Object detection allows for the recognition, detection, and localization of multiple buoys within an image using a live video feed
sudo apt-get update
sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"
sudo apt-get update
sudo apt-get install docker-ce
sudo groupadd docker
sudo usermod -aG docker $USER
Note: If the following docker commands do not work, run it with
sudo
(or log out and log back in).
Note: This must be run in the root folder of this repository
Alternatively: Replace .
with /path/to/Dockerfile
docker build -t tf-buoy-classifier .
Verify that the image has been successfully built using
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
tf-buoy-classifier latest 272ef1a20710 10 seconds ago 2.54GB
tensorflow/tensorflow 1.4.0-py3 7d680bfcec87 4 months ago 1.25GB
Make sure you are in the root directory of this repository and start the docker container with:
xhost +
docker run -it --rm --privileged -p 8888:8888 --env DISPLAY=$DISPLAY -v /dev/video0:/dev/video0 --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" -v $(pwd):/home/TF tf-buoy-classifier:latest
The following must be run inside the docker container
If running for the first time, run:
python3 -B setup.py build
python3 -B setup.py install
python3 -B object_detection/object_detection_runner.py