-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathentropy.go
80 lines (67 loc) · 1.27 KB
/
entropy.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
package randumb
import (
"sort"
"sync"
)
// Arbitrary thresholds outside of which randomness is "likely"
const (
FreqThresh = .6
SkewThresh = .2
)
/*
* Pearson's second skewness coefficient:
* 3 * (avg - median) / std_dev
*/
func Skewness(data []byte, tuple int) float64 {
binHist := makeBinHist(data, tuple)
values := []float64{}
for _, i := range binHist {
values = append(values, float64(i))
}
sort.Float64s(values)
var a, m, s float64
wg := sync.WaitGroup{}
// Calculate the average.
wg.Add(1)
go func() {
a = avg(values)
wg.Done()
}()
// Calculate the median.
wg.Add(1)
go func() {
m = median(values)
wg.Done()
}()
// Calculate the standard deviation.
wg.Add(1)
go func() {
s = stdDev(values)
wg.Done()
}()
wg.Wait()
return 3 * (a - m) / s
}
func Frequency(data []byte, chunkSize int) float64 {
fl := frequencyList(data, chunkSize)
return sum(fl) / float64(len(fl))
}
func IsRandom(data []byte) bool {
// These vars may be changed to adjust randomness measurement
var tuple = 8
var chunkSize = 256
wg := sync.WaitGroup{}
wg.Add(1)
var f, s float64
go func(){
f = Frequency(data, chunkSize)
wg.Done()
}()
wg.Add(1)
go func(){
s = Skewness(data, tuple)
wg.Done()
}()
wg.Wait()
return f >= FreqThresh && s <= SkewThresh
}