-
Notifications
You must be signed in to change notification settings - Fork 112
/
hyperloglog.go
253 lines (222 loc) · 6.88 KB
/
hyperloglog.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
Original work Copyright 2013 Eric Lesh
Modified work Copyright 2015 Tyler Treat
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
*/
package boom
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"hash"
"hash/fnv"
"io"
"math"
)
var exp32 = math.Pow(2, 32)
// HyperLogLog implements the HyperLogLog cardinality estimation algorithm as
// described by Flajolet, Fusy, Gandouet, and Meunier in HyperLogLog: the
// analysis of a near-optimal cardinality estimation algorithm:
//
// http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
//
// HyperLogLog is a probabilistic algorithm which approximates the number of
// distinct elements in a multiset. It works by hashing values and calculating
// the maximum number of leading zeros in the binary representation of each
// hash. If the maximum number of leading zeros is n, the estimated number of
// distinct elements in the set is 2^n. To minimize variance, the multiset is
// split into a configurable number of registers, the maximum number of leading
// zeros is calculated in the numbers in each register, and a harmonic mean is
// used to combine the estimates.
//
// For large or unbounded data sets, calculating the exact cardinality is
// impractical. HyperLogLog uses a fraction of the memory while providing an
// accurate approximation. For counting element frequency, refer to the
// Count-Min Sketch.
type HyperLogLog struct {
registers []uint8 // counter registers
m uint // number of registers
b uint32 // number of bits to calculate register
alpha float64 // bias-correction constant
hash hash.Hash32 // hash function
}
// NewHyperLogLog creates a new HyperLogLog with m registers. Returns an error
// if m isn't a power of two.
func NewHyperLogLog(m uint) (*HyperLogLog, error) {
if (m & (m - 1)) != 0 {
return nil, errors.New("m must be a power of two")
}
return &HyperLogLog{
registers: make([]uint8, m),
m: m,
b: uint32(math.Ceil(math.Log2(float64(m)))),
alpha: calculateAlpha(m),
hash: fnv.New32(),
}, nil
}
// NewDefaultHyperLogLog creates a new HyperLogLog optimized for the specified
// standard error. Returns an error if the number of registers can't be
// calculated for the provided accuracy.
func NewDefaultHyperLogLog(e float64) (*HyperLogLog, error) {
m := math.Pow(1.04/e, 2)
return NewHyperLogLog(uint(math.Pow(2, math.Ceil(math.Log2(m)))))
}
// Add will add the data to the set. Returns the HyperLogLog to allow for
// chaining.
func (h *HyperLogLog) Add(data []byte) *HyperLogLog {
var (
hash = h.calculateHash(data)
k = 32 - h.b
r = calculateRho(hash<<h.b, k)
j = hash >> uint(k)
)
if r > h.registers[j] {
h.registers[j] = r
}
return h
}
// Count returns the approximated cardinality of the set.
func (h *HyperLogLog) Count() uint64 {
sum := 0.0
m := float64(h.m)
for _, val := range h.registers {
sum += 1.0 / math.Pow(2.0, float64(val))
}
estimate := h.alpha * m * m / sum
if estimate <= 5.0/2.0*m {
// Small range correction
v := 0
for _, r := range h.registers {
if r == 0 {
v++
}
}
if v > 0 {
estimate = m * math.Log(m/float64(v))
}
} else if estimate > 1.0/30.0*exp32 {
// Large range correction
estimate = -exp32 * math.Log(1-estimate/exp32)
}
return uint64(estimate)
}
// Merge combines this HyperLogLog with another. Returns an error if the number
// of registers in the two HyperLogLogs are not equal.
func (h *HyperLogLog) Merge(other *HyperLogLog) error {
if h.m != other.m {
return errors.New("number of registers must match")
}
for j, r := range other.registers {
if r > h.registers[j] {
h.registers[j] = r
}
}
return nil
}
// Reset restores the HyperLogLog to its original state. It returns itself to
// allow for chaining.
func (h *HyperLogLog) Reset() *HyperLogLog {
h.registers = make([]uint8, h.m)
return h
}
// calculateHash calculates the 32-bit hash value for the provided data.
func (h *HyperLogLog) calculateHash(data []byte) uint32 {
h.hash.Write(data)
sum := h.hash.Sum32()
h.hash.Reset()
return sum
}
// SetHash sets the hashing function used.
func (h *HyperLogLog) SetHash(ha hash.Hash32) {
h.hash = ha
}
// calculateAlpha calculates the bias-correction constant alpha based on the
// number of registers, m.
func calculateAlpha(m uint) (result float64) {
switch m {
case 16:
result = 0.673
case 32:
result = 0.697
case 64:
result = 0.709
default:
result = 0.7213 / (1.0 + 1.079/float64(m))
}
return result
}
// calculateRho calculates the position of the leftmost 1-bit.
func calculateRho(val, max uint32) uint8 {
r := uint32(1)
for val&0x80000000 == 0 && r <= max {
r++
val <<= 1
}
return uint8(r)
}
// WriteDataTo writes a binary representation of the Hll data to
// an io stream. It returns the number of bytes written and error
func (h *HyperLogLog) WriteDataTo(stream io.Writer) (n int, err error) {
buf := new(bytes.Buffer)
// write register number first
err = binary.Write(buf, binary.LittleEndian, uint64(h.m))
if err != nil {
return
}
err = binary.Write(buf, binary.LittleEndian, h.b)
if err != nil {
return
}
err = binary.Write(buf, binary.LittleEndian, h.alpha)
if err != nil {
return
}
err = binary.Write(buf, binary.LittleEndian, h.registers)
if err != nil {
return
}
n, err = stream.Write(buf.Bytes())
return
}
// ReadDataFrom reads a binary representation of the Hll data written
// by WriteDataTo() from io stream. It returns the number of bytes read
// and error.
// If serialized Hll configuration is different it returns error with expected params
func (h *HyperLogLog) ReadDataFrom(stream io.Reader) (int, error) {
var m uint64
// read register number first
err := binary.Read(stream, binary.LittleEndian, &m)
if err != nil {
return 0, err
}
// check if register number is appropriate
// hll register number should be same with serialized hll
if uint64(h.m) != m {
return 0, fmt.Errorf("expected hll register number %d", m)
}
// set other values
err = binary.Read(stream, binary.LittleEndian, &h.b)
if err != nil {
return 0, err
}
err = binary.Read(stream, binary.LittleEndian, &h.alpha)
if err != nil {
return 0, err
}
err = binary.Read(stream, binary.LittleEndian, h.registers)
if err != nil {
return 0, err
}
// count size of data in registers + m, b, alpha
size := int(h.m)*binary.Size(uint8(0)) + binary.Size(uint64(0)) + binary.Size(uint32(0)) + binary.Size(float64(0))
return size, err
}