsByDim[dim].empty())) { |
| 156 | + // no critical points || no extrema |
| 157 | + return 0; |
| 158 | + } |
| 159 | + |
| 160 | + manifoldSize.resize(nCritPoints, 0); |
| 161 | + |
| 162 | + // descending manifold cells size |
| 163 | + if(!criticalCellsByDim[0].empty()) { |
| 164 | + const SimplexId nMin = static_cast<SimplexId>(criticalCellsByDim[0].size()); |
| 165 | + for(SimplexId i = 0; i < numberOfVertices_; ++i) { |
| 166 | + if(descendingManifold[i] != -1 && descendingManifold[i] < nMin) { |
| 167 | + manifoldSize[descendingManifold[i]]++; |
| 168 | + } |
| 169 | + } |
| 170 | + } |
| 171 | + |
| 172 | + if(!criticalCellsByDim[dim].empty()) { |
| 173 | + // index of first maximum in critical points array |
| 174 | + const auto nFirstMaximum{nCritPoints - criticalCellsByDim[dim].size()}; |
| 175 | + const SimplexId nMax |
| 176 | + = static_cast<SimplexId>(criticalCellsByDim[dim].size()); |
| 177 | + // ascending manifold cells size |
| 178 | + for(SimplexId i = 0; i < numberOfVertices_; ++i) { |
| 179 | + if(ascendingManifold[i] != -1 && ascendingManifold[i] < nMax) { |
| 180 | + manifoldSize[ascendingManifold[i] + nFirstMaximum]++; |
| 181 | + } |
| 182 | + } |
| 183 | + } |
| 184 | + |
| 185 | + return 0; |
| 186 | +} |
| 187 | + |
| 188 | +#ifdef TTK_ENABLE_MPI |
| 189 | +void DiscreteVectorField::setCellToGhost(const int cellDim, |
| 190 | + const SimplexId cellId) { |
| 191 | + if(cellDim == 0) { |
| 192 | + (*vectors_)[0][cellId] = GHOST_CONNECTION; |
| 193 | + } |
| 194 | + |
| 195 | + if(cellDim == 1) { |
| 196 | + (*vectors_)[1][cellId] = GHOST_CONNECTION; |
| 197 | + (*vectors_)[2][cellId] = GHOST_CONNECTION; |
| 198 | + } |
| 199 | + |
| 200 | + if(cellDim == 2) { |
| 201 | + (*vectors_)[3][cellId] = GHOST_CONNECTION; |
| 202 | + (*vectors_)[4][cellId] = GHOST_CONNECTION; |
| 203 | + } |
| 204 | + |
| 205 | + if(cellDim == 3) { |
| 206 | + (*vectors_)[5][cellId] = GHOST_CONNECTION; |
| 207 | + } |
| 208 | +} |
| 209 | +#endif |
0 commit comments