-
-
Notifications
You must be signed in to change notification settings - Fork 17.1k
Description
❔Question
Starting training for 300 epochs...
Epoch gpu_mem box obj cls total targets img_size
0/299 5.73G 0.09355 0.08561 0.08285 0.262 154 640: 100%|██████████| 3697/3697 [37:33<00:00, 1.64it/s]
Class Images Targets P R [email protected] [email protected]:.95: 100%|██████████| 157/157 [01:31<00:00, 1.71it/s]
Epoch gpu_mem box obj cls total targets img_size
1/299 6.98G 0.09522 0.1221 0.08584 0.3032 247 640: 100%|██████████| 3697/3697 [35:22<00:00, 1.74it/s]
Class Images Targets P R [email protected] [email protected]:.95: 0%| | 0/157 [00:00<?, ?it/s]
Analyzing anchors... anchors/target = 4.45, Best Possible Recall (BPR) = 0.9949
all 5e+03 3.63e+04 0.0145 0.00296 0.00248 0.000805
Traceback (most recent call last):
File "train.py", line 503, in
train(hyp, opt, device, tb_writer, wandb)
File "train.py", line 336, in train
results, maps, times = test.test(opt.data,
File "/disk1/huihui/yolov5/test.py", line 120, in test
output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb)
File "/disk1/huihui/yolov5/utils/general.py", line 332, in non_max_suppression
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
File "/home/phzhou/anaconda3/envs/pt1/lib/python3.8/site-packages/torchvision/ops/boxes.py", line 42, in nms
return torch.ops.torchvision.nms(boxes, scores, iou_threshold)
RuntimeError: Trying to create tensor with negative dimension -1592267047: [-1592267047]