Skip to content

RuntimeError: tensors used as indices must be long or byte tensors #2

@Supermaxman

Description

@Supermaxman

I am trying to run the examples.simple.main.py and I encounter the following exception:

RuntimeError: tensors used as indices must be long or byte tensors

I have the following packages installed with pip3 in python3.6:

neat-python==0.92
numpy==1.15.2+mkl
gym==0.10.5
click==6.7
torch==0.4.0
torchvision==0.2.1

This error occurs within pytorch_neat.recurrent_net in the dense_from_coo function:

def dense_from_coo(shape, conns, dtype=torch.float64):
    mat = torch.zeros(shape, dtype=dtype)
    idxs, weights = conns
    if len(idxs) == 0:
        return mat
    rows, cols = np.array(idxs).transpose()
    mat[torch.tensor(rows), torch.tensor(cols)] = torch.tensor(
        weights, dtype=dtype)
    return mat

The problem is that np.array is assuming int32 for the indexes, but torch wants int64.
Simple solution:

def dense_from_coo(shape, conns, dtype=torch.float64):
    mat = torch.zeros(shape, dtype=dtype)
    idxs, weights = conns
    if len(idxs) == 0:
        return mat
    rows, cols = np.array(idxs, dtype=np.int64).transpose()
    mat[torch.tensor(rows), torch.tensor(cols)] = torch.tensor(
        weights, dtype=dtype)
    return mat

The difference may be from the differing numpy versions, but I think this change makes sense regardless for torch tensor indexing.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions