-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogger.py
70 lines (62 loc) · 2.11 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514
import os
import time
import sys
import torch
USE_TENSORBOARD = False
#try:
# import tensorboardX
# print('Using tensorboardX')
#except:
# USE_TENSORBOARD = False
class Logger(object):
def __init__(self, opt):
"""Create a summary writer logging to log_dir."""
if not os.path.exists(opt.save_dir):
os.makedirs(opt.save_dir)
time_str = time.strftime('%Y-%m-%d-%H-%M')
args = dict((name, getattr(opt, name)) for name in dir(opt)
if not name.startswith('_'))
file_name = os.path.join(opt.save_dir, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('==> torch version: {}\n'.format(torch.__version__))
opt_file.write('==> cudnn version: {}\n'.format(
torch.backends.cudnn.version()))
opt_file.write('==> Cmd:\n')
opt_file.write(str(sys.argv))
opt_file.write('\n==> Opt:\n')
for k, v in sorted(args.items()):
opt_file.write(' %s: %s\n' % (str(k), str(v)))
log_dir = opt.save_dir + '/logs_{}'.format(time_str)
if USE_TENSORBOARD:
self.writer = tensorboardX.SummaryWriter(log_dir=log_dir)
else:
if not os.path.exists(os.path.dirname(log_dir)):
os.mkdir(os.path.dirname(log_dir))
if not os.path.exists(log_dir):
os.mkdir(log_dir)
self.log = open(log_dir + '/log.txt', 'w')
try:
os.system('cp {}/opt.txt {}/'.format(opt.save_dir, log_dir))
except:
pass
self.start_line = True
def write(self, txt):
if self.start_line:
time_str = time.strftime('%Y-%m-%d-%H-%M')
self.log.write('{}: {}'.format(time_str, txt))
else:
self.log.write(txt)
self.start_line = False
if '\n' in txt:
self.start_line = True
self.log.flush()
def close(self):
self.log.close()
# def scalar_summary(self, tag, value, step):
# """Log a scalar variable."""
# if USE_TENSORBOARD:
# self.writer.add_scalar(tag, value, step)