-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCopy of Q1.R
101 lines (89 loc) · 2.26 KB
/
Copy of Q1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#Q1-Bisection & Newton Method
#f(x)=log(x+x^2)/(1+x^3)
#Be aware that the domain of x is (-inf,-1)U(0,+inf)
f=function(x){
result=log(x+(x^2))/(1+(x^3))
return(result)
}
#f'(x)=((1/(x+x^2))*(1+2x)(1+x^3)-3x^2*log(x+x^2))/(1+x^3)^2
#find f'(x)=0 equal to find its nominator g(x)= 0#Q1-Bisection & Newton Method
#f(x)=log(x+x^2)/(1+x^3)
#Be aware that the domain of x is (-inf,-1)U(0,+inf)
f=function(x){
result=log(x+(x^2))/(1+(x^3))
return(result)
}
#f'(x)=((1/(x+x^2))*(1+2x)(1+x^3)-3x^2*log(x+x^2))/(1+x^3)^2
#find f'(x)=0 equal to find its nominator g(x)= 0
g=function(x){
result=((1/(x+x^2))*(1+2*x)*(1+(x^3))-3*(x^2)*log(x+(x^2)))/(1+x^3)^2
return(result)
}
#set f''x nominator h(x)
h=function(x){
result=(x^2*(x*(6*(2*x^3-1)*log(x*(x+1))-14*x^3+8*x^2-9*x-6)-1)-1)/(x^2*(x+1)^3*(x^2-x+1)^3)
return(result)
}
#Biseciton Method
bisection=function(fx,a,b,error,step){
i<-0
if(f(a)*f(b)>0) return("Invalid Interval [a,b]")
while(b-a>error){
c=(a+b)/2
ifelse(fx(a)*fx(c)<0,b<-c,a<-c);
i=i+1
if(i>=step) return("Steps has been used up")
}
root=(a+b)/2
return(root)
}
#Newton's Method
newton=function(fx,dfx,x_n,error,step){
j<-0
x_n_1=x_n+1
while(abs(x_n_1-x_n)>error){
x_c=x_n-fx(x_n)/dfx(x_n)
x_n_1=x_n
x_n=x_c
j=j+1
if(j>=step) return("Steps has been used up")
}
root=x_n_1
return(root)
}
#obtain educated guess by ploting
xneg=seq(from=-5,to=-1, by=0.1)
xpos=seq(from=0,to=2, by=0.1)
x=c(xneg,xpos)
plot(x,f(x),type="l")
#Impletement bisection method and Newton's method
b<-bisection(g,0.5,1.5,10e-10,1000000)
b
f(b)
n<-newton(g,h,1,10e-10,1000000)
n
f(n)
#number of iterations
bisection_step=function(fx,a,b,error,step){
i<-0
if(f(a)*f(b)>0) return("Invalid Interval [a,b]")
while(b-a>error){
c=(a+b)/2
ifelse(fx(a)*fx(c)<0,b<-c,a<-c);
i=i+1
if(i>=step) return("Steps has been used up")
}
return(i)
}
bisection_step(g,0.5,1.5,10e-10,1000000)
newton_step=function(fx,dfx,x_n,error,step){
j<-0
x_n_1=x_n+1
while(abs(x_n_1-x_n)>error){
x_c=x_n-fx(x_n)/dfx(x_n)
x_n_1=x_n
x_n=x_c
j=j+1
if(j>=step) return("Steps has been used up")}
return(j)}
newton_step(g,h,1,10e-10,1000000)