@@ -43,15 +43,15 @@ def test_remove_outliers_clip(data: DataContainer) -> None:
43
43
44
44
# Check that the outlier values are dropped from the DataFrame
45
45
for outlier in outlier_rows :
46
- assert (
47
- outlier not in result . train [ column ]. to_numpy ()
48
- ), f"Outlier value { outlier } was not dropped from the DataFrame"
46
+ assert outlier not in result . train [ column ]. to_numpy (), (
47
+ f"Outlier value { outlier } was not dropped from the DataFrame"
48
+ )
49
49
50
50
# Check that the normal values are still present in the DataFrame
51
51
for normal_value in normal_rows :
52
- assert (
53
- normal_value in result . train [ column ]. to_numpy ()
54
- ), f"Normal value { normal_value } was incorrectly dropped from the DataFrame"
52
+ assert normal_value in result . train [ column ]. to_numpy (), (
53
+ f"Normal value { normal_value } was incorrectly dropped from the DataFrame"
54
+ )
55
55
56
56
57
57
def test_remove_outliers_drop (data : DataContainer ) -> None :
@@ -64,15 +64,15 @@ def test_remove_outliers_drop(data: DataContainer) -> None:
64
64
65
65
# Check that the outlier values are dropped from the DataFrame
66
66
for outlier in outlier_rows :
67
- assert (
68
- outlier not in result . train [ column ]. to_numpy ()
69
- ), f"Outlier value { outlier } was not dropped from the DataFrame"
67
+ assert outlier not in result . train [ column ]. to_numpy (), (
68
+ f"Outlier value { outlier } was not dropped from the DataFrame"
69
+ )
70
70
71
71
# Check that the normal values are still present in the DataFrame
72
72
for normal_value in normal_rows :
73
- assert (
74
- normal_value in result . train [ column ]. to_numpy ()
75
- ), f"Normal value { normal_value } was incorrectly dropped from the DataFrame"
73
+ assert normal_value in result . train [ column ]. to_numpy (), (
74
+ f"Normal value { normal_value } was incorrectly dropped from the DataFrame"
75
+ )
76
76
77
77
78
78
def test_convert_dtypes (data : DataContainer ) -> None :
0 commit comments